
Signal Processing Blockset
For Use with Simulink®

Modeling

Simulation

Implementation

User’s Guide
Version 6

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Signal Processing Blockset User’s Guide
© COPYRIGHT 1995–2005 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 1995 First printing Version 1.0
May 1997 Second printing Version 2.0
January 1998 Third printing Version 2.2 (Release 10)
January 1999 Fourth printing Version 3.0 (Release 11)
November 2000 Fifth printing Version 4.0 (Release 12)
June 2001 Online only Version 4.1 (Release 12.1)
July 2002 Sixth printing Version 5.0 (Release 13)
April 2003 Seventh printing Version 5.1 (Release 13SP1)
June 2004 Online only Version 6.0 (Release 14) (Renamed from DSP Blockset

User’s Guide)
October 2004 Online only Version 6.0.1 (Release 14SP1)
March 2005 Online only Version 6.1 (Release 14SP2)
September 2005 Online only Version 6.2 (Release 14SP3)

Contents

Working with Signals

1
Discrete-Time Signals . 1-3

Time and Frequency Terminology . 1-3
Recommended Settings for Discrete-Time Simulations . . . 1-5
Other Settings for Discrete-Time Simulations 1-7

Continuous-Time Signals . 1-11
Continuous-Time Source Blocks . 1-11
Continuous-Time Nonsource Blocks 1-12

Sample-Based Signals . 1-13
Sample-Based Single Channel Signals 1-13
Sample-Based Multichannel Signals 1-13

Frame-Based Signals . 1-15
Frame-Based Single Channel Signals 1-15
Frame-Based Multichannel Signals 1-15
Benefits of Frame-Based Processing 1-17

Creating Sample-Based Signals . 1-19
Using the DSP Constant Block . 1-19
Using the Signal from Workspace Block 1-22

Creating Frame-Based Signals . 1-25
Using the Sine Wave Block . 1-25
Using the Signal from Workspace Block 1-28

Creating Multichannel Sample-Based Signals 1-31
Combining Single-Channel Sample-Based Signals 1-31
Combining Multichannel Sample-Based Signals 1-34

Creating Multichannel Frame-Based Signals 1-37
Combining Frame-Based Signals . 1-37

i

Deconstructing Multichannel Sample-Based Signals . . 1-41
Splitting Multichannel Sample-Based Signals into

Individual Signals . 1-41
Splitting Multichannel Sample-Based Signals into Several

Multichannel Signals . 1-43

Deconstructing Multichannel Frame-Based Signals . . . 1-47
Splitting Multichannel Frame-Based Signals into

Individual Signals . 1-47
Reordering Channels in Multichannel Frame-Based

Signals . 1-51

Importing and Exporting Sample-Based Signals 1-55
Importing Sample-Based Vector Signals 1-55
Importing Sample-Based Matrix Signals 1-58
Exporting Sample-Based Signals . 1-62

Importing and Exporting Frame-Based Signals 1-66
Importing Frame-Based Signals . 1-66
Exporting Frame-Based Signals . 1-69

Advanced Signal Concepts

2
Inspecting Sample Rates and Frame Rates 2-2

Sample Rate and Frame Rate Concepts 2-2
Inspecting Sample-Based Signals Using the Probe Block . . 2-4
Inspecting Frame-Based Signals Using the Probe Block . . 2-6
Inspecting Sample-Based Signals Using Color Coding 2-8
Inspecting Frame-Based Signals Using Color Coding 2-10

Converting Sample and Frame Rates 2-12
Rate Conversion Blocks . 2-12
Rate Conversion by Frame-Rate Adjustment 2-14
Rate Conversion by Frame-Size Adjustment 2-16
Avoiding Unintended Rate Conversion 2-19
Frame Rebuffering Blocks . 2-24
Buffering with Preservation of the Signal 2-27
Buffering with Alteration of the Signal 2-29

ii Contents

Converting Frame Status . 2-33
Buffering Sample-Based Signals into Frame-Based

Signals . 2-33
Buffering Sample-Based Signals into Frame-Based Signals

with Overlap . 2-36
Buffering Frame-Based Signals into Other Frame-Based

Signals . 2-40
Buffering Delay and Initial Conditions 2-42
Unbuffering Frame-Based Signals into Sample-Based

Signals . 2-43

Delay and Latency . 2-48
Computational Delay . 2-48
Algorithmic Delay . 2-50
Zero Algorithmic Delay . 2-50
Basic Algorithmic Delay . 2-53
Excess Algorithmic Delay (Tasking Latency) 2-56
Predicting Tasking Latency . 2-58

Filters

3
Digital Filter Block . 3-2

Required Parameters . 3-2
Implementing a Lowpass Filter . 3-3
Implementing a Highpass Filter . 3-4
Filtering High-Frequency Noise . 3-5
Specifying Static Filters . 3-10
Specifying Time-Varying Filters . 3-11
Specifying the SOS Matrix (Biquadratic Filter

Coefficients) . 3-16

Digital Filter Design Block . 3-18
Overview of the Digital Filter Design Block 3-19
Choosing Between Filter Design Blocks 3-20
Creating a Lowpass Filter . 3-22
Creating a Highpass Filter . 3-24
Filtering High-Frequency Noise . 3-26

Filter Realization Wizard . 3-32

iii

Designing and Implementing a Fixed-Point Filter 3-32
Setting the Filter Structure and Number of Filter

Sections . 3-47
Optimizing the Filter Structure . 3-49

Analog Filter Design Block . 3-51

Adaptive Filters . 3-53
Creating an Acoustic Environment 3-53
Creating an Adaptive Filter . 3-54
Customizing an Adaptive Filter . 3-60
Adaptive Filtering Demos . 3-64

Multirate Filters . 3-66
Filter Banks . 3-66
Multirate Filtering Demos . 3-74

Transforms

4
Signals in the Time Domain . 4-2

Displaying Time-Domain Data . 4-2
Transforming Time-Domain Data into the Frequency

Domain . 4-5

Signals in the Frequency-Domain 4-9
Displaying Frequency-Domain Data 4-9
Transforming Frequency-Domain Data into the Time

Domain . 4-13

Linear and Bit-Reversed Output Order 4-18
Finding the Bit-Reversed Order of Your Frequency

Indices . 4-18

iv Contents

Quantizers

5
Scalar Quantizers . 5-2

Analysis and Synthesis of Speech . 5-2
Identifying Your Residual Signal and Reflection

Coefficients . 5-4
Creating a Scalar Quantizer . 5-5

Vector Quantizers . 5-11
Building Your Vector Quantizer Model 5-11
Configuring and Running Your Model 5-13

Statistics, Estimation, and Linear Algebra

6
Statistics . 6-2

Basic Operations . 6-3
Running Operations . 6-4

Power Spectrum Estimation . 6-6

Linear Algebra . 6-7
Solving Linear Systems . 6-7
Factoring Matrices . 6-9
Inverting Matrices . 6-10

Data Type Support

7
Supported Data Types and How to Convert to Them . . 7-2

Block Data Type Support Table . 7-4

v

Viewing Data Types of Signals In Models 7-13

Correctly Defining Custom Data Types 7-14

Boolean Support . 7-15
Advantages of Using the Boolean Data Type 7-15
Lists of Blocks Supporting Boolean Inputs or Outputs . . . 7-15
Effects of Enabling and Disabling Boolean Support 7-17
Steps to Disabling Boolean Support 7-18

Working with Fixed-Point Data

8
Fixed-Point Signal Processing Development 8-3

Benefits of Fixed-Point Hardware . 8-3
Benefits of Fixed-Point Design with the Signal Processing

Blockset . 8-4
Fixed-Point Signal Processing Applications 8-4

Blocks with Fixed-Point Support . 8-6

Concepts and Terminology . 8-8
Fixed-Point Data Types . 8-8
Scaling . 8-9
Precision and Range . 8-10

Arithmetic Operations . 8-13
Modulo Arithmetic . 8-13
Two’s Complement . 8-14
Addition and Subtraction . 8-15
Multiplication . 8-16
Casts . 8-18

Specifying Fixed-Point Attributes 8-22
Setting Block Parameters . 8-22
Specifying System-Level Settings . 8-28

vi Contents

Fixed-Point Filtering . 8-32
Filter Implementation Blocks . 8-32
Filter Design and Implementation Blocks 8-32

Interoperability with Other Products 8-34
Building Models with Other Blocks 8-37

Blocks — Categorical List

9
Estimation . 9-2

Linear Prediction . 9-2
Parametric Estimation . 9-3
Power Spectrum Estimation . 9-3

Filtering . 9-5
Adaptive Filters . 9-5
Filter Designs . 9-5
Multirate Filters . 9-6

Math Functions . 9-8
Math Operations . 9-8
Matrices and Linear Algebra . 9-8
Polynomial Functions . 9-11

Platform-Specific I/O . 9-12
Windows (WIN32) . 9-12

Quantizers . 9-13

Signal Management . 9-15
Buffers . 9-15
Indexing . 9-15
Signal Attributes . 9-16
Switches and Counters . 9-16

Signal Operations . 9-18

vii

Signal Processing Sinks . 9-20

Signal Processing Sources . 9-21

Statistics . 9-22

Transforms . 9-23

Blocks — Alphabetical List

10

Functions — Alphabetical List

11

Glossary

Index

viii Contents

1

Working with Signals

This chapter helps you understand how sample-based and frame-based
signals are represented in Simulink®. You learn how to create single-channel
and multichannel sample-based and frame-based signals. You also learn
how to extract single-channel signals from multichannel signals. Lastly you
explore how to import signals into signal processing models and export signals
to the MATLAB® workspace.

Discrete-Time Signals (p. 1-3) Overview of discrete-time signals

Continuous-Time Signals (p. 1-11) Overview of continuous-time signals

Sample-Based Signals (p. 1-13) Understand sample-based signals in
both their single and multichannel
form

Frame-Based Signals (p. 1-15) Understand frame-based signals in
both their single and multichannel
form

Creating Sample-Based Signals
(p. 1-19)

Use the DSP Constant block and
the Signal From Workspace block to
generate sample-based signals

Creating Frame-Based Signals
(p. 1-25)

Use the Sine Wave block and the
Signal From Workspace block to
generate frame-based signals

Creating Multichannel
Sample-Based Signals (p. 1-31)

Use the Matrix Concatenation block
to create multichannel sample-based
signals

Creating Multichannel Frame-Based
Signals (p. 1-37)

Use the Matrix Concatenation block
to create multichannel frame-based
signals

1 Working with Signals

Deconstructing Multichannel
Sample-Based Signals (p. 1-41)

Learn how to extract single-channel
and multichannel sample-based
signals from multichannel
sample-based signals

Deconstructing Multichannel
Frame-Based Signals (p. 1-47)

Learn how to extract single-channel
and multichannel frame-based
signals from multichannel
frame-based signals. Also, learn how
to reorder channels in a frame-based
signal

Importing and Exporting
Sample-Based Signals (p. 1-55)

Import sample-based signals from
the MATLAB workspace into your
DSP model. Export sample-based
signals from your signal processing
model to the MATLAB workspace

Importing and Exporting
Frame-Based Signals (p. 1-66)

Import frame-based signals from
the MATLAB workspace into your
signal processing model. Export
frame-based signals from your signal
processing model to the MATLAB
workspace

1-2

Discrete-Time Signals

Discrete-Time Signals
Simulink models can process both discrete-time and continuous-time signals.
Models built with the Signal Processing Blockset are often intended to process
discrete-time signals only. This section defines basic signal terminology
and describes how to set the configuration parameters for discrete-time
simulations.

This section includes the following topics:

• “Time and Frequency Terminology” on page 1-3 — Review the definitions of
common discrete-time signal terminology

• “Recommended Settings for Discrete-Time Simulations” on page 1-5 —
Learn the recommended solver algorithms for discrete-time simulations

• “Other Settings for Discrete-Time Simulations” on page 1-7 — Learn the
other solver algorithms for discrete-time simulations

Time and Frequency Terminology
A discrete-time signal is a sequence of values that correspond to particular
instants in time. The time instants at which the signal is defined are the
signal’s sample times, and the associated signal values are the signal’s
samples. Traditionally, a discrete-time signal is considered to be undefined at
points in time between the sample times. For a periodically sampled signal,
the equal interval between any pair of consecutive sample times is the signal’s
sample period, Ts. The sample rate, Fs, is the reciprocal of the sample period,
or 1/Ts. The sample rate is the number of samples in the signal per second.

The 7.5-second triangle wave segment below has a sample period of 0.5
second, and sample times of 0.0, 0.5, 1.0, 1.5, ...,7.5. The sample rate of the
sequence is therefore 1/0.5, or 2 Hz.

1-3

1 Working with Signals

A number of different terms are used to describe the characteristics of
discrete-time signals found in Simulink models. These terms, which are listed
in the following table, are frequently used to describe the way that various
blocks operate on sample-based and frame-based signals.

Term Symbol Units Notes

Sample period Ts
Tsi
Tso

Seconds The time interval between consecutive samples in a
sequence, as the input to a block (Tsi) or the output
from a block (Tso).

Frame period Tf
Tfi
Tfo

Seconds The time interval between consecutive frames in a
sequence, as the input to a block (Tfi) or the output
from a block (Tfo).

Signal period T Seconds The time elapsed during a single repetition of a
periodic signal.

Sample
frequency

Fs Hz (samples
per second)

The number of samples per unit time, Fs = 1/Ts.

Frequency f Hz (cycles
per second)

The number of repetitions per unit time of a periodic
signal or signal component, f = 1/T.

Nyquist rate Hz (cycles
per second)

The minimum sample rate that avoids aliasing,
usually twice the highest frequency in the signal
being sampled.

Nyquist
frequency

fnyq Hz (cycles
per second)

Half the Nyquist rate.

Normalized
frequency

fn Two cycles
per sample

Frequency (linear) of a periodic signal normalized to
half the sample rate, fn = ω/π = 2f/Fs.

Angular
frequency

� Radians per
second

Frequency of a periodic signal in angular units,
� = 2πf.

Digital
(normalized
angular)
frequency

ω Radians per
sample

Frequency (angular) of a periodic signal normalized
to the sample rate, ω = �/Fs = πfn.

1-4

Discrete-Time Signals

Note In the Block Parameters dialog boxes, the term sample time is used to
refer to the sample period, Ts. For example, the Sample time parameter
in the Signal From Workspace block specifies the imported signal’s sample
period.

Recommended Settings for Discrete-Time Simulations
Simulink allows you to select from several different simulation solver
algorithms. You can access these solver algorithms from a Simulink model:

1 In the Simulink model window, from the Simulation menu, select
Configuration Parameters. The Configuration Parameters dialog
box opens.

2 In the Select pane, click Solver.

The selections that you make here determine how discrete-time signals are
processed in Simulink. The recommended Solver options settings for
signal processing simulations are

• Type: Fixed-step

• Solver: discrete (no continuous states)

• Fixed step size (fundamental sample time): auto

• Tasking mode for periodic sample times: SingleTasking

1-5

1 Working with Signals

You can automatically set the above solver options for all new models by
running the dspstartup M-file. See “Configuring Simulink for Signal
Processing Models” in the Getting Started Signal Processing Blockset
documentation for more information.

In Fixed-step SingleTasking mode, discrete-time signals differ from the
prototype described in “Time and Frequency Terminology” on page 1-3 by
remaining defined between sample times. For example, the representation
of the discrete-time triangle wave looks like this.

The above signal’s value at t=3.112 seconds is the same as the signal’s value
at t=3 seconds. In Fixed-step SingleTasking mode, a signal’s sample times
are the instants where the signal is allowed to change values, rather than

1-6

Discrete-Time Signals

where the signal is defined. Between the sample times, the signal takes on
the value at the previous sample time.

As a result, in Fixed-step SingleTasking mode, Simulink permits
cross-rate operations such as the addition of two signals of different rates.
This is explained further in “Cross-Rate Operations” on page 1-7.

Other Settings for Discrete-Time Simulations
It is useful to know how the other solver options available in Simulink affect
discrete-time signals. In particular, you should be aware of the properties of
discrete-time signals under the following settings:

• Type: Fixed-step, Mode: MultiTasking

• Type: Variable-step (the Simulink default solver)

• Type: Fixed-step, Mode: Auto

When the Fixed-step MultiTasking solver is selected, discrete signals in
Simulink are undefined between sample times. Simulink generates an error
when operations attempt to reference the undefined region of a signal, as, for
example, when signals with different sample rates are added.

When the Variable-step solver is selected, discrete time signals remain
defined between sample times, just as in the Fixed-step SingleTasking
case described in “Recommended Settings for Discrete-Time Simulations” on
page 1-5. When the Variable-step solver is selected, cross-rate operations
are allowed by Simulink.

In the Fixed-step Auto setting, Simulink automatically selects a tasking
mode, single-tasking or multitasking, that is best suited to the model. See
“Simulink Tasking Mode” on page 2-57 for a description of the criteria that
Simulink uses to make this decision. For the typical model containing
multiple rates, Simulink selects the multitasking mode.

Cross-Rate Operations
When the Fixed-step MultiTasking solver is selected, discrete signals
in Simulink are undefined between sample times. Therefore, to perform
cross-rate operations like the addition of two signals with different sample

1-7

1 Working with Signals

rates, you must convert the two signals to a common sample rate. Several
blocks in the Signal Operations and Multirate Filters libraries can accomplish
this task. See “Converting Sample and Frame Rates” on page 2-12 for more
information. By requiring explicit rate conversions for cross-rate operations
in discrete mode, Simulink helps you to identify sample rate conversion issues
early in the design process.

When the Variable-step solver or Fixed-step SingleTasking solver
is selected, discrete time signals remain defined between sample times.
Therefore, if you sample the signal with a rate or phase that is different from
the signal’s own rate and phase, you will still measure meaningful values:

1 At the MATLAB command line, type doc_sum_tut1.

The Cross-Rate Sum Example model opens. This model sums two signals
with different sample periods.

2 Double-click the upper Signal From Workspace block. The Block
Parameters: Signal From Workspace dialog box opens.

3 Set the Sample time parameter to 1.

1-8

Discrete-Time Signals

This creates a fast signal, (Ts=1), with sample times 1, 2, 3, ...

4 Double-click the lower Signal From Workspace block

5 Set the Sample time parameter to 2.

This creates a slow signal, (Ts=2), with sample times 1, 3, 5, ...

6 Run the model.

Note Using the dspstartup configurations with cross-rate operations
generates errors even though the Fixed-step SingleTasking solver is
selected. This is due to the fact that Single task rate transition is set
to error in the Sample Time pane of the Diagnostics section of the
Configuration Parameters dialog box.

7 At the MATLAB command line, type dsp_examples_yout.

The following output is displayed:

dsp_examples_yout =
1 1 2
2 1 3
3 2 5
4 2 6
5 3 8
6 3 9
7 4 11
8 4 12
9 5 14

10 5 15
0 6 6

The first column of the matrix is the fast signal, (Ts=1). The second column
of the matrix is the slow signal (Ts=2). The third column is the sum of the
two signals. As expected, the slow signal changes once every 2 seconds,
half as often as the fast signal. Nevertheless, the slow signal is defined at
every moment because Simulink implicitly auto-promotes the rate of the

1-9

1 Working with Signals

slower signal to match the rate of the faster signal before the addition
operation is performed.

In general, for Variable-step and Fixed-step SingleTasking modes, when
you measure the value of a discrete signal between sample times, you are
observing the value of the signal at the previous sample time.

1-10

Continuous-Time Signals

Continuous-Time Signals
Most signals in a signal processing model are discrete-time signals. However,
many blocks can also operate on and generate continuous-time signals, whose
values vary continuously with time.

This section includes the following topics:

• “Continuous-Time Source Blocks” on page 1-11 — Learn how to set up and
use continuous-time source blocks

• “Continuous-Time Nonsource Blocks” on page 1-12 — Learn how to use
continuous-time nonsource blocks

Continuous-Time Source Blocks
Source blocks are those blocks that generate or import signals in a model.
Most source blocks appear in the Signal Processing Sources library. The
sample period for continuous-time source blocks is set internally to zero.
This indicates a continuous-time signal. The Simulink Signal Generator
block and the Signal Processing Blockset DSP Constant block are examples
of continuous-time source blocks. Continuous-time signals are rendered in
black when, from the Format menu, you point to Port/Signal Displays and
select Sample Time Colors.

When connecting continuous-time source blocks to discrete-time blocks, you
might need to interpose a Zero-Order Hold block to discretize the signal.
Specify the desired sample period for the discrete-time signal in the Sample
time parameter of the Zero-Order Hold block.

1-11

1 Working with Signals

Continuous-Time Nonsource Blocks
Most nonsource blocks in the Signal Processing Blockset accept
continuous-time signals, and all nonsource blocks inherit the sample period
of the input. Therefore, continuous-time inputs generate continuous-time
outputs. Blocks that are not capable of accepting continuous-time signals
include the Digital Filter, FIR Decimation, FIR Interpolation blocks.

1-12

Sample-Based Signals

Sample-Based Signals
Signals can be sample-based or frame-based, single channel or multichannel.
The following section discusses sample-based signals in both their single
and multichannel form.

This section includes the following topics:

• “Sample-Based Single Channel Signals” on page 1-13 — Learn about the
characteristics of a sample-based single channel signal

• “Sample-Based Multichannel Signals” on page 1-13 — Learn about the
characteristics of a sample-based multichannel signal

Sample-Based Single Channel Signals
The following figure shows a discrete-time signal. If this signal is propagated
through a model sample-by-sample, rather than in batches of samples, it is
called a sample-based signal. It is also single-channel signal, because there is
only one independent sequence of numbers.

The representation of single-channel signals is actually a special case of the
general multichannel signal.

Sample-Based Multichannel Signals
Sample-based multichannel signals are represented as matrices. An M-by-N
sample-based matrix represents M*N independent channels, each containing
a single value. In other words, each matrix element represents one sample
from a distinct channel.

1-13

1 Working with Signals

As an example, consider the 24-channel (6-by-4) sample-based signal in the
figure below, where ut=0 is the first matrix in the series, ut=1 is the second,
ut=2 is the third, and so on.

The signal in channel 1 is composed of the following sequence:

Similarly, channel 9 (counting down the columns) contains the following
sequence:

In practice, signal samples are frequently transmitted in batches, or frames,
and several channels of data are often transmitted simultaneously in
order to accelerate simulations. Hence, most signals are frame-based and
multichannel signals.

1-14

Frame-Based Signals

Frame-Based Signals
Signals can be sample-based or frame-based, single channel or multichannel.
The following section discusses frame-based signals in both their single and
multichannel form. It also explains how frame-based processing accelerates
real-time systems and simulations.

This section contains the following topics:

• “Frame-Based Single Channel Signals” on page 1-15 — Learn about the
characteristics of a frame-based single channel signal

• “Frame-Based Multichannel Signals” on page 1-15 — Learn about the
characteristics of a frame-based multichannel signal

• “Benefits of Frame-Based Processing” on page 1-17 — Understand how
frame-based processing accelerates real-time systems and simulations

Frame-Based Single Channel Signals
The following figure shows a discrete-time signal. If this signal is propagated
through a model in batches of samples, it is called a frame-based signal. It is
also single-channel signal, because there is only one independent sequence
of numbers.

Frame-based single channel signals are represented as vectors. An M-by-1
frame-based vector represents M consecutive samples from a single channel.
In other words, each matrix row represents one sample, or time slice, from
one distinct channel.

Frame-Based Multichannel Signals
Frame-based multichannel signals are represented as matrices. An M-by-N
frame-based matrix represents M consecutive samples from each of N

1-15

1 Working with Signals

independent channels. In other words, each matrix row represents one
sample, or time slice, from N distinct signal channels, and each matrix column
represents M consecutive samples from a single channel.

For example, this 6-by-4 matrix represents a four-channel frame-based signal
with six samples per frame.

Consider a sequence of frame matrices, where ut=0 is the first matrix in a
series, ut=1 is the second, ut=2 is the third, and so on.

The signal in channel 1 is the following sequence:

Similarly, the signal in channel 3 is the following sequence:

1-16

Frame-Based Signals

Benefits of Frame-Based Processing
Frame-based processing is an established method of accelerating both
real-time systems and simulations.

Accelerating Real-Time Systems
Frame-based data is a common format in real-time systems. Data acquisition
hardware often operates by accumulating a large number of signal samples
at a high rate, and propagating these samples to the real-time system as a
block of data. This maximizes the efficiency of the system by distributing the
fixed process overhead across many samples; the "fast" data acquisition is
suspended by "slow" interrupt processes after each frame is acquired, rather
than after each individual sample.

The figure below illustrates how throughput is increased by frame-based
data acquisition. The thin blocks each represent the time elapsed during
acquisition of a sample. The thicker blocks each represent the time elapsed
during the interrupt service routine (ISR) that reads the data from the
hardware.

In this example, the frame-based operation acquires a frame of 16 samples
between each ISR. The frame-based throughput rate is therefore many times
higher than the sample-based alternative.

1-17

1 Working with Signals

It’s important to note that frame-based processing introduces a certain
amount of latency into a process due to the inherent lag in buffering the
initial frame. In many instances, however, it is possible to select frame sizes
that improve throughput without creating unacceptable latencies. For more
information, see “Delay and Latency” on page 2-48.

Accelerating Simulations
The simulation of your model also benefits from frame-based processing. In
this case, it is the overhead of block-to-block communications that is reduced
by propagating frames rather than individual samples.

1-18

Creating Sample-Based Signals

Creating Sample-Based Signals
A sample-based signal is propagated through a model one sample at a time.
This section describes two ways to create a sample-based signal.

This section includes the following topics:

• “Using the DSP Constant Block” on page 1-19 — Create a six-channel,
constant sample-based signal using the DSP Constant block

• “Using the Signal from Workspace Block” on page 1-22 — Create a
four-channel sample-based signal using the Signal From Workspace block

Using the DSP Constant Block
A constant sample-based signal has identical successive samples. The Signal
Processing Sources library provides the following blocks for creating constant
sample-based signals:

• Constant Diagonal Matrix

• DSP Constant

• Identity Matrix

The most versatile of the blocks listed above is the DSP Constant block. This
topic discusses how to create a constant sample-based signal using the DSP
Constant block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a DSP Constant
block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Display block
into the model.

4 Connect the two blocks.

5 Double-click the DSP Constant block, and set the block parameters as
follows:

• Constant value = [1 2 3; 4 5 6]

1-19

1 Working with Signals

• Sample mode = Discrete

• Output = Sample-based

• Sample time = 1

Based on these parameters, the DSP Constant block outputs a constant,
discrete-valued, sample-based matrix signal with a sample period of 1
second.

The DSP Constant block’s Constant value parameter can be any valid
MATLAB variable or expression that evaluates to a matrix. See the
MATLAB documentation for a thorough introduction to constructing and
indexing matrices.

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/ Signal Displays and select
Signal Dimensions.

8 Run the model and expand the Display block so you can view the entire
signal.

The model should now look similar to the following figure. You can also
open the model by typing doc_usingdspcnstblksb at the MATLAB
command line.

1-20

Creating Sample-Based Signals

You have now successfully created a six-channel, constant sample-based
signal with a sample period of 1 second.

Creating a 1-D Vector Signal
You can modify the previous model in order to create a 1-D vector signal:

1 Double-click the DSP Constant block, and set the block parameters as
follows:

• Constant value = [1 2 3 4 5 6]

• Output = Sample-based (interpret vector as 1-D)

2 Save these parameters and close the dialog box by clicking OK.

3 Run the model and expand the Display block so you can view the entire
signal.

The following figure shows the results of these two procedures.

1-21

1 Working with Signals

The DSP Constant block generates a length-6 1-D vector signal. This means
that the output is not a matrix. However, most nonsource signal processing
blocks interpret a length-M 1-D vector as an M-by-1 matrix (column vector).

Note A 1-D vector signal must always be sample based.

Using the Signal from Workspace Block
This topic discusses how to create a four-channel sample-based signal with a
sample period of 1 second using the Signal From Workspace block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Signal From
Workspace block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Signal To
Workspace block into the model.

4 Connect the two blocks.

1-22

Creating Sample-Based Signals

5 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = cat(3,[1 -1;0 5],[2 -2;0 5],[3 -3;0 5])

• Sample time = 1

• Samples per frame = 1

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
four-channel sample-based signal with a sample period of 1 second. After
the block has output the signal, all subsequent outputs have a value of
zero. The four channels contain the following values:

• Channel 1: 1, 2, 3, 0, 0,...

• Channel 2: -1, -2, -3, 0, 0,...

• Channel 3: 0, 0, 0, 0, 0,...

• Channel 4: 5, 5, 5, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

8 Run the model.

The following figure is a graphical representation of the model’s
behavior during simulation. You can also open the model by typing
doc_usingsfwblksb at the MATLAB command line.

1-23

1 Working with Signals

9 At the MATLAB command line, type yout.

The following is a portion of the output:

yout(:,:,1) =

1 -1
0 5

yout(:,:,2) =

2 -2
0 5

yout(:,:,3) =

3 -3
0 5

yout(:,:,4) =

0 0
0 0

You have now successfully created a four-channel sample-based signal with
sample period of 1 second using the Signal From Workspace block.

1-24

Creating Frame-Based Signals

Creating Frame-Based Signals
A frame-based signal is propagated through a model in batches of samples
called frames. Frame-based processing can significantly improve the
performance of your model by decreasing the amount of time it takes your
simulation to run. This section describes two ways to create frame-based
signals.

This section includes the following topics:

• “Using the Sine Wave Block” on page 1-25 — Create a three-channel
frame-based signal using the Sine Wave block

• “Using the Signal from Workspace Block” on page 1-28 — Create a
two-channel frame-based signal using the Signal From Workspace block

Using the Sine Wave Block
The Signal Processing Sources library provides the following blocks for
automatically generating common frame-based signals:

• Chirp

• Discrete Impulse

• Multiphase Clock

• N-Sample Enable

• Signal From Workspace

• Sine Wave

For information about the specific functionality of these blocks, see their
respective block reference pages.

One of the most commonly used blocks in the Signal Processing Sources
library is the Sine Wave block. This topic describes how to create a
three-channel frame-based signal using the Sine Wave block:

1 Create a new Simulink model.

1-25

1 Working with Signals

2 From the Signal Processing Sources library, click-and-drag a Sine Wave
block into the model.

3 From the Matrix Operations library, click-and-drag a Matrix Sum block
into the model.

4 From the Signal Processing Sinks library, click-and-drag a Signal to
Workspace block into the model.

5 Connect the blocks in the order in which you added them to your model.

6 Double-click the Sine Wave block, and set the block parameters as follows:

• Amplitude = [1 3 2]

• Frequency = [100 250 500]

• Sample time = 1/5000

• Samples per frame = 64

Based on these parameters, the Sine Wave block outputs three sinusoids
with amplitudes 1, 3, and 2 and frequencies 100, 250, and 500 hertz,
respectively. The sample period, 1/5000, is 10 times the highest sinusoid
frequency, which satisfies the Nyquist criterion. The frame size is 64 for all
sinusoids, and, therefore, the output has 64 rows.

7 Save these parameters and close the dialog box by clicking OK.

You have now successfully created a three-channel frame-based signal
using the Sine Wave block. The rest of this procedure describes how to
add these three sinusoids together.

8 Double-click the Matrix Sum block, and set the Sum along parameter to
Rows. Click OK.

9 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

10 Run the model.

Your model should now look similar to the following figure. You can
also open the model by typing doc_usingsinwaveblkfb at the MATLAB
command line.

1-26

Creating Frame-Based Signals

The three signals are summed point-by-point by a Matrix Sum block. Then,
they are exported to the MATLAB workspace.

11 At the MATLAB command line, type plot(yout(1:100)).

Your plot should look similar to the following figure.

1-27

1 Working with Signals

This figure represents a portion of the sum of the three sinusoids. You have
now added the channels of a three-channel frame-based signal together and
displayed the results in a figure window.

Using the Signal from Workspace Block
This topic describes how to create a two-channel frame-based signal with a
sample period of 1 second, a frame period of 4 seconds, and a frame size of 4
samples using the Signal From Workspace block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Signal From
Workspace block into the model.

1-28

Creating Frame-Based Signals

3 From the Signal Processing Sinks library, click-and-drag a Signal To
Workspace block into the model.

4 Connect the two blocks.

5 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = [1:10; 1 1 0 0 1 1 0 0 1 1]'

• Sample time = 1

• Samples per frame = 4

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame-based signal has a sample period of 1 second, a frame
period of 4 seconds, and a frame size of four samples. After the block
outputs the signal, all subsequent outputs have a value of zero. The two
channels contain the following values:

• Channel 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0,...

• Channel 2: 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

8 Run the model.

The following figure is a graphical representation of the model’s
behavior during simulation. You can also open the model by typing
doc_usingsfwblkfb at the MATLAB command line.

1-29

1 Working with Signals

9 At the MATLAB command line, type yout.

The following is the output displayed at the MATLAB command line.

yout =

1 1
2 1
3 0
4 0
5 1
6 1
7 0
8 0
9 1

10 1
0 0
0 0

Note that zeros were appended to the end of each channel. You have now
successfully created a two-channel frame-based signal and exported it to
the MATLAB workspace.

1-30

Creating Multichannel Sample-Based Signals

Creating Multichannel Sample-Based Signals
When you want to perform the same operations on several independent
signals, you can group those signals together as a multichannel signal. For
example, if you need to filter each of four independent signals using the
same direct-form II transpose filter, you can combine the signals into a
multichannel signal, and connect the signal to a single Digital Filter Design
block. The block applies the filter to each channel independently.

A sample-based signal with M*N channels is represented by a sequence of
M-by-N matrices. Multiple sample-based signals can be combined into a single
multichannel sample-based signal using the Matrix Concatenation block. In
addition, several multichannel sample-based signals can be combined into a
single multichannel sample-based signal using the same technique.

This section contains the following topics:

• “Combining Single-Channel Sample-Based Signals” on page 1-31 — Create
a multichannel sample-based signal from several individual sample-based
signals

• “Combining Multichannel Sample-Based Signals” on page 1-34 — Create a
multichannel sample-based signal from several multichannel sample-based
signals

Combining Single-Channel Sample-Based Signals
You can combine individual sample-based signals into a multichannel signal
by using the Matrix Concatenation block in the Simulink Math Operations
library:

1 Open the Matrix Concatenation Example 1 model by typing

doc_cmbsnglchsbsigs

at the MATLAB command line.

1-31

1 Working with Signals

2 Double-click the Signal From Workspace block, and set the Signal
parameter to 1:10. Click OK.

3 Double-click the Signal From Workspace1 block, and set the Signal
parameter to -1:-1:-10. Click OK.

4 Double-click the Signal From Workspace2 block, and set the Signal
parameter to zeros(10,1). Click OK.

5 Double-click the Signal From Workspace3 block, and set the Signal
parameter to 5*ones(10,1). Click OK.

6 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 4

• Concatenation method = Vertical

1-32

Creating Multichannel Sample-Based Signals

7 Double-click the Reshape block. Set the block parameters as follows, and
then click OK:

• Output dimensionality = Customize

• Output dimensions = [2,2]

8 Run the model.

Four independent sample-based signals are combined into a 2-by-2
multichannel matrix signal.

Each 4-by-1 output from the Matrix Concatenation block contains one
sample from each of the four input signals at the same instant in time. The
Reshape block rearranges the samples into a 2-by-2 matrix. Each element
of this matrix is a separate channel. Note that the Reshape block works
columnwise, so that a column vector input is reshaped as shown below.

1-33

1 Working with Signals

The 4-by-1 matrix output by the Matrix Concatenation block and the 2-by-2
matrix output by the Reshape block in the above model represent the same
four-channel sample-based signal. In some cases, one representation of the
signal may be more useful than the other.

9 At the MATLAB command line, type dsp_examples_yout.

The four-channel, sample-based signal is displayed as a series of matrices
in the MATLAB Command Window. Note that the last matrix contains
only zeros. This is because every Signal From Workspace block in this
model has its Form output after final data value by parameter set
to Setting to Zero.

Combining Multichannel Sample-Based Signals
You can combine existing multichannel sample-based signals into larger
multichannel signals using the Simulink Matrix Concatenation block:

1 Open the Matrix Concatenation Example 2 model by typing

doc_cmbmltichsbsigs

at the MATLAB command line.

1-34

Creating Multichannel Sample-Based Signals

2 Double-click the Signal From Workspace block, and set the Signal
parameter to [1:10;-1:-1:-10]'. Click OK.

3 Double-click the Signal From Workspace1 block, and set the Signal
parameter to [zeros(10,1) 5*ones(10,1)]. Click OK.

4 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 2

• Concatenation method = Vertical

5 Run the model.

The model combines both two-channel sample-based signals into a
four-channel signal.

1-35

1 Working with Signals

Each 2-by-2 output from the Matrix Concatenation block contains both
samples from each of the two input signals at the same instant in time.
Each element of this matrix is a separate channel.

1-36

Creating Multichannel Frame-Based Signals

Creating Multichannel Frame-Based Signals
When you want to perform the same operations on several independent
signals, you can group those signals together as a multichannel signal. For
example, if you need to filter each of four independent signals using the
same direct-form II transpose filter, you can combine the signals into a
multichannel signal, and connect the signal to a single Digital Filter Design
block. The block applies the filter to each channel independently.

A frame-based signal with N channels and frame size M is represented by
a sequence of M-by-N matrices. Multiple individual frame-based signals,
with the same frame rate and size, can be combined into a multichannel
frame-based signal using the Simulink Matrix Concatenation block.
Individual signals can be added to an existing multichannel signal in the
same way.

This section contains the following topic:

• “Combining Frame-Based Signals” on page 1-37 — Create a multichannel
frame-based signal from several individual frame-based signals

Combining Frame-Based Signals
You can combine existing frame-based signals into a larger multichannel
signal by using the Simulink Matrix Concatenation block. All signals must
have the same frame rate and frame size. In this example, a single-channel

1-37

1 Working with Signals

frame-based signal is combined with a two-channel frame-based signal to
produce a three-channel frame-based signal:

1 Open the Matrix Concatenation Example 3 model by typing

doc_combiningfbsigs

at the MATLAB command line.

2 Double-click the Signal From Workspace block. Set the block parameters
as follows:

• Signal = [1:10;-1:-1:-10]'

• Sample time = 1

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a frame size of four.

1-38

Creating Multichannel Frame-Based Signals

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Signal From Workspace1 block. Set the block parameters
as follows, and then click OK:

• Signal = 5*ones(10,1)

• Sample time = 1

• Samples per frame = 4

The Signal From Workspace1 block has the same sample time and frame
size as the Signal From Workspace block. When you combine frame-based
signals into multichannel signals, the original signals must have the same
frame rate and frame size.

5 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 2

• Concatenation method = Horizontal

6 Run the model.

The figure below is a graphical representation of what happens to one
input frame during simulation.

1-39

1 Working with Signals

The 4-by-3 matrix output from the Matrix Concatenation block contains
all three input channels, and preserves their common frame rate and
frame size.

1-40

Deconstructing Multichannel Sample-Based Signals

Deconstructing Multichannel Sample-Based Signals
Multichannel signals, represented by matrices in Simulink, are frequently
used in signal processing models for efficiency and compactness. Though most
of the signal processing blocks can process multichannel signals, you may need
to access just one channel or a particular range of samples in a multichannel
signal. You can access individual channels of the multichannel signal by
using the blocks in the Indexing library. This library includes the Selector,
Submatrix, Variable Selector, Multiport Selector, and Submatrix blocks.

This section includes the following topics:

• “Splitting Multichannel Sample-Based Signals into Individual Signals” on
page 1-41 — Use the Multiport Selector block to create three, single-channel
sample-based signals from a multichannel sample-based signal

• “Splitting Multichannel Sample-Based Signals into Several Multichannel
Signals” on page 1-43 — Use the Submatrix block to create a six-channel
sample-based signal from a 35-channel sample-based signal.

Splitting Multichannel Sample-Based Signals into
Individual Signals
You can split multichannel sample-based signal into single-channel
sample-based signals using the Multiport Selector block. This blocks allows
you to select specific rows and/or columns and propagate this selection to a
chosen output port. In this example, a three-channel sample-based signal is
deconstructed into three independent sample-based signals:

1 Open the Multiport Selector Example 1 model by typing

doc_splitmltichsbsigsind

at the MATLAB command line.

1-41

1 Working with Signals

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = randn(3,1,10)

• Sample time = 1

• Samples per frame = 1

Based on these parameters, the Signal From Workspace block outputs a
three-channel, sample-based signal with a sample period of 1 second.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Multiport Selector block. Set the block parameters as
follows, and then click OK:

• Select = Rows

• Indices to output = {1,2,3}

1-42

Deconstructing Multichannel Sample-Based Signals

Based on these parameters, the Multiport Selector block extracts the rows
of the input. The Indices to output parameter setting specifies that row 1
of the input should be reproduced at output 1, row 2 of the input should
be reproduced at output 2, and row 3 of the input should be reproduced
at output 3.

5 Run the model.

6 At the MATLAB command line, type dsp_examples_yout.

The following is a portion of what is displayed at the MATLAB command
line. Because the input signal is random, your output might be different
than the output show here.

dsp_examples_yout(:,:,1) =

-0.1199

dsp_examples_yout(:,:,2) =

-0.5955

dsp_examples_yout(:,:,3) =

-0.0793

This sample-based signal is the first row of the input to the Multiport
Selector block. You can view the other two input rows by typing
dsp_examples_yout1 and dsp_examples_yout2, respectively.

You have now successfully created three, single-channel sample-based signals
from a multichannel sample-based signal using a Multiport Selector block.

Splitting Multichannel Sample-Based Signals into
Several Multichannel Signals
You can split a multichannel sample-based signal into other multichannel
sample-based signals using the Submatrix block. The Submatrix block is the
most versatile of the blocks in the Indexing library because it allows arbitrary
channel selections. Therefore, you can extract a portion of a multichannel

1-43

1 Working with Signals

sample-based signal. In this example, you extract a six-channel, sample-based
signal from a 35-channel, sample-based signal (5-by-7 matrix):

1 Open the Submatrix Example model by typing

doc_splitmltichsbsigsev

at the MATLAB command line.

2 Double-click the DSP Constant block, and set the block parameters as
follows:

• Constant value = rand(5,7)

• Output = Sample-based

Based on these parameters, the DSP Constant block outputs a
constant-valued, sample-based signal.

3 Save these parameters and close the dialog box by clicking OK.

1-44

Deconstructing Multichannel Sample-Based Signals

4 Double-click the Submatrix block. Set the block parameters as follows,
and then click OK:

• Row span = Range of rows

• Starting row = Index

• Starting row index = 3

• Ending row = Last

• Column span = Range of columns

• Starting column = Offset from last

• Starting column index = 1

• Ending column = Last

Based on these parameters, the Submatrix block outputs rows three to five,
the last row of the input signal. It also outputs the second to last column
and the last column of the input signal.

5 Run the model.

The model should now look similar to the following figure.

1-45

1 Working with Signals

Notice that the output of the Submatrix block is equivalent to the matrix
created by rows three through five and columns six through seven of the
input matrix.

You have now successfully created a six-channel, sample-based signal from a
35-channel sample-based signal using a Submatrix block.

1-46

Deconstructing Multichannel Frame-Based Signals

Deconstructing Multichannel Frame-Based Signals
Multichannel signals, represented by matrices in Simulink, are frequently
used in signal processing models for efficiency and compactness. Though
most of the signal processing blocks can process multichannel signals, you
may need to access just one channel or a particular range of samples in a
multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the
Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix
blocks. It is also possible to use the Permute Matrix block, in the Matrix
operations library, to reorder the channels of a frame-based signal.

This section includes the following topics:

• “Splitting Multichannel Frame-Based Signals into Individual Signals” on
page 1-47 — Use the Multiport Selector block to create a single-channel and
a two-channel frame-based signal from a multichannel frame-based signal

• “Reordering Channels in Multichannel Frame-Based Signals” on page
1-51 — Use the Permute Matrix block to rearrange the channels in a
frame-based signal

Splitting Multichannel Frame-Based Signals into
Individual Signals
You can use the Multiport Selector block in the Indexing library to extract the
individual channels of a multichannel frame-based signal. These signals form
single-channel frame-based signals that have the same frame rate and size
of the multichannel signal. The figure below is a graphical representation of
this process.

1-47

1 Working with Signals

In this example, you use the Multiport Selector block to extract a
single-channel and a two channel frame-based signal from a multichannel
frame-based signal:

1 Open the Multiport Selector Example 2 model by typing

doc_splitmltichfbsigsind

at the MATLAB command line.

1-48

Deconstructing Multichannel Frame-Based Signals

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = [1:10;-1:-1:-10;5*ones(1,10)]'

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
three-channel, frame-based signal with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Multiport Selector block. Set the block parameters as
follows, and then click OK:

• Select = Columns

• Indices to output = {[1 3],2}

1-49

1 Working with Signals

Based on these parameters, the Multiport Selector block outputs the first
and third columns at the first output port and the second column at the
second output port of the block. Setting the Select parameter to Columns
ensures that the block preserves the frame rate and frame size of the input.

5 Run the model.

The figure below is a graphical representation of how the Multiport Selector
block splits one frame of the three-channel frame-based signal into a
single-channel signal and a two-channel signal.

1-50

Deconstructing Multichannel Frame-Based Signals

The Multiport Selector block outputs a two-channel frame-based signal,
comprised of the first and third column of the input signal, at the first port.
It outputs a single-channel frame-based signal, comprised of the second
column of the input signal, at the second port.

You have now successfully created a single-channel and a two-channel
frame-based signal from a multichannel frame-based signal using the
Multiport Selector block.

Reordering Channels in Multichannel Frame-Based
Signals
Some blocks in the Signal Processing Blockset have the ability to process the
interaction of channels. Typically, Signal Processing Blockset blocks compare
channel one of signal A to channel one of signal B. However, you might want
to correlate channel one of signal A with channel three of signal B. In this
case, in order to compare the correct signals, you need to use the Permute
Matrix block to rearrange the channels of your frame-based signals. This
example explains how to accomplish this task:

1 Open the Permute Matrix Example model by typing

doc_reordermltichfbsigs

at the MATLAB command line.

1-51

1 Working with Signals

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = [1:10;-1:-1:-10;5*ones(1,10)]'

• Sample time = 1

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
three-channel, frame-based signal with a sample period of 1 second and a
frame size of 4. The frame period of this block is 4 seconds.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the DSP Constant block. Set the block parameters as follows,
and then click OK:

• Constant value = [1 3 2]

• Sample mode = Discrete

• Output = Frame-based

1-52

Deconstructing Multichannel Frame-Based Signals

• Frame period = 4

The discrete-time, frame-based vector output by the DSP Constant block
tells the Permute Matrix block to swap the second and third columns of the
input signal. Note that the frame period of the DSP Constant block must
match the frame period of the Signal From Workspace block.

5 Double-click the Permute Matrix block. Set the block parameters as
follows, and then click OK:

• Permute = Columns

• Index mode = One-based

Based on these parameters, the Permute Matrix block rearranges the
columns of the input signal, and the index of the first column is now one.

6 Run the model.

The figure below is a graphical representation of what happens to the first
input frame during simulation.

1-53

1 Working with Signals

The second and third channel of the frame-based input signal are swapped.

7 At the MATLAB command line, type yout.

You can now verify that the second and third columns of the input signal
are rearranged.

You have now successfully reordered the channels of a frame-based signal
using the Permute Matrix block.

1-54

Importing and Exporting Sample-Based Signals

Importing and Exporting Sample-Based Signals
Although a number of signal generation blocks are available in both the
Simulink and the Signal Processing Blockset libraries, it is also possible to
import custom signals from the MATLAB workspace into your Simulink
model. The Signal From Workspace block in the Signal Processing Sources
library is the key block for importing sample-based signals of all dimensions
from the MATLAB workspace. The Signal To Workspace block in the Signal
Processing Sinks library can be used to export sample-based signals to the
MATLAB workspace

This section includes the following topics:

• “Importing Sample-Based Vector Signals” on page 1-55 — Use the Signal
From Workspace block to import a sample-based vector signal into your
signal processing model

• “Importing Sample-Based Matrix Signals” on page 1-58 — Use the Signal
From Workspace block to import a sample-based matrix signal into your
signal processing model

• “Exporting Sample-Based Signals” on page 1-62 — Use the Signal
To Workspace block to export a sample-based matrix signal to your
MATLAB workspace

Importing Sample-Based Vector Signals
The Signal From Workspace block generates a sample-based vector signal
when the variable or expression in the Signal parameter is a matrix and the
Samples per frame parameter is set to 1. Each column of the input matrix
represents a different channel. Beginning with the first row of the matrix, the
block outputs one row of the matrix at each sample time. Therefore, if the
Signal parameter specifies an M-by-N matrix, the output of the Signal From
Workspace block is M 1-by-N row vectors representing N channels.

The figure below is a graphical representation of this process for a 6-by-4
workspace matrix, A.

1-55

1 Working with Signals

In the following example, you use the Signal From Workspace block to import
a sample-based vector signal into your model:

1 Open the Signal From Workspace Example 3 model by typing

doc_importsbvectorsigs

at the MATLAB command line.

1-56

Importing and Exporting Sample-Based Signals

2 At the MATLAB command line, type A = [1:100;-1:-1:-100]';

The matrix A represents a two column signal, where each column is a
different channel.

3 At the MATLAB command line, type B = 5*ones(100,1);

The vector B represents a single-channel signal.

4 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = [A B]

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

The Signal expression [A B] uses the standard MATLAB syntax for
horizontally concatenating matrices and appends column vector B to the
right of matrix A. The Signal From Workspace block outputs a sample-based
signal with a sample period of 1 second. After the block has output the
signal, all subsequent outputs have a value of zero.

1-57

1 Working with Signals

5 Save these parameters and close the dialog box by clicking OK.

6 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

The first row of the input matrix [A B] is output at time t=0, the second
row of the input matrix is output at time t=1, and so on.

You have now successfully imported a sample-based vector signal into your
signal processing model using the Signal From Workspace block.

Importing Sample-Based Matrix Signals
The Signal From Workspace block generates a sample-based matrix
signal when the variable or expression in the Signal parameter is a
three-dimensional array and the Samples per frame parameter is set to 1.
Beginning with the first page of the array, the block outputs a single page
of the array to the output at each sample time. Therefore, if the Signal
parameter specifies an M-by-N-by-P array, the output of the Signal From
Workspace block is P M-by-N matrices representing M*N channels.

The following figure is a graphical illustration of this process for a 6-by-4-by-5
workspace array A.

1-58

Importing and Exporting Sample-Based Signals

In the following example, you use the Signal From Workspace block to import
a four-channel, sample-based matrix signal into a Simulink model:

1 Open the Signal From Workspace Example 4 model by typing

doc_importsbmatrixsigs

at the MATLAB command line.

1-59

1 Working with Signals

Also, the following variables are loaded into the MATLAB workspace:

Fs 1x1 8 double array
dsp_examples_A 2x2x100 3200 double array
dsp_examples_sig1 1x1x100 800 double array
dsp_examples_sig12 1x2x100 1600 double array
dsp_examples_sig2 1x1x100 800 double array
dsp_examples_sig3 1x1x100 800 double array
dsp_examples_sig34 1x2x100 1600 double array
dsp_examples_sig4 1x1x100 800 double array
mtlb 4001x1 32008 double array

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = dsp_examples_A

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

1-60

Importing and Exporting Sample-Based Signals

The dsp_examples_A array represents a four-channel, sample-based signal
with 100 samples in each channel. This is the signal that you want to
import, and it was created in the following way:

dsp_examples_sig1 = reshape(1:100,[1 1 100])
dsp_examples_sig2 = reshape(-1:-1:-100,[1 1 100])
dsp_examples_sig3 = zeros(1,1,100)
dsp_examples_sig4 = 5*ones(1,1,100)
dsp_examples_sig12 = cat(2,sig1,sig2)
dsp_examples_sig34 = cat(2,sig3,sig4)
dsp_examples_A = cat(1,sig12,sig34) % 2-by-2-by-100 array

3 Run the model.

The figure below is a graphical representation of the model’s behavior
during simulation.

The Signal From Workspace block imports the four-channel sample based
signal from the MATLAB workspace into the Simulink model one matrix at
a time.

1-61

1 Working with Signals

You have now successfully imported a sample-based matrix signal into your
model using the Signal From Workspace block.

Exporting Sample-Based Signals
The Signal To Workspace and Triggered To Workspace blocks are the primary
blocks for exporting signals of all dimensions from a Simulink model to the
MATLAB workspace.

A sample-based signal, with M*N channels, is represented in Simulink as a
sequence of M-by-N matrices. When the input to the Signal To Workspace
block is a sample-based signal, the block creates an M-by-N-by-P array in
the MATLAB workspace containing the P most recent samples from each
channel. The number of pages, P, is specified by the Limit data points to
last parameter. The newest samples are added at the back of the array.

The figure below is the graphical illustration of this process using a 6-by-4
sample-based signal exported to workspace array A.

1-62

Importing and Exporting Sample-Based Signals

The workspace array always has time running along its third dimension, P.
Samples are saved along the P dimension whether the input is a matrix,
vector, or scalar (single channel case).

In the following example you use a Signal To Workspace block to export a
sample-based matrix signal to the MATLAB workspace:

1 Open the Signal From Workspace Example 6 model by typing

doc_exportsbsigs

at the MATLAB command line.

Also, the following variables are loaded into the MATLAB workspace:

Fs 1x1 8 double array
dsp_examples_A 2x2x100 3200 double array
dsp_examples_sig1 1x1x100 800 double array
dsp_examples_sig12 1x2x100 1600 double array
dsp_examples_sig2 1x1x100 800 double array

1-63

1 Working with Signals

dsp_examples_sig3 1x1x100 800 double array
dsp_examples_sig34 1x2x100 1600 double array
dsp_examples_sig4 1x1x100 800 double array
mtlb 4001x1 32008 double array

In this model, the Signal From Workspace block imports a four-channel
sample-based signal called dsp_examples_A. This signal is then exported
to the MATLAB workspace using a Signal to Workspace block

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = dsp_examples_A

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
sample-based signal with a sample period of 1 second. After the block has
output the signal, all subsequent outputs have a value of zero.

3 Double-click the Signal To Workspace block. Set the block parameters as
follows, and then click OK:

• Variable name = dsp_examples_yout

• Limit data points to last parameter to inf

• Decimation = 1

Based on these parameters, the Signal To Workspace block exports its
sample-based input signal to a variable called dsp_examples_yout in the
MATLAB workspace. The workspace variable can grow indefinitely large
in order to capture all of the input data. The signal is not decimated before
it is exported to the MATLAB workspace.

4 Run the model.

5 At the MATLAB command line, type dsp_examples_yout.

1-64

Importing and Exporting Sample-Based Signals

The four-channel sample-based signal, dsp_examples_A, is output at the
MATLAB command line. The following is a portion of the output that is
displayed.

dsp_examples_yout(:,:,1) =

1 -1
0 5

dsp_examples_yout(:,:,2) =

2 -2
0 5

dsp_examples_yout(:,:,3) =

3 -3
0 5

dsp_examples_yout(:,:,4) =

4 -4
0 5

Each page of the output represents a different sample time, and each
element of the matrices is in a separate channel.

You have now successfully exported a four-channel sample-based signal from
a Simulink model to the MATLAB workspace using the Signal To Workspace
block.

1-65

1 Working with Signals

Importing and Exporting Frame-Based Signals
Although a number of signal generation blocks are available in both the
Simulink and the Signal Processing Blockset libraries, it is also possible to
import frame-based signals from the MATLAB workspace into your Simulink
model. The Signal From Workspace block in the Signal Processing Sources
library is the key block for importing frame-based signals of all dimensions
from the MATLAB workspace. The Signal To Workspace block in the Signal
Processing Sinks library can be used to export frame-based signals to the
MATLAB workspace

This section includes the following topics:

• “Importing Frame-Based Signals” on page 1-66 — Use the Signal From
Workspace block to create a three-channel, frame-based signal and import
it into your model.

• “Exporting Frame-Based Signals” on page 1-69 — Use the Signal
To Workspace block to export a three-channel, frame-based signal into the
MATLAB workspace.

Importing Frame-Based Signals
The Signal From Workspace block creates a frame-based multichannel signal
when the Signal parameter is a matrix, and the Samples per frame
parameter, M, is greater than 1. Beginning with the first M rows of the
matrix, the block releases M rows of the matrix (that is, one frame from each
channel) to the output port every M*Ts seconds. Therefore, if the Signal
parameter specifies a W-by-N workspace matrix, the Signal From Workspace
block outputs a series of M-by-N matrices representing N channels. The
workspace matrix must be oriented so that its columns represent the channels
of the signal.

The figure below is a graphical illustration of this process for a 6-by-4
workspace matrix, A, and a frame size of 2.

1-66

Importing and Exporting Frame-Based Signals

Note Although independent channels are generally represented as columns,
a single-channel signal can be represented in the workspace as either a
column vector or row vector. The output from the Signal From Workspace
block is a column vector in both cases.

In the following example, you use the Signal From Workspace block to create
a three-channel frame-based signal and import it into the model:

1 Open the Signal From Workspace Example 5 model by typing

doc_importfbsigs

at the MATLAB command line.

dsp_examples_A = [1:100;-1:-1:-100]'; % 100-by-2 matrix
dsp_examples_B = 5*ones(100,1); % 100-by-1 column vector

The variable called dsp_examples_A represents a two-channel signal
with 100 samples, and the variable called dsp_examples_B represents a
one-channel signal with 100 samples.

Also, the following variables are defined in the MATLAB workspace:

1-67

1 Working with Signals

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal parameter to [dsp_examples_A dsp_examples_B]

• Sample time parameter to 1

• Samples per frame parameter to 4

• Form output after final data value parameter to Setting to zero

Based on these parameters, the Signal From Workspace block outputs
a frame-based signal with a frame size of 4 and a sample period of 1
second. The signal’s frame period is 4 seconds. The Signal parameter
uses the standard MATLAB syntax for horizontally concatenating
matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent
outputs have a value of zero.

3 Run the model.

The figure below is a graphical representation of how your three-channel,
frame-based signal is imported into your model.

1-68

Importing and Exporting Frame-Based Signals

You have now successfully imported a three-channel frame-based signal into
your model using the Signal From Workspace block.

Exporting Frame-Based Signals
The Signal To Workspace and Triggered To Workspace blocks are the primary
blocks for exporting signals of all dimensions from a Simulink model to the
MATLAB workspace.

A frame-based signal with N channels and frame size M is represented by a
sequence of M-by-N matrices. When the input to the Signal To Workspace
block is a frame-based signal, the block creates an P-by-N array in the
MATLAB workspace containing the P most recent samples from each
channel. The number of rows, P, is specified by the Limit data points to last
parameter. The newest samples are added at the bottom of the matrix.

The following figure is a graphical illustration of this process for three
consecutive frames of a frame-based signal with a frame size of 2 that is
exported to matrix A in the MATLAB workspace.

1-69

1 Working with Signals

In the following example, you use a Signal To Workspace block to export a
frame-based signal to the MATLAB workspace:

1 Open the Signal From Workspace Example 7 model by typing

doc_exportfbsigs

at the MATLAB command line.

1-70

Importing and Exporting Frame-Based Signals

Also, the following variables are defined in the MATLAB workspace:

The variable called dsp_examples_A represents a two-channel signal
with 100 samples, and the variable called dsp_examples_B represents a
one-channel signal with 100 samples.

dsp_examples_A = [1:100;-1:-1:-100]'; % 100-by-2 matrix
dsp_examples_B = 5*ones(100,1); % 100-by-1 column vector
>

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = [dsp_examples_A dsp_examples_B]

• Sample time = 1

• Samples per frame = 4

• Form output after final data value = Setting to zero

Based on these parameters, the Signal From Workspace block outputs
a frame-based signal with a frame size of 4 and a sample period of 1
second. The signal’s frame period is 4 seconds. The Signal parameter
uses the standard MATLAB syntax for horizontally concatenating

1-71

1 Working with Signals

matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent
outputs have a value of zero.

3 Double-click the Signal To Workspace block. Set the block parameters as
follows, and then click OK:

• Variable name = dsp_examples_yout

• Limit data points to last = inf

• Decimation 1

• Frames = Concatenate frame (2-D array)

Based on these parameters, the Signal To Workspace block exports its
frame-based input signal to a variable called dsp_examples_yout in the
MATLAB workspace. The workspace variable can grow indefinitely large
in order to capture all of the input data. The signal is not decimated before
it is exported to the MATLAB workspace, and each input frame is vertically
concatenated to the previous frame to produce a 2-D array output.

4 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

1-72

Importing and Exporting Frame-Based Signals

5 At the MATLAB command line, type dsp_examples_yout.

The output is shown below:

dsp_examples_yout =

1 -1 5
2 -2 5
3 -3 5
4 -4 5
5 -5 5
6 -6 5
7 -7 5
8 -8 5
9 -9 5

10 -10 5
11 -11 5
12 -12 5

The frames of the signal are concatenated to form a two-dimensional array.

1-73

1 Working with Signals

You have now successfully output a frame-based signal to the MATLAB
workspace using the Signal To Workspace block.

1-74

2

Advanced Signal Concepts

This chapter helps you understand how to inspect and convert sample and
frame rates. It also explains how to change a sample-based signal into a
frame-based signal. Finally, it discusses the concept of delay and describes
how this delay can be minimized.

Inspecting Sample Rates and Frame
Rates (p. 2-2)

Learn how to determine the sample
rates and frame rates of your model

Converting Sample and Frame Rates
(p. 2-12)

Learn how operations such as
direct rate conversion and frame
rebuffering impact the sample and
frame rates if your signal.

Converting Frame Status (p. 2-33) Convert sample-based signals into
frame-based signals and vice versa

Delay and Latency (p. 2-48) Configure Simulink to minimize
delay and increase simulation
performance

2 Advanced Signal Concepts

Inspecting Sample Rates and Frame Rates
When constructing a frame-based or multirate model, it is often helpful to
check the rates that Simulink computes for different signals. The two basic
ways to inspect the sample rates and frame rates in a Simulink model are the
Probe block and sample time color coding. Use the Probe block if you want to
view the sample or frame period of a signal. Use sample time color coding if
you want to view the sample or frame rate of a signal.

This section includes the following topics:

• “Sample Rate and Frame Rate Concepts” on page 2-2 — Review the
definitions of frame period, sample period, frame rate, and sample rate

• “Inspecting Sample-Based Signals Using the Probe Block” on page 2-4 —
Display the sample period of a sample-based signal

• “Inspecting Frame-Based Signals Using the Probe Block” on page 2-6 —
Display the frame period of a frame-based signal

• “Inspecting Sample-Based Signals Using Color Coding” on page 2-8 —
Display the sample rate of a sample-based signal

• “Inspecting Frame-Based Signals Using Color Coding” on page 2-10 —
Display the frame rate of a frame-based signal

Sample Rate and Frame Rate Concepts
Sample rates and frame rates are important issues in most signal processing
models. This is especially true with systems that incorporate rate conversions.
Fortunately, in most cases when you build a Simulink model, you only need
to set sample rates for the source blocks. Simulink automatically computes
the appropriate sample rates for the blocks that are connected to the source
blocks. Nevertheless, it is important to become familiar with the sample rate
and frame rate concepts as they apply to Simulink models.

The input frame period (Tfi) of a frame-based signal is the time interval
between consecutive vector or matrix inputs to a block. Similarly, the
output frame period (Tfo) is the time interval at which the block updates the
frame-based vector or matrix value at the output port.

2-2

Inspecting Sample Rates and Frame Rates

In contrast, the sample period, Ts, is the time interval between individual
samples in a frame, this value is shorter than the frame period when the
frame size is greater than 1. The sample period of a frame-based signal is the
quotient of the frame period and the frame size, M:

More specifically, the sample periods of inputs (Tsi) and outputs (Tso) are
related to their respective frame periods by

where Mi and Mo are the input and output frame sizes, respectively.

The illustration below shows a single-channel, frame-based signal with a
frame size (Mi) of 4 and a frame period (Tfi) of 1. The sample period, Tsi, is
therefore 1/4, or 0.25 second.

The frame rate of a signal is the reciprocal of the frame period. For instance,
the input frame rate would be . Similarly, the output frame rate would

be .

The sample rate of a signal is the reciprocal of the sample period. For
instance, the sample rate would be .

In most cases, the sequence sample period Tsi is most important, while the
frame rate is simply a consequence of the frame size that you choose for

2-3

2 Advanced Signal Concepts

the signal. For a sequence with a given sample period, a larger frame size
corresponds to a slower frame rate, and vice versa.

Inspecting Sample-Based Signals Using the Probe
Block
You can use the Probe block to display the sample period of a sample-based
signal. For sample-based signals, the Probe block displays the label Ts, the
sample period of the sequence, followed by a two-element vector. The left
element is the period of the signal being measured. The right element is the
signal’s sample time offset, which is usually 0.

Note Simulink offers the ability to shift a signal’s sample times by an
arbitrary value, which is equivalent to shifting the signal’s phase by a
fractional sample period. However, sample-time offsets are rarely used in
signal processing systems, and blocks from the Signal Processing Blockset
do not support them.

In this example, you use the Probe block to display the sample period of a
sample-based signal:

1 At the MATLAB command prompt, type doc_probe_tut1.

The Probe Example 1 model opens.

2-4

Inspecting Sample Rates and Frame Rates

2 Run the model.

The figure below illustrates how the Probe blocks display the sample period
of the signal before and after each upsample operation.

2-5

2 Advanced Signal Concepts

As displayed by the Probe blocks, the output from the Signal From
Workspace block is a sample-based signal with a sample period of 1 second.
The output from the first Upsample block has a sample period of 0.5
second, and the output from the second Upsample block has a sample
period of 0.25 second.

Inspecting Frame-Based Signals Using the Probe
Block
You can use the Probe block to display the frame period of a frame-based
signal. For frame-based signals, the block displays the label Tf, the frame
period of the sequence, followed by a two-element vector. The left element is
the period of the signal being measured. The right element is the signal’s
sample time offset, which is usually 0.

Note Simulink offers the ability to shift a signal’s sample times by an
arbitrary value, which is equivalent to shifting the signal’s phase by a
fractional sample period. However, sample-time offsets are rarely used in
signal processing systems, and blocks from the Signal Processing Blockset
do not support them.

2-6

Inspecting Sample Rates and Frame Rates

In this example, you use the Probe block to display the frame period of a
frame-based signal:

1 At the MATLAB command prompt, type doc_probe_tut2.

The Probe Example 2 model opens.

2 Run the model.

The figure below illustrates how the Probe blocks display the frame period
of the signal before and after each upsample operation.

2-7

2 Advanced Signal Concepts

As displayed by the Probe blocks, the output from the Signal From
Workspace block is a frame-based signal with a frame period of 16 seconds.
The output from the first Upsample block has a frame period of 8 seconds,
and the output from the second Upsample block has a sample period of 4
seconds.

Note that the sample rate conversion is implemented through a change in the
frame period rather than the frame size. This is because the Frame-based
mode parameter in the Upsample blocks is set to Maintain input frame
size rather than Maintain input frame rate.

Inspecting Sample-Based Signals Using Color Coding
In the following example, you use sample time color coding to view the sample
rate of a sample-based signal:

1 At the MATLAB command prompt, type doc_color_tut1.

The Sample Time Color Example 1 model opens.

2-8

Inspecting Sample Rates and Frame Rates

2 From the Format menu, point to Port/Signal Displays, and select
Sample Time Colors.

This selection turns on sample time color coding. Simulink now assigns
each sample rate a different color.

3 Run the model.

The model should now look similar to the following figure:

Every sample-based signal in this model has a different sample rate.
Therefore, each signal is assigned a different color.

2-9

2 Advanced Signal Concepts

For more information about sample time color coding, see “Displaying Sample
Time Colors” in the Using Simulink documentation.

Inspecting Frame-Based Signals Using Color Coding
In this example, you use sample time color coding to view the frame rate of
a frame-based signal:

1 At the MATLAB command prompt, type doc_color_tut2.

The Sample Time Color Example 2 model opens.

2 To turn on sample time color coding, from the Format menu, point to
Port/Signal Displays, and select Sample Time Colors.

Simulink now assigns each frame rate a different color.

3 Run the model.

The model should now look similar to the following figure:

2-10

Inspecting Sample Rates and Frame Rates

Because the Frame-based mode parameter in the Upsample blocks is
set to Maintain input frame size rather than Maintain input frame
rate, each Upsample block changes the frame rate. Therefore, each
frame-based signal in the model is assigned a different color.

4 Double-click on each Upsample block and change the Frame-based mode
parameter to Maintain input frame rate.

5 Run the model.

Every signal is coded with the same color. Therefore, every signal in the
model now has the same frame rate.

For more information about sample time color coding, see “Displaying Sample
Time Colors” in the Using Simulink documentation.

2-11

2 Advanced Signal Concepts

Converting Sample and Frame Rates
There are two common types of operations that impact the frame and sample
rates of a signal: direct rate conversion and frame rebuffering. Direct rate
conversions, such as upsampling and downsampling, can be implemented by
altering either the frame rate or the frame size of a signal. Frame rebuffering,
which is used alter the frame size of a signal in order to improve simulation
throughput, usually changes either the sample rate or frame rate of the signal
as well.

This section includes the following topics:

• “Rate Conversion Blocks” on page 2-12 — List of the principal rate
conversion blocks in the Signal Processing Blockset

• “Rate Conversion by Frame-Rate Adjustment” on page 2-14 — Use the
Downsample block to downsample a signal by changing its frame rate

• “Rate Conversion by Frame-Size Adjustment” on page 2-16 — Use the
Downsample block to downsample a signal by changing its frame size

• “Avoiding Unintended Rate Conversion” on page 2-19 — Learn where rate
conversions can occur in a model in order to avoid misleading results

• “Frame Rebuffering Blocks” on page 2-24 — List and descriptions of the
principal frame rebuffering blocks in the Signal Processing Blockset

• “Buffering with Preservation of the Signal” on page 2-27 — Use the Buffer
block to rebuffer a signal from a smaller to a larger frame size

• “Buffering with Alteration of the Signal” on page 2-29 — Use the Buffer
block to rebuffer a signal from a smaller to a larger frame size using
overlapping frames

Rate Conversion Blocks
The following table lists the principal rate conversion blocks in the Signal
Processing Blockset. Blocks marked with an asterisk (*) offer the option of
changing the rate by either adjusting the frame size or frame rate.

2-12

Converting Sample and Frame Rates

Block Library

Downsample * Signal Operations

Dyadic Analysis Filter Bank Filtering/ Multirate Filters

Dyadic Synthesis Filter Bank Filtering/ Multirate Filters

FIR Decimation * Filtering/ Multirate Filters

FIR Interpolation * Filtering/ Multirate Filters

FIR Rate Conversion Filtering/ Multirate Filters

Repeat * Signal Operations

Upsample * Signal Operations

Direct Rate Conversion
Rate conversion blocks accept an input signal at one sample rate, and
propagate the same signal at a new sample rate. Several of these blocks
contain a Frame-based mode parameter offering two options for adjusting
the sample rate of the signal:

• Maintain input frame rate: Change the sample rate by changing the
frame size (that is Mo ≠ Mi), but keep the frame rate constant (Tfo = Tfi).

• Maintain input frame size: Change the sample rate by changing the
output frame rate (that is Tfo ≠ Tfi), but keep the frame size constant
(Mo = Mi).

The setting of this parameter does not affect sample-based inputs.

Note When a Simulink model contains signals with various frame rates, the
model is called multirate. You can find a discussion of multirate models in
“Excess Algorithmic Delay (Tasking Latency)” on page 2-56. Also see “Models
with Multiple Sample Rates” in the Real-Time Workshop documentation.

2-13

2 Advanced Signal Concepts

Rate Conversion by Frame-Rate Adjustment
One way to change the sample rate of a signal, 1/Tso, is to change the output
frame rate (Tfo ≠ Tfi), while keeping the frame size constant (Mo = Mi). Note
that the sample rate of a signal is defined as 1/Tso = Mo/Tfo:

1 At the MATLAB command prompt, type doc_downsample_tut1.

The Downsample Example T1 model opens.

2 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

When you run the model, the dimensions the signals appear next to the
lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

4 Set the block parameters as follows:

• Sample time = 0.125.

2-14

Converting Sample and Frame Rates

• Samples per frame = 8

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a sample period of 0.125 second and a frame size
of 8.

5 Save these parameters and close the dialog box by clicking OK.

6 Double-click the Downsample block. The Block Parameters:
Downsample dialog box opens.

7 Set the Frame-based mode parameter to Maintain input frame size,
and then click OK.

The Downsample block is configured to downsample the signal by changing
the frame rate rather than the frame size.

8 Run the model.

After the simulation, the model should look similar to the following figure.

2-15

2 Advanced Signal Concepts

Because , the input frame period, , is
second. This value is displayed by the first Probe block. Therefore the input

frame rate, , is also 1 second.

The second Probe block in the model verifies that the output from the

Downsample block has a frame period, , of 2 seconds, twice the frame

period of the input. However, because the frame rate of the output, ,
is 0.5 second, the Downsample block actually downsampled the original
signal to half its original rate. As a result, the output sample period,

, is doubled to 0.25 second without any change to the frame
size. The signal dimensions in the model confirm that the frame size did
not change.

Rate Conversion by Frame-Size Adjustment
One way to change the sample rate of a signal is by changing the frame size
(that is Mo ≠ Mi), but keep the frame rate constant (Tfo = Tfi). Note that the
sample rate of a signal is defined as 1/Tso = Mo/Tfo:

1 At the MATLAB command prompt, type doc_downsample_tut2.

The Downsample Example T2 model opens.

2-16

Converting Sample and Frame Rates

2 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

When you run the model, the dimensions the signals appear next to the
lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

4 Set the block parameters as follows:

• Sample time = 0.125.

• Samples per frame = 8.

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a sample period of 0.125 second and a frame size
of 8.

5 Save these parameters and close the dialog box by clicking OK.

6 Double-click the Downsample block. The Block Parameters:
Downsample dialog box opens.

2-17

2 Advanced Signal Concepts

7 Set the Frame-based mode parameter to Maintain input frame rate,
and then click OK.

The Downsample block is configured to downsample the signal by changing
the frame size rather than the frame rate.

8 Run the model.

After the simulation, the model should look similar to the following figure.

Because T M Tfi i si= × , the input frame period, Tfi , is Tfi = × =8 0 125 1.
second. This value is displayed by the first Probe block. Therefore the input

frame rate, 1 / Tfi , is also 1 second.

The Downsample block downsampled the input signal to half its original
frame size. The signal dimensions of the output of the Downsample
block confirm that the downsampled output has a frame size of 4, half
the frame size of the input. As a result, the sample period of the output,

, now has a sample period of 0.25 second. This process

occurred without any change to the frame rate ().

2-18

Converting Sample and Frame Rates

Avoiding Unintended Rate Conversion
It is important to be aware of where rate conversions occur in a model. In a
few cases, unintentional rate conversions can produce misleading results:

1 At the MATLAB command prompt, type doc_vectorscope_tut1.

The Vector Scope Example model opens.

2 Double-click the upper Sine Wave block. The Block Parameters: Sine
Wave dialog box opens.

3 Set the block parameters as follows:

• Frequency (Hz) = 1

• Sample time = 0.1

• Samples per frame = 128

Based on the Sample time and the Samples per frame parameters,
the Sine Wave outputs a sinusoid with a frame period of 128*0.1 or 12.8
seconds.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the lower Sine Wave block.

6 Set the block parameters as follows, and then click OK:

• Frequency (Hz) = 2

• Sample time = 0.1

• Samples per frame = 128

Based on the Sample time and the Samples per frame parameters,
the Sine Wave outputs a sinusoid with a frame period of 128*0.1 or 12.8
seconds.

7 Double-click the Magnitude FFT block. The Block Parameters:
Magnitude FFT dialog box opens.

8 Select the Inherit FFT length from input dimensions check box, and
then click OK.

2-19

2 Advanced Signal Concepts

This setting instructs the block to use the input frame size (128) as the FFT
length (which is also the output size).

9 Double-click the Vector Scope block.

10 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

• Input domain = Frequency

• Click the Axis Properties tab.

• Minimum Y-limit = -10

• Maximum Y-limit = 40

11 Run the model.

The model should now look similar to the following figure. Note that the
signal leaving the Magnitude FFT block is 128-by-1.

The Vector Scope window displays the magnitude FFT of a signal
composed of two sine waves, with frequencies of 1 Hz and 2 Hz.

2-20

Converting Sample and Frame Rates

The Vector Scope block uses the input frame size (128) and period (12.8) to
deduce the original signal’s sample period (0.1), which allows it to correctly
display the peaks at 1 Hz and 2 Hz.

12 Double-click the Magnitude FFT block. The Block Parameters:
Magnitude FFT dialog box opens.

13 Set the block parameters as follows:

• Clear the Inherit FFT length from input dimensions check box.

• Set the FFT length parameter to 256.

Based on these parameters, the Magnitude FFT block zero-pads the
length-128 input frame to a length of 256 before performing the FFT.

14 Run the model.

2-21

2 Advanced Signal Concepts

The model should now look similar to the following figure. Note that the
signal leaving the Magnitude FFT block is 256-by-1.

The Vector Scope window displays the magnitude FFT of a signal
composed of two sine waves, with frequencies of 2 Hz and 4 Hz.

2-22

Converting Sample and Frame Rates

In this case, based on the input frame size (256) and frame period (12.8),
the Vector Scope block incorrectly calculates the original signal’s sample
period to be (12.8/256) or 0.05 second. As a result, the spectral peaks
appear incorrectly at 2 Hz and 4 Hz rather than 1 Hz and 2 Hz.

The source of the error described above is unintended rate conversion.
The zero-pad operation performed by the Magnitude FFT block halves the
sample period of the sequence by appending 128 zeros to each frame. To
calculate the spectral peaks correctly, the Vector Scope block needs to know
the sample period of the original signal.

15 To correct for the unintended rate conversion, double-click the Vector
Scope block.

16 Set the block parameters as follows:

2-23

2 Advanced Signal Concepts

• Click the Axis Properties tab.

• Clear the Inherit sample time from input check box.

• Set the Sample time of original time series parameter to the actual
sample period of 0.1.

17 Run the model.

The Vector Scope block now accurately plots the spectral peaks at 1 Hz
and 2 Hz.

In general, when you zero-pad or overlap buffers, you are changing the sample
period of the signal. If you keep this in mind, you can anticipate and correct
problems such as unintended rate conversion.

Frame Rebuffering Blocks
Sometimes you might need to rebuffer a signal to a new frame size at some
point in a model. For example, your data acquisition hardware may internally
buffer the sampled signal to a frame size that is not optimal for the signal
processing algorithm in the model. In this case, you would want to rebuffer
the signal to a frame size more appropriate for the intended operations
without introducing any change to the data or sample rate.

The following table lists the principal buffering blocks in the Signal Processing
Blockset.

Block Library

Buffer Signal Management/ Buffers

Delay Line Signal Management/ Buffers

Unbuffer Signal Management/ Buffers

Variable Selector Signal Management/ Indexing

Zero Pad Signal Operations

2-24

Converting Sample and Frame Rates

Blocks for Frame Rebuffering with Preservation of the Signal
Buffering operations provide another mechanism for rate changes in signal
processing models. The purpose of many buffering operations is to adjust
the frame size of the signal, M, without altering the signal’s sample rate Ts.
This usually results in a change to the signal’s frame rate, Tf, according to
the following equation:

However, the equation above is only true if no samples are added or deleted
from the original signal. Therefore, the equation above does not apply to
buffering operations that generate overlapping frames, that only partially
unbuffer frames, or that alter the data sequence by adding or deleting
samples.

There are two blocks in the Buffers library that can be used to change a
signal’s frame size without altering the signal itself:

• Buffer — redistributes signal samples to a larger or smaller frame size

• Unbuffer — unbuffers a frame-based signal to a sample-based signal
(frame size = 1)

The Buffer block preserves the signal’s data and sample period only when its
Buffer overlap parameter is set to 0. The output frame period, Tfo, is

where Tfi is the input frame period, Mi is the input frame size, and Mo is
the output frame size specified by the Output buffer size (per channel)
parameter.

The Unbuffer block unbuffers a frame-based signal to its sample-based
equivalent, and always preserves the signal’s data and sample period

where Tfi and Mi are the period and size, respectively, of the frame-based input.

2-25

2 Advanced Signal Concepts

Both the Buffer and Unbuffer blocks preserve the sample period of the
sequence in the conversion (Tso = Tsi).

Blocks for Frame Rebuffering with Alteration of the Signal
Some forms of buffering alter the signal’s data or sample period in addition to
adjusting the frame size. This type of buffering is desirable when you want to
create sliding windows by overlapping consecutive frames of a signal, or select
a subset of samples from each input frame for processing.

The blocks that alter a signal while adjusting its frame size are listed below.
In this list, Tsi is the input sequence sample period, and Tfi and Tfo are the
input and output frame periods, respectively:

• The Buffer block adds duplicate samples to a sequence when the Buffer
overlap parameter, L, is set to a nonzero value. The output frame period is
related to the input sample period by

where Mo is the output frame size specified by the Output buffer size
(per channel) parameter. As a result, the new output sample period is

• The Delay Line block adds duplicate samples to the sequence when the
Delay line size parameter, Mo, is greater than 1. The output and input
frame periods are the same, Tfo = Tfi = Tsi, and the new output sample
period is

• The Variable Selector block can remove, add, and/or rearrange samples in
the input frame when Select is set to Rows. The output and input frame
periods are the same, Tfo = Tfi, and the new output sample period is

2-26

Converting Sample and Frame Rates

where Mo is the length of the block’s output, determined by the Elements
vector.

• The Zero Pad block adds samples to the sequence by appending zeros to
each frame when Pad along is set to Columns. The output and input frame
periods are the same, Tfo = Tfi, and the new output sample period is

where Mo is the length of the block’s output, determined by the Number
of output rows parameter.

In all of these cases, the sample period of the output sequence is not equal to
the sample period of the input sequence.

Buffering with Preservation of the Signal
In the following example, a signal with a sample period of 0.125 second is
rebuffered from a frame size of 8 to a frame size of 16. This rebuffering
process doubles the frame period from 1 to 2 seconds, but does not change the
sample period of the signal (Tso = Tsi = 0.125). The process also does not add or
delete samples from the original signal:

1 At the MATLAB command prompt, type doc_buffer_tut1.

The Buffer Example T1 model opens.

2-27

2 Advanced Signal Concepts

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

• Signal = 1:1000

• Sample time = 0.125

• Samples per frame = 8

• Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
frame-based signal with a sample period of 0.125 second. Each output
frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the parameters as follows, and then click OK:

2-28

Converting Sample and Frame Rates

• Output buffer size (per channel) = 16

• Buffer overlap = 0

• Initial conditions = 0

Based on these parameters, the Buffer block rebuffers the signal from a
frame size of 8 to a frame size of 16.

7 Run the model.

The following figure shows the model after the simulation has stopped.

Note that the input to the Buffer block has a frame size of 8 and the output
of the block has a frame size of 16. As shown by the Probe blocks, the
rebuffering process doubles the frame period from 1 to 2 seconds.

Buffering with Alteration of the Signal
Some forms of buffering alter the signal’s data or sample period in addition to
adjusting the frame size. In the following example, a signal with a sample
period of 0.125 second is rebuffered from a frame size of 8 to a frame size
of 16 with a buffer overlap of 4:

2-29

2 Advanced Signal Concepts

1 At the MATLAB command prompt, type doc_buffer_tut2.

The Buffer Example T2 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

• Signal = 1:1000

• Sample time = 0.125

• Samples per frame = 8

• Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
frame-based signal with a sample period of 0.125 second. Each output
frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.

2-30

Converting Sample and Frame Rates

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the parameters as follows, and then click OK:

• Output buffer size (per channel) = 16

• Buffer overlap = 4

• Initial conditions = 0

Based on these parameters, the Buffer block rebuffers the signal from a
frame size of 8 to a frame size of 16. Also, after the initial output, the first
four samples of each output frame are made up of the last four samples
from the previous output frame.

7 Run the model.

The following figure shows the model after the simulation has stopped.

Note that the input to the Buffer block has a frame size of 8 and the output
of the block has a frame size of 16. The relation for the output frame period
for the Buffer block is

2-31

2 Advanced Signal Concepts

Tfo is (16-4)*0.125, or 1.5 seconds, as confirmed by the second Probe block.
The sample period of the signal at the output of the Buffer block is no

longer 0.125 second. It is now second.
Thus, both the signal’s data and the signal’s sample period have been
altered by the buffering operation.

2-32

Converting Frame Status

Converting Frame Status
The frame status of a signal refers to whether the signal is sample based or
frame based. In a Simulink model, the frame status is symbolized by a single
line ,→, for a sample-based signal and a double line, ⇒ for a frame-based
signal. One way to convert a sample-based signal to a frame-based signal
is by using the Buffer block. You can convert a frame-based signal to a
sample-based signal using the Unbuffer block. To change the frame status of
a signal without performing a buffering operation, use the Frame Conversion
block in the Signal Attributes library.

This section includes the following topics:

• “Buffering Sample-Based Signals into Frame-Based Signals” on page 2-33
— Use the Buffer block to buffer a two-channel sample-based signal into
a two-channel frame-based signal

• “Buffering Sample-Based Signals into Frame-Based Signals with Overlap”
on page 2-36 — Use the Buffer block to buffer a four-channel, sample-based
signal into a four-channel frame-based signal. Because of the buffer
overlap, the input sample period is not conserved.

• “Buffering Frame-Based Signals into Other Frame-Based Signals” on page
2-40 — Use the Buffer block to buffer a two-channel frame-based signal
with frame size 4 into a frame-based signal with frame size 3. Because of
the buffer overlap, the input sample period is not conserved.

• “Buffering Delay and Initial Conditions” on page 2-42 — Learn how to
use the rebuffer_delay function to calculate the delay introduced by the
Buffer and Unbuffer blocks during multitasking operations

• “Unbuffering Frame-Based Signals into Sample-Based Signals” on page
2-43 — Use the Unbuffer block to unbuffer a two-channel frame-based
signal into a two-channel sample-based signal

Buffering Sample-Based Signals into Frame-Based
Signals
Multichannel sample-based and frame-based signals can be buffered into
multichannel frame-based signals using the Buffer block. The following figure
is a graphical representation of a sample-based signal being converted into a
frame-based signal by the Buffer block.

2-33

2 Advanced Signal Concepts

In the following example, a two-channel sample-based signal is buffered into
a two-channel frame-based signal using a Buffer block:

1 At the MATLAB command prompt, type doc_buffer_tut.

The Buffer Example model opens.

2-34

Converting Frame Status

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

• Signal = [1:10;-1:-1:-10]'

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
sample-based signal with a sample period of 1 second. Because you set the
Samples per frame parameter setting to 1, the Signal From Workspace
block outputs one two-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

2-35

2 Advanced Signal Concepts

6 Set the parameters as follows:

• Output buffer size (per channel) = 4

• Buffer overlap = 0

• Initial conditions = 0

Because you set the Output buffer size parameter to 4, the Buffer block
outputs a frame-based signal with frame size 4.

7 Run the model.

Note that the input to the Buffer block is sample based (represented as a
single line) while the output is frame-based (represented by a double line).
The figure below is a graphical interpretation of the model behavior during
simulation.

Note Alternatively, you can set the Samples per frame parameter of the
Signal From Workspace block to 4 and create the same frame-based signal
shown above without using a Buffer block. The Signal From Workspace
block performs the buffering internally, in order to output a two-channel
frame-based signal.

Buffering Sample-Based Signals into Frame-Based
Signals with Overlap
In some cases it is useful to work with data that represents overlapping
sections of an original sample-based or frame-based signal. For example, in
estimating the power spectrum of a signal, it is often desirable to compute the

2-36

Converting Frame Status

FFT of overlapping sections of data. Overlapping buffers are also needed in
computing statistics on a sliding window, or for adaptive filtering.

The Buffer overlap parameter of the Buffer block specifies the number of
overlap points, L. In the overlap case (L > 0), the frame period for the output
is (Mo-L)*Tsi, where Tsi is the input sample period and Mo is the Buffer size.

Note Set the Buffer overlap parameter to a negative value to achieve
output frame rates slower than in the nonoverlapping case. The output frame
period is still Tsi*(Mo-L), but now with L < 0. Only the Mo newest inputs are
included in the output buffers. The previous L inputs are discarded.

In the following example, a four-channel sample-based signal with sample
period 1 is buffered to a frame-based signal with frame size 3 and frame
period 2. Because of the buffer overlap, the input sample period is not
conserved, and the output sample period is 2/3:

1 At the MATLAB command prompt, type doc_buffer_tut3.

The Buffer Example T3 model opens.

2-37

2 Advanced Signal Concepts

Also, the variable dsp_examples_A is loaded into the MATLAB workspace.
This variable is defined as follows:

dsp_examples_A = [1 1 5 -1; 2 1 5 -2; 3 0 5 -3; 4 0 5 -4; 5 1 5 -5; 6 1

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = dsp_examples_A

• Sample time = 1

• Samples per frame = 1

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
sample-based signal with a sample period of 1 second. Because you set the
Samples per frame parameter setting to 1, the Signal From Workspace
block outputs one four-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.

2-38

Converting Frame Status

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the block parameters as follows, and then click OK:

• Output buffer size (per channel) = 3

• Buffer overlap = 1

• Initial conditions = 0

Because you set the Output buffer size parameter to 3, the Buffer block
outputs a frame-based signal with frame size 3. Also, because you set the
Buffer overlap parameter to 1, the last sample from the previous output
frame is the first sample in the next output frame.

7 Run the model.

Note that the input to the Buffer block is sample based (represented as a
single line) while the output is frame based (represented by a double line).
The following figure is a graphical interpretation of the model’s behavior
during simulation.

8 At the MATLAB command prompt, type dsp_examples_yout.

The following is displayed in the MATLAB Command Window.

2-39

2 Advanced Signal Concepts

dsp_examples_yout =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 5 -1
2 1 5 -2
2 1 5 -2
3 0 5 -3
4 0 5 -4
4 0 5 -4
5 1 5 -5
6 1 5 -6
6 1 5 -6
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Notice that the inputs do not begin appearing at the output until the fifth
row, the second row of the second frame. This is due to the block’s latency.

See “Excess Algorithmic Delay (Tasking Latency)” on page 2-56 for general
information about algorithmic delay. For instructions on how to calculate
buffering delay, see “Buffering Delay and Initial Conditions” on page 2-42.

Buffering Frame-Based Signals into Other
Frame-Based Signals
In the following example, a two-channel frame-based signal with frame size 4
is rebuffered to a frame-based signal with frame size 3 and frame period 2.
Because of the overlap, the input sample period is not conserved, and the
output sample period is 2/3:

1 At the MATLAB command prompt, type doc_buffer_tut4.

The Buffer Example T4 model opens.

2-40

Converting Frame Status

Also, the variable dsp_examples_A is loaded into the MATLAB workspace.
This variable is defined as

dsp_examples_A = [1 1; 2 1; 3 0; 4 0; 5 1; 6 1; 7 0; 8 0]

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = dsp_examples_A

• Sample time = 1

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame-based signal with a sample period of 1 second and a
frame size of 4.

4 Save these parameters and close the dialog box by clicking OK.

2-41

2 Advanced Signal Concepts

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the block parameters as follows, and then click OK:

• Output buffer size (per channel) = 3

• Buffer overlap = 1

• Initial conditions = 0

Based on these parameters, the Buffer block outputs a two-channel,
frame-based signal with a frame size of 3.

7 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

Note that the inputs do not begin appearing at the output until the last row
of the third output matrix. This is due to the block’s latency.

See “Excess Algorithmic Delay (Tasking Latency)” on page 2-56 for general
information about algorithmic delay. For instructions on how to calculate
buffering delay, and see “Buffering Delay and Initial Conditions” on page 2-42.

Buffering Delay and Initial Conditions
In the examples “Buffering Sample-Based Signals into Frame-Based Signals
with Overlap” on page 2-36 and “Buffering Frame-Based Signals into Other

2-42

Converting Frame Status

Frame-Based Signals” on page 2-40, the input signal is delayed by a certain
number of samples. The initial output samples correspond to the value
specified for the Initial condition parameter. The initial condition is zero
in both examples mentioned above.

Under most conditions, the Buffer and Unbuffer blocks have some amount of
delay or latency. This latency depends on both the block parameter settings
and the Simulink tasking mode. You can use the rebuffer_delay function
to determine the length of the block’s latency for any combination of frame
size and overlap.

The syntax rebuffer_delay(f,n,m) returns the delay, in samples, introduced
by the buffering and unbuffering blocks during multitasking operations,
where f is the input frame size, n is the Output buffer size parameter
setting, and m is the Buffer overlap parameter setting.

For example, you can calculate the delay for the model discussed in the
“Buffering Frame-Based Signals into Other Frame-Based Signals” on page
2-40 using the following command at the MATLAB command line:

d = rebuffer_delay(4,3,1)
d = 8

This result agrees with the block’s output in that example. Notice that this
model was simulated in Simulink multitasking mode.

For more information about delay, see “Excess Algorithmic Delay (Tasking
Latency)” on page 2-56. For delay information about a specific block, see the
“Latency” section of the block reference page. For more information about the
rebuffer_delay function, see rebuffer_delay.

Unbuffering Frame-Based Signals into Sample-Based
Signals
You can unbuffer multichannel frame-based signals into multichannel
sample-based signals using the Unbuffer block. The Unbuffer block performs
the inverse operation of the Buffer block’s “sample-based to frame-based”
buffering process, and generates an N-channel sample-based output from
an N-channel frame-based input. The first row in each input matrix is

2-43

2 Advanced Signal Concepts

always the first sample-based output. The following figure is a graphical
representation of this process.

The sample period of the sample-based output, Tso, is related to the input
frame period, Tfi, by the input frame size, Mi.

The Unbuffer block always preserves the signal’s sample period (Tso = Tsi).
See “Converting Sample and Frame Rates” on page 2-12 for more information
about rate conversions.

In the following example, a two-channel frame-based signal is unbuffered into
a two-channel sample-based signal:

1 At the MATLAB command prompt, type doc_unbuffer_tut.

The Unbuffer Example model opens.

2-44

Converting Frame Status

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = [1:10;-1:-1:-10]'

• Sample time = 1

• Samples per frame = 4

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame based-signal with frame size 4.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Unbuffer block. The Block Parameters: Unbuffer
dialog box opens.

6 Set the Initial conditions parameter to 0, and then click OK.

2-45

2 Advanced Signal Concepts

The Unbuffer block unbuffers the frame-based signal into a two-channel
sample-based signal.

7 Run the model.

The following figures is a graphical representation of what happens during
the model simulation.

Note The Unbuffer block generates initial conditions not shown in the
figure below with the value specified by the Initial conditions parameter.
See the Unbuffer reference page for information about the number of initial
conditions that appear in the output.

8 At the MATLAB command prompt, type dsp_examples_yout.

The following is a portion of the output.

dsp_examples_yout(:,:,1) =

0 0

dsp_examples_yout(:,:,2) =

0 0

dsp_examples_yout(:,:,3) =

2-46

Converting Frame Status

0 0

dsp_examples_yout(:,:,4) =

0 0

dsp_examples_yout(:,:,5) =

1 -1

dsp_examples_yout(:,:,6) =

2 -2

dsp_examples_yout(:,:,7) =

3 -3

The Unbuffer block unbuffers the frame-based signal into a two-channel,
sample-based signal. Each page of the output matrix represents a different
sample time.

2-47

2 Advanced Signal Concepts

Delay and Latency
The two types of delay that affect Simulink models are computational delay
and algorithmic delay. This section explains the cause of each variety of
delay. It describes how you can configure Simulink to minimize delay and
increase simulation performance. It also discusses how to accurately predict
the tasking latency of a particular model.

This section includes the following topics:

• “Computational Delay” on page 2-48 — Learn the cause of computational
delay and how to reduce it

• “Algorithmic Delay” on page 2-50 — Learn the cause of algorithmic delay

• “Zero Algorithmic Delay” on page 2-50 — Work with a block that has no
algorithmic delay

• “Basic Algorithmic Delay” on page 2-53 — Work with a block that has
algorithmic delay

• “Excess Algorithmic Delay (Tasking Latency)” on page 2-56 — Explore
the block and model characteristics that can affect the tasking latency
of a particular block

• “Predicting Tasking Latency” on page 2-58 — Use the Upsample block’s
block reference page to predict the tasking latency of a model

Computational Delay
The computational delay of a block or subsystem is related to the number of
operations involved in executing that block or subsystem. For example, an
FFT block operating on a 256-sample input requires Simulink to perform a
certain number of multiplications for each input frame. The actual amount
of time that these operations consume depends heavily on the performance
of both the computer hardware and underlying software layers, such as
MATLAB and the operating system. Therefore, computational delay for a
particular model can vary from one computer platform to another.

The simulation time represented on a model’s status bar, which can
be accessed via the Simulink Digital Clock block, does not provide any
information about computational delay. For example, according to the
Simulink timer, the FFT mentioned above executes instantaneously, with no

2-48

Delay and Latency

delay whatsoever. An input to the FFT block at simulation time t=25.0 is
processed and output at simulation time t=25.0, regardless of the number of
operations performed by the FFT algorithm. The Simulink timer reflects only
algorithmic delay, not computational delay.

Reducing Computational Delay
There are a number of ways to reduce computational delay without actually
running the simulation on faster hardware. To begin with, you should
familiarize yourself with “Improving Simulation Performance and Accuracy”
in the Using Simulink documentation, which describes some basic strategies.
The following information discusses several additional options for improving
performance.

A first step in improving performance is to analyze your model, and eliminate
or simplify elements that are adding excessively to the computational load.
Such elements might include scope displays and data logging blocks that you
had put in place for debugging purposes and no longer require. In addition to
these model-specific adjustments, there are a number of more general steps
you can take to improve the performance of any model:

• Use frame-based processing wherever possible. It is advantageous for the
entire model to be frame based. See “Benefits of Frame-Based Processing”
on page 1-17 for more information.

• Use the dspstartup file to tailor Simulink for signal processing models, or
manually make the adjustments described in “Settings in dspstartup.m” in
the Getting Started Signal Processing Blockset documentation.

• Turn off the Simulink status bar by deselecting the Status bar option in
the View menu. Simulation speed will improve, but the time indicator
will not be visible.

• Run your simulation from the MATLAB command line by typing

sim(gcs)

This method of starting a simulation can greatly increase the simulation
speed, but also has several limitations:

- You cannot interact with the simulation (to tune parameters, for
instance).

2-49

2 Advanced Signal Concepts

- You must press Ctrl+C to stop the simulation, or specify start and stop
times.

- There are no graphics updates in M-file S-functions, which include
blocks such as Vector Scope, etc.

• Use Real-Time Workshop® to generate generic real-time (GRT) code
targeted to your host platform, and run the model using the generated
executable file. See the Real-Time Workshop documentation for more
information.

Algorithmic Delay
Algorithmic delay is delay that is intrinsic to the algorithm of a block or
subsystem and is independent of CPU speed. In and elsewhere in this guide,
the algorithmic delay of a block is referred to simply as the block’s delay. It
is generally expressed in terms of the number of samples by which a block’s
output lags behind the corresponding input. This delay is directly related to
the time elapsed on the Simulink timer during that block’s execution.

The algorithmic delay of a particular block may depend on both the block
parameter settings and the general Simulink settings. To simplify matters, it
is helpful to categorize a block’s delay using the following categories:

• “Zero Algorithmic Delay” on page 2-50

• “Basic Algorithmic Delay” on page 2-53

• “Excess Algorithmic Delay (Tasking Latency)” on page 2-56

The following topics explain the different categories of delay, and how
the simulation and parameter settings can affect the level of delay that a
particular block experiences.

Zero Algorithmic Delay
The FFT block is an example of a component that has no algorithmic delay.
The Simulink timer does not record any passage of time while the block
computes the FFT of the input, and the transformed data is available at the
output in the same time step that the input is received. There are many other
blocks that have zero algorithmic delay, such as the blocks in the Matrices

2-50

Delay and Latency

and Linear Algebra libraries. Each of those blocks processes its input and
generates its output in a single time step.

In blocks are assumed to have zero delay unless otherwise indicated. If a
block has zero delay for one combination of parameter settings but nonzero
delay for another, the block reference page contains this fact.

The Normalization block is an example of a block with zero algorithmic delay:

1 At the MATLAB command prompt, type doc_normalization_tut.

The Normalization Example T1 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = 1:100

• Sample time = 1/4

• Samples per frame = 4

2-51

2 Advanced Signal Concepts

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Frame Conversion block. The Block Parameters:
Frame Conversion dialog box opens.

6 Set the Output signal parameter to Sample based, and then click OK.

7 Run the model.

The model prepends the current value of the Simulink timer output from
the Digital Clock block to each output frame. The Frame Conversion block
converts the frame-based signal to a sample-based signal so that the output
in the MATLAB Command Window is more easily readable.

The Signal From Workspace block generates a new frame containing four
samples once every second (Tfo = π*4). The first few output frames are:

(t=0) [1 2 3 4]'
(t=1) [5 6 7 8]'
(t=2) [9 10 11 12]'
(t=3) [13 14 15 16]'
(t=4) [17 18 19 20]'

8 At the MATLAB command prompt, type 'squeeze(dsp_examples_yout)'.

The normalized output, dsp_examples_yout, is converted to an
easier-to-read matrix format. The result, ans, is shown in the following
figure:

ans =

0 0.0333 0.0667 0.1000 0.1333
1.0000 0.0287 0.0345 0.0402 0.0460
2.0000 0.0202 0.0224 0.0247 0.0269
3.0000 0.0154 0.0165 0.0177 0.0189
4.0000 0.0124 0.0131 0.0138 0.0146
5.0000 0.0103 0.0108 0.0113 0.0118

The first column of ans is the Simulink time provided by the Digital Clock
block. You can see that the squared 2-norm of the first input,

[1 2 3 4]' ./ sum([1 2 3 4]'.^2)

2-52

Delay and Latency

appears in the first row of the output (at time t=0), the same time step that
the input was received by the block. This indicates that the Normalization
block has zero algorithmic delay.

Zero Algorithmic Delay and Algebraic Loops
When several blocks with zero algorithmic delay are connected in a feedback
loop, Simulink may report an algebraic loop error and performance may
generally suffer. You can prevent algebraic loops by injecting at least one
sample of delay into a feedback loop , for example, by including a Delay block
with Delay > 0. See the Using Simulink documentation for more information
about “Algebraic Loops”.

Basic Algorithmic Delay
The Variable Integer Delay block is an example of a block with algorithmic
delay. In the following example, you use this block to demonstrate this
concept:

1 At the MATLAB command prompt, type doc_variableintegerdelay_tut.

The Variable Integer Delay Example T1 opens.

2-53

2 Advanced Signal Concepts

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = 1:100

• Sample time = 1

• Samples per frame = 1

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the DSP Constant block. The Block Parameters: DSP
Constant dialog box opens.

6 Set the Constant value parameter to 3, and then click OK.

The input to the Delay port of the Variable Integer Delay block specifies
the number of sample periods that should elapse before an input to the In
port is released to the output. This value represents the block’s algorithmic
delay. In this example, since the input to the Delay port is 3, and the

2-54

Delay and Latency

sample period at the In and Delay ports is 1, then the sample that arrives
at the block’s In port at time t=0 is released to the output at time t=3.

7 Double-click the Variable Integer Delay block. The Block Parameters:
Variable Integer Delay dialog box opens.

8 Set the Initial conditions parameter to -1, and then click OK.

9 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions and Wide Nonscalar Lines.

10 Run the model.

The model should look similar to the following figure.

11 At the MATLAB command prompt, type dsp_examples_yout

The output is shown below:

dsp_examples_yout =

0 -1

2-55

2 Advanced Signal Concepts

1 -1
2 -1
3 1
4 2
5 3

The first column is the Simulink time provided by the Digital Clock block.
The second column is the delayed input. As expected, the input to the block
at t=0 is delayed three samples and appears as the fourth output sample,
at t=3. You can also see that the first three outputs from the Variable
Integer Delay block inherit the value of the block’s Initial conditions
parameter, -1. This period of time, from the start of the simulation until
the first input is propagated to the output, is sometimes called the initial
delay of the block.

Many blocks in the Signal Processing Blockset have some degree of fixed or
adjustable algorithmic delay. These include any blocks whose algorithms
rely on delay or storage elements, such as filters or buffers. Often, but not
always, such blocks provide an Initial conditions parameter that allows you
to specify the output values generated by the block during the initial delay. In
other cases, the initial conditions are internally set to 0.

Consult the block reference pages for the delay characteristics of specific
Signal Processing Blockset blocks.

Excess Algorithmic Delay (Tasking Latency)
Under certain conditions, Simulink may force a block to delay inputs longer
than is strictly required by the block’s algorithm. This excess algorithmic
delay is called tasking latency, because it arises from synchronization
requirements of the Simulink tasking mode. A block’s overall algorithmic
delay is the sum of its basic delay and tasking latency.

Algorithmic delay = Basic algorithmic delay + Tasking latency

The tasking latency for a particular block may be dependent on the following
block and model characteristics:

• “Simulink Tasking Mode” on page 2-57

2-56

Delay and Latency

• “Block Rate Type” on page 2-57

• “Model Rate Type” on page 2-58

• “Block Sample Mode” on page 2-58

Simulink Tasking Mode
Simulink has two tasking modes:

• Single-tasking

• Multitasking

To select a mode, from the Simulation menu, select Configuration
Parameters. In the Select pane, click Solver. From the Type list, select
Fixed-step. From the Tasking mode for periodic sample times list,
choose SingleTasking or MultiTasking. If, from the Tasking mode
for periodic sample times list you select Auto, the simulation runs in
single-tasking mode if the model is single-rate, or multitasking mode if the
model is multirate.

Note Many multirate blocks have reduced latency in the Simulink
single-tasking mode. Check the “Latency” section of a multirate block’s
reference page for details. Also see “Models with Multiple Sample Rates” in
the Real-Time Workshop User’s Guide documentation.

Block Rate Type
A block is called single-rate when all of its input and output ports operate at
the same frame rate. A block is called multirate when at least one input or
output port has a different frame rate than the others.

Many blocks are permanently single-rate. This means that all input and
output ports always have the same frame rate. For other blocks, the block
parameter settings determine whether the block is single-rate or multirate.
Only multirate blocks are subject to tasking latency.

2-57

2 Advanced Signal Concepts

Note Simulink may report an algebraic loop error if it detects a feedback loop
composed entirely of multirate blocks. To break such an algebraic loop, insert
a single-rate block with nonzero delay, such as a Unit Delay block. See the
Using Simulink documentation for more information about “Algebraic Loops”.

Model Rate Type
When all ports of all blocks in a model operate at a single frame rate, the
model is called single-rate. When the model contains blocks with differing
frame rates, or at least one multirate block, the model is called multirate.
Note that Simulink prevents a single-rate model from running in multitasking
mode by generating an error.

Block Sample Mode
Many blocks can operate in either sample-based or frame-based modes. In
source blocks, the mode is usually determined by the Samples per frame
parameter. If, for the Samples per frame parameter, you enter 1, the block
operates in sample-based mode. If you enter a value greater than 1, the block
operates in frame-based mode. In nonsource blocks, the sample mode is
determined by the input signal. See the block reference pages for additional
information about specific blocks.

Predicting Tasking Latency
The specific amount of tasking latency created by a particular combination
of block parameter and simulation settings is discussed in the “Latency”
section of a block’s reference page. In this topic, you use the Upsample block’s
reference page to predict the tasking latency of a model:

1 At the MATLAB command prompt, type doc_upsample_tut1.

The Upsample Example T1 model opens.

2-58

Delay and Latency

2 From the Simulation menu, select Configuration Parameters.

3 In the Solver pane, from the Type list, select Fixed-step. From the
Solver list, select discrete (no continuous states).

4 From the Tasking mode for periodic sample times list, select
MultiTasking, and then click OK.

Most multirate blocks experience tasking latency only in the Simulink
multitasking mode.

5 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

6 Set the block parameters as follows, and then click OK:

• Signal = 1:100

• Sample time = 1/4

• Samples per frame = 4

2-59

2 Advanced Signal Concepts

7 Double-click the Upsample block. The Block Parameters: Upsample
dialog box opens.

8 Set the block parameters as follows, and then click OK:

• Upsample factor = 4

• Sample offset = 0

• Initial condition = -1

• Frame-based mode = Maintain input frame size

The Frame-based mode parameter makes the model multirate, since the
input and output frame rates will not be equal.

9 Double-click the Digital Clock block. The Block Parameters: Digital
Clock dialog box opens.

10 Set the Sample time parameter to 0.25, and then click OK.

This matches the sample period of the Upsample block’s output.

11 Double-click the Frame Conversion block. The Block Parameters:
Frame Conversion dialog box opens.

12 Set the Output signal parameter of the to Sample based, and then click
OK.

13 Run the model.

The model should now look similar to the following figure.

2-60

Delay and Latency

The model prepends the current value of the Simulink timer, from the
Digital Clock block, to each output frame. The Frame Conversion block
converts the frame-based signal into a sample-based signal so that the
output in the MATLAB Command Window is easily readable.

In the example, the Signal From Workspace block generates a new frame
containing four samples once every second (Tfo = π*4). The first few output
frames are:

(t=0) [1 2 3 4]
(t=1) [5 6 7 8]
(t=2) [9 10 11 12]
(t=3) [13 14 15 16]
(t=4) [17 18 19 20]

The Upsample block upsamples the input by a factor of 4, inserting three
zeros between each input sample. The change in rates is confirmed by the
Probe blocks in the model, which show a decrease in the frame period from
Tfi = 1 to Tfo = 0.25.

14 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.

2-61

2 Advanced Signal Concepts

The output from the simulation is displayed in a matrix format. The first
few samples of the result, ans, are:

“Latency and Initial Conditions” in the Upsample block’s reference page
indicates that when Simulink is in multitasking mode, the first sample of
the block’s frame-based input appears in the output as sample MiL+D+1,
where Mi is the input frame size, L is the Upsample factor, and D is the
Sample offset. This formula predicts that the first input in this example
should appear as output sample 17 (that is, 4*4+0+1).

The first column of the output is the Simulink time provided by the Digital
Clock block. The four values to the right of each time are the values in
the output frame at that time. You can see that the first sample in each
of the first four output frames inherits the value of the Upsample block’s
Initial conditions parameter. As a result of the tasking latency, the first
input value appears as the first sample of the 5th output frame (at t=1).
This is sample 17.

Now try running the model in single-tasking mode.

15 From the Simulation menu, select Configuration Parameters.

16 In the Solver pane, from the Type list, select Fixed-step. From the
Solver list, select discrete (no continuous states).

17 From the Tasking mode for periodic sample times list, select
SingleTasking.

18 Run the model.

2-62

Delay and Latency

The model now runs in single-tasking mode.

19 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.

The first few samples of the result, ans, are:

“Latency and Initial Conditions” in the Upsample block’s reference page
indicates that the block has zero latency for all multirate operations in
the Simulink single-tasking mode.

The first column of the output is the Simulink time provided by the Digital
Clock block. The four values to the right of each time are the values in the
output frame at that time. The first input value appears as the first sample
of the first output frame (at t=0). This is the expected behavior for the
zero-latency condition. For the particular parameter settings used in this
example, running upsample_tut1 in single-tasking mode eliminates the
17-sample delay that is present when you run the model in multitasking
mode.

You have now successfully used the Upsample block’s reference page to
predict the tasking latency of a model.

2-63

2 Advanced Signal Concepts

2-64

3

Filters

The Signal Processing Blockset Filtering library provides an extensive array
of filtering blocks for designing and implementing filters in your models.

Digital Filter Block (p. 3-2) Implement your filter design using
the Digital Filter block

Digital Filter Design Block (p. 3-18) Create and implement filters using
the Digital Filter Design block

Filter Realization Wizard (p. 3-32) Create and implement filters using
the Filter Realization Wizard

Analog Filter Design Block (p. 3-51) Design analog IIR filters using the
Analog Filter Design block

Adaptive Filters (p. 3-53) Create and customize an adaptive
filter using an LMS Filter block

Multirate Filters (p. 3-66) Review filter bank concepts and
explore the multirate filtering demos
in the Signal Processing Blockset

3 Filters

Digital Filter Block
You can use the Digital Filter block to implement digital FIR and IIR filters
in your models. Use this block if you have already performed the design and
analysis and know your desired filter coefficients. You can use this block to
filter single-channel and multichannel signals, and to simulate floating-point
and fixed-point filters. Then, you can use Real-Time Workshop to generate
highly optimized C code from your filter block.

Required Parameters
To implement a filter with the Digital Filter block, you must provide the
following basic information about the filter:

• Whether the filter transfer function is FIR with all zeros, IIR with all poles,
or IIR with poles and zeros

• The desired filter structure

• The filter coefficients

Note Use the Digital Filter Design block to design and implement a filter.
Use the Digital Filter block to implement a predesigned filter. Both blocks
implement a filter in the same manner and have the same behavior during
simulation and code generation.

This section includes the following topics:

• “Implementing a Lowpass Filter” on page 3-3 — Create a lowpass filter
using the Digital Filter block

• “Implementing a Highpass Filter” on page 3-4 — Create a highpass filter
using the Digital Filter block

• “Filtering High-Frequency Noise” on page 3-5 — Build a system capable of
filtering high-frequency noise using a highpass and lowpass filter

• “Specifying Static Filters” on page 3-10 — Use the Digital Filter block to
create a static filter

3-2

Digital Filter Block

• “Specifying Time-Varying Filters” on page 3-11 — Use the Digital Filter
block to create a time-varying filter

• “Specifying the SOS Matrix (Biquadratic Filter Coefficients)” on page 3-16
— Use the Digital Filter block to create a static biquadratic direct form II
transposed filter

Implementing a Lowpass Filter
You can use the Digital Filter block to implement a digital FIR or IIR filter. In
this topic, you use it to implement an FIR lowpass filter:

1 Define the lowpass filter coefficients in the MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 0.0374
0.1435 0.2465 0.2896 0.2465 0.1435 0.0374 -0.0266 -0.0409
-0.0274 -0.0108 -0.0021];

2 Open Simulink and create a new model file.

3 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a Digital Filter block into your model.

4 Double-click the Digital Filter block. Set the block parameters as follows,
and then click OK:

• Transfer function type = FIR (all zeros)

• Filter structure = Direct form transposed

• Coefficient source = Specify via dialog

• Numerator coefficients = lopassNum

• Initial conditions = 0

Note that you can provide the filter coefficients in several ways:

• Type in a variable name from the MATLAB workspace, such as
lopassNum.

• Type in filter design commands from the Signal Processing Toolbox or
the Filter Design Toolbox, such as fir1(5, 0.2, 'low').

• Type in a vector of the filter coefficient values.

3-3

3 Filters

5 Rename your block Digital Filter - Lowpass.

The Digital Filter block in your model now represents a lowpass filter. In the
next topic, “Implementing a Highpass Filter” on page 3-4, you use a Digital
Filter block to implement a highpass filter. For more information about the
Digital Filter block, see the Digital Filter block reference page. For more
information about designing and implementing a new filter, see “Digital Filter
Design Block” on page 3-18.

Implementing a Highpass Filter
In this topic, you implement an FIR highpass filter using the Digital Filter
block:

1 If the model you created in “Implementing a Lowpass Filter” on page 3-3 is
not open on your desktop, you can open an equivalent model by typing

doc_probe_tut1

at the MATLAB command prompt.

2 Define the highpass filter coefficients in the MATLAB workspace by typing

hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061 ...
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a Digital Filter block into your model.

4 Double-click the Digital Filter block. Set the block parameters as follows,
and then click OK:

• Transfer function type = FIR (all zeros)

• Filter structure = Direct form transposed

• Coefficient source = Specify via dialog

• Numerator coefficients = hipassNum

• Initial conditions = 0

You can provide the filter coefficients in several ways:

3-4

Digital Filter Block

• Type in a variable name from the MATLAB workspace, such as
hipassNum.

• Type in filter design commands from the Signal Processing Toolbox or
the Filter Design Toolbox, such as fir1(5, 0.2, 'low').

• Type in a vector of the filter coefficient values.

5 Rename your block Digital Filter - Highpass.

You have now successfully implemented a highpass filter. In the next topic,
“Filtering High-Frequency Noise” on page 3-5, you use these Digital Filter
blocks to create a model capable of removing high frequency noise from a
signal. For more information about designing and implementing a new filter,
see “Digital Filter Design Block” on page 3-18.

Filtering High-Frequency Noise
In the previous topics, you used Digital Filter blocks to implement FIR
lowpass and highpass filters. In this topic, you use these blocks to build a
model that removes high frequency noise from a signal. In this model, you use
the highpass filter, which is excited using a uniform random signal, to create
high-frequency noise. After you add this noise to a sine wave, you use the
lowpass filter to filter out the high-frequency noise:

1 If the model you created in “Implementing a Highpass Filter” on page 3-4 is
not open on your desktop, you can open an equivalent model by typing

doc_filter_ex2

at the MATLAB command prompt.

2 If you have not already done so, define the lowpass and highpass filter
coefficients in the MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 ...
0.0374 0.1435 0.2465 0.2896 0.2465 0.1435 0.0374 ...
-0.0266 -0.0409 -0.0274 -0.0108 -0.0021];
hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061 ...
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3-5

3 Filters

3 Click-and-drag the following blocks into your model file.

Block Library Quantity

Matrix
Concatenation

Math Functions / Matrices and Linear Algebra / Matrix
Operations

1

Random Source Signal Processing Sources 1

Sine Wave Signal Processing Sources 1

Sum Simulink / Math Operations library 1

Vector Scope Signal Processing Sinks 1

4 Set the parameters for the rest of the blocks as indicated in the following
table. For any parameters not listed in the table, leave them at their
default settings.

Block Parameter Setting

Matrix
Concatenation

• Number of inputs = 3

• Concatenation method = Horizontal

Random Source • Source type = Uniform

• Minimum = 0

• Maximum = 4

• Sample mode = Discrete

• Sample time = 1/1000

• Samples per frame = 50

Sine Wave • Frequency (Hz) = 75

• Sample time = 1/1000

• Samples per frame = 50

3-6

Digital Filter Block

Block Parameter Setting

Sum • Icon shape = Time

• List of signs = ++

Vector Scope Scope Properties:

• Input domain = Time

• Time display span (number of frames) = 1

5 Connect the blocks and label your signals as shown in the following figure.
You need to resize some of your blocks to accomplish this task.

6 From the Simulation menu, select Configuration Parameters.

The Configuration Parameters dialog box opens.

7 In the Solver pane, set the parameters as follows, and then click OK:

• Start time = 0

• Stop time = 5

3-7

3 Filters

• Type = Fixed-step

• Solver = discrete (no continuous states)

8 In the model window, from the Simulation menu, choose Start.

The model simulation begins and the Scope displays the three input signals.

9 Double-click the Vector Scope block and click the Display Properties tab.
Select the Channel legend check box and click OK. Next time you run the
simulation, a legend appears in the Vector Scope window.

You can also set the color, style, and marker of each channel.

10 In the Vector Scope window, from the Channels menu, point to Ch 1 and
set the Style to -, Marker to None, and Color to Black.

Point to Ch 2 and set the Style to -, Marker to Diamond, and Color
to Red.

Point to Ch 3 and set the Style to None, Marker to *, and Color to Blue.

3-8

Digital Filter Block

11 Rerun the simulation and compare the original sine wave, noisy sine wave,
and filtered noisy sine wave in the Vector Scope display.

You can see that the lowpass filter filters out the high-frequency noise in
the noisy sine wave.

3-9

3 Filters

You have now used Digital Filter blocks to build a model that removes high
frequency noise from a signal. For more information about designing and
implementing a new filter, see “Digital Filter Design Block” on page 3-18.

Specifying Static Filters
You can use the Digital Filter block to specify a static filter by setting the
Coefficient source parameter to Specify via dialog. Depending on the
filter structure, you need to enter your filter coefficients into one or more of
the following parameters. The block disables all the irrelevant parameters.
To see which of these parameters correspond to each filter structure, see
“Supported Filter Structures” on page 10-238:

• Numerator coefficients — Column or row vector of numerator
coefficients, [b0, b1, b2, ..., bn].

• Denominator coefficients — Column or row vector of denominator
coefficients, [a0, a1, a2, ..., am].

3-10

Digital Filter Block

• Reflection coefficients — Column or row vector of reflection coefficients,
[k1, k2, ..., kn].

• SOS matrix (Mx6) — M-by-6 SOS matrix. To learn about SOS matrices,
see “Specifying the SOS Matrix (Biquadratic Filter Coefficients)” on page
3-16.

• Scale values — Scalar or vector of M+1 scale values to be used between
SOS stages.

Tuning the Filter Coefficient Values During Simulation
To change the static filter coefficients during simulation, double-click the
block, type in the new vector(s) of filter coefficients, and click OK. You cannot
change the filter order, so you cannot change the number of elements in the
vector(s) of filter coefficients.

Specifying Time-Varying Filters

Note This block does not support time-varying Biquadratic (SOS) filters.

Time-varying filters are filters whose coefficients change with time. You can
specify a time-varying filter that changes once per frame or once per sample
and you can filter multiple channels with each filter. However, you cannot
apply different filters to each channel; all channels must be filtered with the
same filter.

To specify a time-varying filter

1 Set the Coefficient source parameter to Input port(s), which enables
extra block input ports for the time-varying filter coefficients. The following
diagram shows one block with an extra port for reflection coefficients, and
another with extra ports for numerator and denominator coefficients.

3-11

3 Filters

2 Set the Coefficient update rate parameter to One filter per frame
or One filter per sample depending on how often you want to update
the filter coefficients. To learn more, see “Setting the Coefficient Update
Rate” on page 3-12.

3 Provide vectors of numerator, denominator, or reflection coefficients to the
block input ports for filter coefficients. The series of vectors must arrive at
their ports at a specific rate, and must be of certain lengths. To learn more,
see “Providing Filter Coefficient Vectors at Block Input Ports” on page 3-13.

4 Select or clear the First denominator coefficient = 1, remove a0 term
in the structure parameter depending on whether your first denominator
coefficient is always 1. To learn more, see “Removing the a0 Term in the
Filter Structure” on page 3-15.

Setting the Coefficient Update Rate
When the input is frame based, the block updates time-varying filters once
every input frame, or once for every sample in an input frame, depending on
the Coefficient update rate parameter:

• One filter per frame — Each coefficient vector represents one filter that
is applied to all samples in the current frame.

• One filter per sample — Each coefficient vector represents a
concatenation of filter coefficients. When you have N samples per frame
and M coefficients for each filter, then the coefficient vector length is M*N.
All the coefficient vectors must be of equal length.

The following figure shows the block filtering one channel; however, the block
can filter multiple channels. Note that the block can apply a single filter to
multiple channels, but cannot apply a different filter to each channel.

3-12

Digital Filter Block

Providing Filter Coefficient Vectors at Block Input Ports
As illustrated in the previous figure, the filter coefficient vectors for filters
that update once per frame are different from coefficient vectors for filters
that update once per sample. See the following tables to meet the rate and
length requirements of the filter coefficient vectors:

• Length requirements — See the table Length Requirements for
Time-Varying Filter Coefficient Vectors on page 3-14.

• Rate requirements — See the table Rate Requirements for Time-Varying
Filter Coefficient Vectors on page 3-14.

The output size, frame status, and dimension always match those of the input
signal that is filtered, not the vector of filter coefficients.

3-13

3 Filters

Length Requirements for Time-Varying Filter Coefficient Vectors

Coefficient
Update
Rate

How to Specify Filter Coefficient Vectors
(Also see the previous figure)

Length
Requirements

Once per
frame

Each coefficient vector corresponds to one input frame
and represents one filter. Specify each vector as
you would any static filter: [b0, b1, b2, ..., bn],
[a0, a1, a2, ..., am], or [k1, k2, ..., kn]

None

Once per
sample

Each coefficient vector corresponds to one input frame.
However, the vector represents multiple filters of the same
length with one filter for each sample in the current frame.
To create such a vector, concatenate all the filters for each
sample within the input frame. For instance, the following
vector specifies length-2 numerator coefficients for each
sample in a three-sample frame

where filters the first sample in the input

frame, filters the second sample, and so on.

All filters must be
the same length,
L.
The length of each
filter coefficient
vector must be L
times the number
of samples per
frame in the input.
(Each sample in
the frame has
one set of filter
coefficients.)

The time-varying filter coefficient vectors can be sample- or frame-based row
or column vectors. The vectors of filter coefficients must arrive at their input
port at the same times that the frames of input data arrive at their input port,
as indicated in the following table.

Rate Requirements for Time-Varying Filter Coefficient Vectors

Input
Signal

Time-Varying Filter
Coefficient Vectors

Rate Requirements (Also see the previous
figure)

Sample
based

Sample based Sample rates of input and filter coefficients
must be equal.

Sample
based

Frame based Input sample rate must equal filter coefficient
frame rate.

3-14

Digital Filter Block

Rate Requirements for Time-Varying Filter Coefficient Vectors (Continued)

Input
Signal

Time-Varying Filter
Coefficient Vectors

Rate Requirements (Also see the previous
figure)

Frame
based

Sample based Input frame rate must equal filter coefficient
sample rate.

Frame
based

Frame based Frame rates of input and filter coefficients must
be equal.

Removing the a0 Term in the Filter Structure
When you know that the first denominator filter coefficient (a0) is always 1
for your time-varying filter, select the First denominator coefficient = 1,
remove a0 term in the structure parameter. Selecting this parameter
reduces the number of computations the block must make to produce the
output (the block omits the 1 / a0 term in the filter structure, as illustrated
in the following figure). The block output is invalid if you select this
parameter when the first denominator filter coefficient is not always 1 for
your time-varying filter. Note that the block ignores the First denominator
coefficient = 1, remove a0 term in the structure parameter for fixed-point
inputs, since this block does not support nonunity a0 coefficients for fixed-point
inputs.

3-15

3 Filters

Specifying the SOS Matrix (Biquadratic Filter
Coefficients)
The Digital Filter block does not support time-varying biquadratic filters. To
specify a static biquadratic filter (also known as a second-order section or SOS
filter), you need to set the following parameters as indicated:

• Transfer function type — IIR (poles & zeros)

• Filter structure — Biquad direct form I (SOS), or Biquad direct
form I transposed (SOS), or , or Biquad direct form II transposed
(SOS)

• SOS matrix (Mx6) M-by-6 SOS matrix

The SOS matrix is an M-by-6 matrix, where M is the number of sections in
the second-order section filter. Each row of the SOS matrix contains the
numerator and denominator coefficients (bik and aik) of the corresponding
section in the filter.

• Scale values Scalar or vector of M+1 scale values to be used between
SOS stages

3-16

Digital Filter Block

If you enter a scalar, the value is used as the gain value before the first
section of the second-order filter. The rest of the gain values are set to 1.

If you enter a vector of M+1 values, each value is used for a separate
section of the filter. For example, the first element is the first gain value,
the second element is the second gain value, and so on.

You can use the ss2sos and tf2sos functions from the Signal Processing
Toolbox to convert a state-space or transfer-function description of your filter
into the second-order section description used by this block.

Note The block normalizes each row by a1i to ensure a value of 1 for the
zero-delay denominator coefficients.

3-17

3 Filters

Digital Filter Design Block
You can use the Digital Filter Design block to design and implement a digital
filter. The filter you design can filter single-channel or multichannel signals.
The Digital Filter Design block is ideal for simulating the numerical behavior
of your filter on a floating-point system, such as a personal computer or DSP
chip. You can use Real-Time Workshop to generate C code from your filter
block. For more information on generating C code from models, see “Code
Generation” in the Getting Started Signal Processing Blockset documentation.

This section includes the following topics:

• “Overview of the Digital Filter Design Block” on page 3-19 — Learn the
basic functionality of the Digital Filter Design block

• “Choosing Between Filter Design Blocks” on page 3-20 — Determine
whether the Digital Filter Design block or the Filter Realization Wizard
is right for your application

• “Creating a Lowpass Filter” on page 3-22 — Use the Digital Filter Design
block to design and implement a lowpass filter

• “Creating a Highpass Filter” on page 3-24 — Use the Digital Filter Design
block to design and implement a highpass filter

• “Filtering High-Frequency Noise” on page 3-26 — Create a system capable
of filtering high-frequency noise using a highpass and a lowpass filter

Alternatively, you can use other MathWorks products, such as the Signal
Processing Toolbox and Filter Design Toolbox, to design your filters. Once you
design a filter using either toolbox, you can use one of the Signal Processing
Blockset’s filter implementation blocks, such as the Digital Filter block,
to realize the filters in your models. For more information, see the Signal
Processing Toolbox documentation and Filter Design Toolbox documentation.
To learn how to import and export your filter designs, see “Importing and
Exporting Quantized Filters” in the Filter Design Toolbox documentation.

3-18

Digital Filter Design Block

Overview of the Digital Filter Design Block

Filter Design and Analysis
You perform all filter design and analysis within the Filter Design and
Analysis Tool (FDATool) GUI, which opens when you double-click the Digital
Filter Design block. FDATool provides extensive filter design parameters and
analysis tools such as pole-zero and impulse response plots.

Filter Implementation
Once you have designed your filter using FDATool, the block automatically
realizes the filter using the filter structure you specified. You can then use
the block to filter signals in your model. You can also fine-tune the filter by
changing the filter specification parameters during a simulation. The outputs
of the Digital Filter Design block numerically match the outputs of the filter
function in the Filter Design Toolbox and the filter function in MATLAB.

Saving, Exporting, and Importing Filters
The Digital Filter Design block allows you to save the filters you design,
export filters (to the MATLAB workspace, MAT-files, etc.), and import filters
designed elsewhere.

To learn how to save your filter designs, see “Saving and Opening Filter
Design Sessions” in the Signal Processing Toolbox documentation. To learn
how to import and export your filter designs, see “Importing and Exporting
Quantized Filters” in the Filter Design Toolbox documentation.

Note Use the Digital Filter Design block to design and implement a filter.
Use the Digital Filter block to implement a predesigned filter. Both blocks
implement a filter design in the same manner and have the same behavior
during simulation and code generation.

See the Digital Filter Design block reference page for more information.
For information on choosing between the Digital Filter Design block and
the Filter Realization Wizard, see “Choosing Between Filter Design Blocks”
on page 3-20.

3-19

3 Filters

Choosing Between Filter Design Blocks
You can design and implement digital filters using the Digital Filter Design
block and Filter Realization Wizard. This topic explains the similarities and
differences between these blocks. In addition, you learn how to choose the
block that is best suited for your needs.

Similarities
The Digital Filter Design block and Filter Realization Wizard are similar
in the following ways:

• Filter design and analysis options — Both blocks use the Filter Design and
Analysis Tool (FDATool) GUI for filter design and analysis.

• Output values — If the output of both blocks is double-precision floating
point, single-precision floating point, or fixed point, the output values of
both blocks numerically match the output of the filter method of the
dfilt object.

Differences
The Digital Filter Design block and Filter Realization Wizard handle the
following things differently:

• Filter implementation method

- The Digital Filter Design block opens the FDATool GUI to the Design
Filter panel. It implements filters using the Digital Filter block. These
filters are optimized for both speed and memory use in simulation and
in C code generation. For more information on code generation, see
“Code Generation” in the Getting Started Signal Processing Blockset
documentation.

- The Filter Realization Wizard opens the FDATool GUI to the Realize
Model panel. The block can implement filters in two different ways. It
can use Sum, Gain, and Delay blocks from Simulink, or it can use the
Digital Filter block. If you choose to implement your filter using the
Digital Filter block, your filter is bound by the type of filters this block
supports.

3-20

Digital Filter Design Block

Note If your filter is implemented by the Filter Realization Wizard
using Sum, Gain, and Delay blocks, inputs to the filter must be sample
based.

• Supported filter structures — Both blocks support many of the same
basic filter structures, but the Filter Realization Wizard supports more
structures than the Digital Filter Design block. This is because the block
can implement filters using Sum, Gain, and Delay blocks. See the Filter
Realization Wizard and Digital Filter Design block reference pages for a
list of all the structures they support.

• Multichannel filtering — The Digital Filter Design block can filter
multichannel signals. Filters implemented by the Filter Realization Wizard
can only filter single-channel signals.

• Data type support — The Digital Filter block supports single- and
double-precision floating-point computation for all filter structures and
fixed-point computation for some filter structures. The Digital Filter Design
block only supports single- and double-precision floating-point computation.

When to Use Each Block
The following are specific situations where only the Digital Filter Design
block or the Filter Realization Wizard is appropriate.

• Digital Filter Design

- Use to simulate single- and double-precision floating-point filters.

- Use to filter multichannel signals.

- Use to generate highly optimized ANSI/ISO C code that implements
floating-point filters for embedded systems. For more information on
code generation, see “Code Generation” in the Getting Started Signal
Processing Blockset documentation.

• Filter Realization Wizard

- Use to simulate numerical behavior of fixed-point filters in a DSP chip,
a field-programmable gate array (FPGA), or an application-specific
integrated circuit (ASIC).

3-21

3 Filters

- Use to simulate single- and double-precision floating-point filters with
structures that the Digital Filter Design block does not support.

- Use to visualize the filter structure, as the block can build the filter
from Sum, Gain, and Delay blocks.

- Use to generate multiple filter blocks rapidly.

See “Filter Realization Wizard” on page 3-32 and the Filter Realization
Wizard block reference page for information.

Creating a Lowpass Filter
You can use the Digital Filter Design block to design and implement a digital
FIR or IIR filter. In this topic, you use it to create an FIR lowpass filter:

1 Open Simulink and create a new model file.

2 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a Digital Filter Design block into
your model.

3 Double-click the Digital Filter Design block.

The Filter Design and Analysis Tool (FDATool) GUI opens.

4 Set the parameters as follows, and then click OK:

• Response Type = Lowpass

• Design Method = FIR, Equiripple

• Filter Order = Minimum order

• Units = Normalized (0 to 1)

• wpass = 0.2

• wstop = 0.5

When you are finished, the GUI should look similar to the following figure:

3-22

Digital Filter Design Block

5 Click Design Filter at the bottom of the GUI to design the filter.

Your Digital Filter Design block now represents a filter with the parameters
you specified.

6 From the Edit menu, select Convert Structure.

The Convert Structure dialog box opens.

7 Select Direct-Form FIR Transposed and click OK.

3-23

3 Filters

8 Rename your block Digital Filter Design - Lowpass.

The Digital Filter Design block now represents a lowpass filter with a
Direct-Form FIR Transposed structure. The filter passes all frequencies up
to 20% of the Nyquist frequency (half the sampling frequency), and stops
frequencies greater than or equal to 50% of the Nyquist frequency as defined
by the wpass and wstop parameters. In the next topic, “Creating a Highpass
Filter” on page 3-24, you use a Digital Filter Design block to create a highpass
filter. For more information about implementing a predesigned filter, see
“Digital Filter Block” on page 3-2.

Creating a Highpass Filter
In this topic, you create a highpass filter using the Digital Filter Design block:

1 If the model you created in “Creating a Lowpass Filter” on page 3-22 is not
open on your desktop, you can open an equivalent model by typing

doc_filter_ex4

at the MATLAB command prompt.

2 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a second Digital Filter Design block
into your model.

3 Double-click the Digital Filter Design block.

The Filter Design and Analysis Tool (FDATool) GUI opens.

4 Set the parameters as follows:

• Response Type = Highpass

• Design Method = FIR, Equiripple

• Filter Order = Minimum order

• Units = Normalized (0 to 1)

• wstop = 0.2

• wpass = 0.5

3-24

Digital Filter Design Block

When you are finished, the GUI should look similar to the following figure.

5 Click the Design Filter button at the bottom of the GUI to design the filter.

Your Digital Filter Design block now represents a filter with the parameters
you specified.

6 In the Edit menu, select Convert Structure.

The Convert Structure dialog box opens.

3-25

3 Filters

7 Select Direct-Form FIR Transposed and click OK.

8 Rename your block Digital Filter Design - Highpass.

The block now implements a highpass filter with a direct form FIR transpose
structure. The filter passes all frequencies greater than or equal to 50% of the
Nyquist frequency (half the sampling frequency), and stops frequencies less
than or equal to 20% of the Nyquist frequency as defined by the wpass and
wstop parameters. This highpass filter is the opposite of the lowpass filter
described in “Creating a Lowpass Filter” on page 3-22. The highpass filter
passes the frequencies stopped by the lowpass filter, and stops the frequencies
passed by the lowpass filter. In the next topic, “Filtering High-Frequency
Noise” on page 3-26, you use these Digital Filter Design blocks to create a
model capable of removing high frequency noise from a signal. For more
information about implementing a predesigned filter, see “Digital Filter
Block” on page 3-2.

Filtering High-Frequency Noise
In the previous topics, you used Digital Filter Design blocks to create FIR
lowpass and highpass filters. In this topic, you use these blocks to build a
model that removes high frequency noise from a signal. In this model, you use
the highpass filter, which is excited using a uniform random signal, to create
high-frequency noise. After you add this noise to a sine wave, you use the
lowpass filter to filter out the high-frequency noise:

1 If the model you created in “Creating a Highpass Filter” on page 3-24 is not
open on your desktop, you can open an equivalent model by typing

doc_filter_ex5

at the MATLAB command prompt.

2 Click-and-drag the following blocks into your model file.

Block Library Quantity

Matrix Concatenation Math Functions / Matrices and Linear Algebra
/ Matrix Operations

1

Random Source Signal Processing Sources 1

3-26

Digital Filter Design Block

Block Library Quantity

Sine Wave Signal Processing Sources 1

Sum Simulink Math Operations library 1

Vector Scope Signal Processing Sinks 1

3 Set the parameters for these blocks as indicated in the following table.
Leave the parameters not listed in the table at their default settings.

Parameter Settings for the Other Blocks

Block Parameter Setting

Matrix
Concatenation

• Number of inputs = 3

• Concatenation method = Horizontal

Random
Source

• Source type = = Uniform

• Minimum = 0

• Maximum = 4

• Sample mode = Discrete

• Sample time = 1/1000

• Samples per frame = 50

Sine Wave • Frequency (Hz) = 75

• Sample time = 1/1000

• Samples per frame = 50

3-27

3 Filters

Parameter Settings for the Other Blocks (Continued)

Block Parameter Setting

Sum • Icon shape = rectangular

• List of signs = ++

• Input domain = Time

• Time display span (number of frames) = 1

Vector Scope Scope Properties:

• Input domain = Time

• Time display span (number of frames) = 1

4 Connect the blocks and label the signals as shown in the following figure.
You might need to resize some of the blocks to accomplish this task.

5 From the Simulation menu, select Configuration Parameters.

3-28

Digital Filter Design Block

The Configuration Parameters dialog box opens.

6 In the Solver pane, set the parameters as follows, and then click OK:

• Start time = 0

• Stop time = 5

• Type = Fixed-step

• Solver = discrete (no continuous states)

7 In the model window, from the Simulation menu, choose Start.

The model simulation begins and the Scope displays the three input signals.

8 Double-click the Vector Scope block and click the Display Properties
check box. Select the Channel legend check box and click OK. Next time
you run the simulation, a legend appears in the Vector Scope window.

You can also set the color, style, and marker of each channel.

9 In the Vector Scope window, from the Channels menu, point to Ch 1 and
set the Style to -, Marker to None, and Color to Black.

Point to Ch 2 and set the Style to -, Marker to Diamond, and Color
to Red.

Point to Ch 3 and set the Style to None, Marker to *, and Color to Blue.

3-29

3 Filters

10 Rerun the simulation and compare the original sine wave, noisy sine wave,
and filtered noisy sine wave in the Vector Scope display.

You can see that the lowpass filter filters out the high-frequency noise in
the noisy sine wave.

3-30

Digital Filter Design Block

You have now used Digital Filter Design blocks to build a model that removes
high frequency noise from a signal. For more information about these
blocks, see the Digital Filter Design block reference page. For information
on another block capable of designing and implementing filters, see “Filter
Realization Wizard” on page 3-32. To learn how to save your filter designs,
see “Saving and Opening Filter Design Sessions” in the Signal Processing
Toolbox documentation. To learn how to import and export your filter designs,
see “Importing and Exporting Quantized Filters” in the Filter Design Toolbox
documentation.

3-31

3 Filters

Filter Realization Wizard
The Filter Realization Wizard is another Signal Processing Blockset block
that can be used to design and implement digital filters. You can use this
tool to filter single-channel floating-point or fixed-point signals. Like the
Digital Filter Design block, double-clicking a Filter Realization Wizard block
opens FDATool. Unlike the Digital Filter Design block, the Filter Realization
Wizard starts FDATool with the Realize Model panel selected. This panel is
optimized for use with the Signal Processing Blockset.

For more information, see the Filter Realization Wizard block reference page.
For information on choosing between the Digital Filter Design block and
the Filter Realization Wizard, see “Choosing Between Filter Design Blocks”
on page 3-20.

This section includes the following topics:

• “Designing and Implementing a Fixed-Point Filter” on page 3-32 — Create
a fixed-point filter with the Filter Realization Wizard

• “Setting the Filter Structure and Number of Filter Sections” on page 3-47
— Learn how to change the filter structure and the number of second-order
sections in the filter

• “Optimizing the Filter Structure” on page 3-49 — Optimize your filter
structure for zero, unity, and negative gains

Alternatively, you can use other MathWorks products, such as the Signal
Processing Toolbox and Filter Design Toolbox, to design your filters. Once you
design a filter using either toolbox, you can use one of the Signal Processing
Blockset’s filter implementation blocks, such as the Digital Filter block,
to realize the filters in your models. For more information, see the Signal
Processing Toolbox documentation and Filter Design Toolbox documentation.
To learn how to import and export your filter designs, see “Importing and
Exporting Quantized Filters” in the Filter Design Toolbox documentation.

Designing and Implementing a Fixed-Point Filter
In this section, a tutorial guides you through creating a fixed-point filter with
the Filter Realization Wizard. You will use the Filter Realization Wizard to
remove noise from a signal. This tutorial has the following parts:

3-32

Filter Realization Wizard

• “Part 1 — Creating a Signal with Added Noise” on page 3-33

• “Part 2 — Creating a Fixed-Point Filter with the Filter Realization Wizard”
on page 3-35

• “Part 3 — Building a Model to Filter a Signal” on page 3-43

• “Part 4 — Looking at Filtering Results” on page 3-46

Part 1 — Creating a Signal with Added Noise
In this section of the tutorial, you will create a signal with added noise. Later
in the tutorial, you will filter this signal with a fixed-point filter that you
design with the Filter Realization Wizard.

1 Type

load mtlb
soundsc(mtlb,Fs)

at the MATLAB command line. You should hear a voice say “MATLAB.”
This is the signal to which you will add noise.

2 Create a noise signal by typing

noise = cos(2*pi*3*Fs/8*(0:length(mtlb)-1)/Fs)';

at the command line. You can hear the noise signal by typing

soundsc(noise,Fs)

3 Add the noise to the original signal by typing

u = mtlb + noise;

at the command line.

4 Scale the signal with noise by typing

u = u/max(abs(u));

at the command line. You scale the signal to try to avoid overflows later on.
You can hear the scaled signal with noise by typing

3-33

3 Filters

soundsc(u,Fs)

5 View the scaled signal with noise by typing

spectrogram(u,256,Fs);colorbar

at the command line.

The spectrogram appears as follows.

In the spectrogram, you can see the noise signal as a horizontal line at about
2800 Hz, which is equal to 3*Fs/8.

3-34

Filter Realization Wizard

Part 2 — Creating a Fixed-Point Filter with the Filter Realization
Wizard
Next you will create a fixed-point filter using the Filter Realization Wizard.
You will create a filter that reduces the effects of the noise on the signal.

6 Open a new Simulink model, and drag-and-drop a Filter Realization
Wizard block from the Filtering / Filter Designs library into the model.

Note You do not have to place a Filter Realization Wizard block in a model
in order to use it. You can open the GUI from within a library. However,
for purposes of this tutorial, we will keep the Filter Realization Wizard
block in the model.

7 Double-click the Filter Realization Wizard block in your model. The
Realize Model panel of the Filter Design and Analysis Tool (FDATool)
appears.

3-35

3 Filters

8 Click the Design Filter button on the bottom left of FDATool. This brings
forward the Design Filter panel of the tool.

3-36

Filter Realization Wizard

9 Set the following fields in the Design Filter panel:

• Set Design Method to IIR -- Constrained Least Pth-norm

• Set Fs to Fs

• Set Fpass to 0.2*Fs

• Set Fstop to 0.25*Fs

3-37

3 Filters

• Set Max pole radius to 0.8

• Click the Design Filter button

The Design Filter panel should now appear as follows.

10 Click the Set Quantization Parameters button on the bottom left of
FDATool. This brings forward the Set Quantization Parameters panel
of the tool.

3-38

Filter Realization Wizard

11 Set the following fields in the Set Quantization Parameters panel:

• Select Fixed-point for the Filter arithmetic parameter.

• Make sure the Best precision fraction lengths check box is selected
on the Coefficients pane.

The Set Quantization Parameters panel should appear as follows.

3-39

3 Filters

12 Click the Realize Model button on the left side of FDATool. This brings
forward the Realize Model panel of the tool.

3-40

Filter Realization Wizard

13 Click the Realize Model button on the bottom of FDATool. A block for the
new filter appears in your model.

3-41

3 Filters

Note You do not have to keep the Filter Realization Wizard block in the
same model as your Filter block. However, for this tutorial, we will keep
the blocks in the same model.

14 Double-click the Filter block in your model. This will bring up the
realization of the filter being represented by the block.

3-42

Filter Realization Wizard

Part 3 — Building a Model to Filter a Signal
In this section of the tutorial, you will build and run a model with the filter
you just designed, in order to filter the noise from your signal.

15 Connect a Signal From Workspace block from the Signal Processing
Sources library to the input port of your filter block.

16 Connect a Signal To Workspace block from the Signal Processing Sinks
library to the output port of your filter block. Your model should now
appear as follows.

17 Change the Signal parameter of the Signal From Workspace block to
u by double-clicking on the block.

3-43

3 Filters

18 Click the OK button.

19 Open the Configuration Parameters dialog box from the Simulation
menu of the model. In the Solver pane of the dialog, set the following fields:

• Stop time = length(u)-1

• Type = Fixed-step

The Configuration Parameters dialog box should now appear as follows.

3-44

Filter Realization Wizard

20 Click the OK button.

21 Run the model.

3-45

3 Filters

22 Select Port/Signal Displays > Port Data Types from the Format
menu. You can you see that a signal of type double is entering your Filter
block, and a signal of type sfix16_En11 is exiting your Filter block.

Part 4 — Looking at Filtering Results
Now you can listen to and look at the results of the fixed-point filter you
designed and implemented.

23 Type

soundsc(yout,Fs)

at the command line to hear the output of the filter. You should hear a voice
say “MATLAB.” The noise portion of the signal should be close to inaudible.

24 Type

figure
spectrogram(yout, 256, Fs);colorbar

3-46

Filter Realization Wizard

at the command line. You can compare the input and output signals
side-by-side.

From the colorbars at the side of each spectrogram, you can see that the
noise has been reduced by about 40 dB.

Setting the Filter Structure and Number of Filter
Sections
The Current Filter Information region of FDATool shows the structure and
the number of second-order sections in your filter.

3-47

3 Filters

Change the filter structure and number of filter sections of your filter as
follows:

• Select Convert Structure from the Edit menu to open the Convert
Structure dialog box. For details, see “Converting to a New Structure” in
the Signal Processing Toolbox documentation.

• Select Convert to Second-order Sections from the Edit menu to
open the Convert to SOS dialog box. For details, see “Converting to
Second-Order Sections” in the Signal Processing Toolbox documentation.

Note You might not be able to directly access some of the supported
structures through the Convert Structure dialog of FDATool. However,
you can access all of the structures by creating a dfilt filter object with
the desired structure, and then importing the filter into FDATool. (To learn
more about the Import Filter panel, see “Importing a Filter Design” in
the Signal Processing Toolbox documentation.)

3-48

Filter Realization Wizard

Optimizing the Filter Structure
The Filter Realization Wizard can implement a digital filter using a Digital
Filter block or by creating a subsystem block that implements the filter using
Sum, Gain, and Delay blocks. The following procedure shows you how to
optimize the filter implementation:

1 Open the Realize Model pane of FDATool by clicking the Realize Model

button in the lower-left corner of FDATool .

2 Select the desired optimizations in the Optimization region of the Realize
Model pane. See the following descriptions and illustrations of each
optimization option.

• Optimize for zero gains — Remove zero-gain paths.

• Optimize for unity gains — Substitute gains equal to one with a wire
(short circuit).

• Optimize for negative gains — Substitute gains equal to -1 with a wire
(short circuit), and change the corresponding sums to subtractions.

• Optimize delay chains — Substitute any delay chain made up of n unit
delays with a single delay by n.

The following diagram illustrates the results of each of these optimizations.

3-49

3 Filters

3-50

Analog Filter Design Block

Analog Filter Design Block
The Analog Filter Design block designs and implements analog IIR filters
with standard band configurations. All of the analog filter designs let you
specify a filter order. The other available parameters depend on the filter type
and band configuration, as shown in the following table.

Configuration Butterworth Chebyshev I Chebyshev II Elliptic

Lowpass �p �p, Rp �s, Rs �p, Rp, Rs

Highpass �p �p, Rp �s, Rs �p, Rp, Rs

Bandpass �p1, �p2 �p1, �p2, Rp �s1, �s2, Rs �p1, �p2, Rp, Rs

Bandstop �p1, �p2 �p1, �p2, Rp �s1, �s2, Rs �p1, �p2, Rp, Rs

The table parameters are

• �p — passband edge frequency

• �p1 — lower passband edge frequency

• �p2 — upper cutoff frequency

• �s — stopband edge frequency

• �s1 — lower stopband edge frequency

• �s2 — upper stopband edge frequency

• Rp — passband ripple in decibels

• Rs — stopband attenuation in decibels

For all of the analog filter designs, frequency parameters are in units of
radians per second.

The Analog Filter Design block uses a state-space filter representation, and
applies the filter using the State-Space block in the Simulink Continuous
library. All of the design methods use Signal Processing Toolbox functions to
design the filter:

3-51

3 Filters

• The Butterworth design uses the toolbox function butter.

• The Chebyshev type I design uses the toolbox function cheby1.

• The Chebyshev type II design uses the toolbox function cheby2.

• The elliptic design uses the toolbox function ellip.

The Analog Filter Design block is built on the filter design capabilities
of the Signal Processing Toolbox. For more information on the filter
design algorithms, see “Filter Designs” in the Signal Processing Toolbox
documentation.

Note The Analog Filter Design block does not work with the Simulink
discrete solver, which is enabled when the Solver list is set to discrete (no
continuous states) in the Solver pane of the Configuration Parameters
dialog box. Select one of the continuous solvers (such as ode4) instead.

3-52

Adaptive Filters

Adaptive Filters
Adaptive filters are filters whose coefficients or weights change over time
to adapt to the statistics of a signal. They are used in a variety of fields
including communications, controls, radar, sonar, seismology, and biomedical
engineering.

This section includes the following topics:

• “Creating an Acoustic Environment” on page 3-53 — Build a subsystem
that models white noise and colored noise added to an input signal

• “Creating an Adaptive Filter” on page 3-54 — Build an adaptive filter using
an LMS Filter block

• “Customizing an Adaptive Filter” on page 3-60 — Modify your adaptive
filter and change its parameters during simulation

• “Adaptive Filtering Demos” on page 3-64 — Explore the adaptive filtering
demos in the Signal Processing Blockset

Creating an Acoustic Environment
In this topic, you learn how to create an acoustic environment that simulates
both white noise and colored noise added to an input signal. You later use this
environment to build a model capable of adaptive noise cancellation:

1 At the MATLAB command line, type dspanc.

The Signal Processing Blockset Acoustic Noise Cancellation demo opens.

3-53

3 Filters

2 Copy and paste the subsystem called Acoustic Environment into a new
model file.

3 Double-click the Acoustic Environment subsystem.

Gaussian noise is used to create the signal sent to the Exterior Mic output
port. If the input to the Filter port changes from 0 to 1, the Digital Filter
block changes from a lowpass filter to a bandpass filter. The filtered noise
output from the Digital Filter block is added to signal coming from a .wav
file to produce the signal sent to the Pilot’s Mic output port.

You have now created an acoustic environment. In the following topics, you
use this acoustic environment to produce a model capable of adaptive noise
cancellation.

Creating an Adaptive Filter
In the previous topic, “Creating an Acoustic Environment” on page 3-53, you
created a system that produced two output signals. The signal output at the
Exterior Mic port is composed of white noise. The signal output at the Pilot’s
Mic port is composed of colored noise added to a signal from a .wav file. In

3-54

Adaptive Filters

this topic, you create an adaptive filter to remove the noise from the Pilot’s
Mic signal. This topic assumes that you are working on a Windows operating
system:

1 If the model you created in “Creating an Acoustic Environment” on page
3-53 is not open on your desktop, you can open an equivalent model by
typing

doc_adapt1_win32

at the MATLAB command prompt.

2 From the Signal Processing Blockset Filtering library, and then from the
Adaptive Filters library, click-and-drag an LMS Filter block into the model
that contains the Acoustic Environment subsystem.

3 Double-click the LMS Filter block. Set the block parameters as follows,
and then click OK:

• Algorithm = Normalized LMS

• Filter length = 40

• Step size (mu) = 0.002

• Leakage factor (0 to 1) = 1

The block uses the normalized LMS algorithm to calculate the forty filter
coefficients. Setting the Leakage factor (0 to 1) parameter to 1 means
that the current filter coefficient values depend on the filter’s initial
conditions and all of the previous input values.

4 Click-and-drag the following blocks into your model.

Block Library Quantity

Constant Simulink/Sources 2

Manual Switch Simulink/Signal Routing 1

Terminator Simulink/Sinks 1

To Wave Device Platform Specific I/O/
Windows

1

3-55

3 Filters

Block Library Quantity

Downsample Signal Operations 1

Waterfall Scope Signal Processing Sinks 1

5 Connect the blocks so that your model resembles the following figure.

6 Double-click the Constant block. Set the Constant value parameter to
0 and then click OK.

7 Double-click the To Wave Device block. Set the block parameters as follows,
and then click OK:

• Queue duration (seconds) = 0.4

• Initial output delay (seconds) = 0.05

• Select the Use default audio device check box.

3-56

Adaptive Filters

8 Double-click the Downsample block. Set the Downsample factor, K
parameter to 32. Click OK.

The filter weights are being updated so often that there is very little change
from one update to the next. To see a more noticeable change, you need to
downsample the output from the Wts port.

9 Double-click the Waterfall Scope block. The Waterfall scope window opens.

10 Click on the Scope parameters button.

The Parameters window opens.

3-57

3 Filters

11 Click on the Axes tab. Set the parameters as follows:

• Y Min = -0.188

• Y Max = 0.179

12 Click on the Data history tab. Set the parameters as follows:

• History traces = 50

• Data logging = All visible

13 Close the Parameters window leaving all other parameters at their
default values.

You might need to adjust the axes in the Waterfall scope window in order
to view the plots.

14 Click on the Fit to view button in the Waterfall scope window. Then,
click-and-drag the axes until they resemble the following figure.

3-58

Adaptive Filters

15 In the model window, from the Simulation menu, select Configuration
Parameters. In the Select pane, click Solver. Set the parameters as
follows, and then click OK:

• Stop time = inf

• Type = Fixed-step

• Solver = discrete (no continuous states)

16 Run the simulation and view the results in the Waterfall scope window.
You can also listen to the simulation using the speakers attached to your
computer.

17 Experiment with changing the Manual Switch so that the input to the
Acoustic Environment subsystem is either 0 or 1.

When the value is 0, the Gaussian noise in the signal is being filtered by a
lowpass filter. When the value is 1, the noise is being filtered by a bandpass
filter. The adaptive filter can remove the noise in both cases.

3-59

3 Filters

You have now created a model capable of adaptive noise cancellation. The
adaptive filter in your model is able to filter out both low frequency noise
and noise within a frequency range. In the next topic, “Customizing an
Adaptive Filter” on page 3-60, you modify the LMS Filter block and change its
parameters during simulation.

Customizing an Adaptive Filter
In the previous topic, “Creating an Adaptive Filter” on page 3-54, you created
an adaptive filter and used it to remove the noise generated by the Acoustic
Environment subsystem. In this topic, you modify the adaptive filter and
adjust its parameters during simulation. This topic assumes that you are
working on a Windows operating system:

1 If the model you created in “Creating an Acoustic Environment” on page
3-53 is not open on your desktop, you can open an equivalent model by
typing

doc_adapt2_win32

at the MATLAB command prompt.

2 Double-click the LMS filter block. Set the block parameters as follows,
and then click OK:

• Specify step size via = Input port

• Initial value of filter weights = 0

• Select the Adapt port check box.

• Reset port = Non-zero sample

The Block Parameters: LMS Filter dialog box should now look similar
to the following figure.

3-60

Adaptive Filters

Step-size, Adapt, and Reset ports appear on the LMS Filter block.

3 Click-and-drag the following blocks into your model.

Block Library Quantity

Constant Simulink/Sources 6

Manual Switch Simulink/Signal Routing 3

4 Connect the blocks as shown in the following figure.

3-61

3 Filters

5 Double-click the Constant2 block. Set the block parameters as follows,
and then click OK:

• Constant value = 0.002

• Select the Interpret vector parameters as 1-D check box.

• Select the Show additional parameters check box.

• Output data type mode = Inherit via back propagation

• Sample time (-1 for inherited) = inf

3-62

Adaptive Filters

6 Double-click the Constant3 block. Set the block parameters as follows,
and then click OK:

• Constant value = 0.04

• Select the Interpret vector parameters as 1-D check box.

• Select the Show additional parameters check box.

• Output data type mode = Inherit via back propagation

• Sample time (-1 for inherited) = inf

7 Double-click the Constant4 block. Set the Constant value parameter to
0 and then click OK.

8 Double-click the Constant6 block. Set the Constant value parameter to
0 and then click OK.

9 In the model window, from the Format menu, point to Port/Signal
Displays, and select Wide Nonscalar Lines and Signal Dimensions.

10 Double-click Manual Switch2 so that the input to the Adapt port is 1.

11 Run the simulation and view the results in the Waterfall scope window.
You can also listen to the simulation using the speakers attached to your
computer.

12 Double-click the Manual Switch block so that the input to the Acoustic
Environment subsystem is 1. Then, double-click Manual Switch2 so that
the input to the Adapt port to 0.

The filter weights displayed in the Waterfall scope window remain
constant. When the input to the Adapt port is 0, the filter weights are
not updated.

13 Double-click Manual Switch2 so that the input to the Adapt port is 1.

The LMS Filter block updates the coefficients.

14 Connect the Manual Switch1 block to the Constant block that represents
0.002. Then, change the input to the Acoustic Environment subsystem.
Repeat this procedure with the Constant block that represents 0.04.

3-63

3 Filters

You can see that the system reaches steady state faster when the step
size is larger.

15 Double-click the Manual Switch3 block so that the input to the Reset port
is 1.

The block resets the filter weights to their initial values. In the Block
Parameters: LMS Filter dialog box, from the Reset port list, you chose
Non-zero sample. This means that any nonzero input to the Reset port
triggers a reset operation.

You have now experimented with adaptive noise cancellation using the LMS
Filter block. You adjusted the parameters of your adaptive filter and viewed
the effects of your changes while the model was running.

For more information about adaptive filters, see the following block reference
pages:

• LMS Filter

• RLS Filter

• Block LMS Filter

• Fast Block LMS Filter

Adaptive Filtering Demos
The Signal Processing Blockset provides a collection of adaptive filtering
demos that illustrate typical applications of the adaptive filtering blocks,
listed in the following table.

Adaptive Filtering Demos
Commands for Opening Demos in
MATLAB

LMS Adaptive Equalization lmsadeq

LMS Adaptive Linear
Prediction

lmsadlp

LMS Adaptive Time-Delay
Estimation

lmsadtde

3-64

Adaptive Filters

Adaptive Filtering Demos
Commands for Opening Demos in
MATLAB

Nonstationary Channel
Estimation

kalmnsce

RLS Adaptive Noise
Cancellation

rlsdemo

Opening Demos
To open the adaptive filter demos, click on the links in the following table
in the MATLAB Help browser (not in a Web browser), or type the demo
names provided in the table at the MATLAB command line. To access all
Signal Processing Blockset demos, type demo blockset dsp at the MATLAB
command line.

3-65

3 Filters

Multirate Filters
Multirate filters alter the sample rate of the input signal during the filtering
process. Such filters are useful in both rate conversion and filter bank
applications.

This section includes the following topics:

• “Filter Banks” on page 3-66 — Review of dyadic analysis filter banks and
dyadic synthesis filter banks

• “Multirate Filtering Demos” on page 3-74 — Explore the multirate filtering
demos in the Signal Processing Blockset

Filter Banks
The Dyadic Analysis Filter Bank block decomposes a broadband signal into a
collection of subbands with smaller bandwidths and slower sample rates. The
Dyadic Synthesis Filter Bank block reconstructs a signal decomposed by the
Dyadic Analysis Filter Bank block.

To use a dyadic synthesis filter bank to perfectly reconstruct the output of a
dyadic analysis filter bank, the number of levels and tree structures of both
filter banks must be the same. In addition, the filters in the synthesis filter
bank must be designed to perfectly reconstruct the outputs of the analysis
filter bank. Otherwise, the reconstruction will not be perfect.

Dyadic Analysis Filter Banks
Dyadic analysis filter banks are constructed from the following basic unit.
The unit can be cascaded to construct dyadic analysis filter banks with either
a symmetric or asymmetric tree structure.

Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair,
followed by a decimation by a factor of 2. The filters are halfband filters with

3-66

Multirate Filters

a cutoff frequency of Fs / 4, a quarter of the input sampling frequency. Each
filter passes the frequency band that the other filter stops.

The unit decomposes its input into adjacent high-frequency and low-frequency
subbands. Compared to the input, each subband has half the bandwidth (due
to the half-band filters) and half the sample rate (due to the decimation by 2).

Note The following figures illustrate the concept of a filter bank, but not how
the block implements a filter bank; the block uses a more efficient polyphase
implementation.

n-Level Asymmetric Dyadic Analysis Filter Bank

Use the above figure and the following figure to compare the two tree
structures of the dyadic analysis filter bank. Note that the asymmetric
structure decomposes only the low-frequency output from each level, while
the symmetric structure decomposes the high- and low-frequency subbands
output from each level.

3-67

3 Filters

n-Level Symmetric Dyadic Analysis Filter Bank

The following table summarizes the key characteristics of the symmetric and
asymmetric dyadic analysis filter bank.

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks

Characteristic N-Level Symmetric N-Level Asymmetric

Low- and
High-Frequency
Subband
Decomposition

All the low-frequency
and high-frequency
subbands in a level
are decomposed in the
next level.

Each level’s low-frequency subband is
decomposed in the next level, and each level’s
high-frequency band is an output of the filter
bank.

Number of Output
Subbands

2n n+1

3-68

Multirate Filters

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks
(Continued)

Characteristic N-Level Symmetric N-Level Asymmetric

Bandwidth and
Number of Samples
in Output Subbands

For an input with
bandwidth BW
and N samples,
all outputs have
bandwidth BW / 2n

and N / 2n samples.

For an input with bandwidth BW and N
samples, yk has the bandwidth BWk, and Nk
samples, where

The bandwidth of, and number of samples in
each subband (except the last) is half those of
the previous subband. The last two subbands
have the same bandwidth and number of
samples since they originate from the same
level in the filter bank.

Output Sample
Period

All output subbands
have a sample period
of 2n(Tsi)

Sample period of kth output

Due to the decimations by 2, the sample period
of each subband (except the last) is twice that
of the previous subband. The last two subbands
have the same sample period since they
originate from the same level in the filter bank.

Total Number of
Output Samples

The total number of samples in all of the output subbands is equal to
the number of samples in the input (due to the of decimations by 2 at
each level).

Wavelet
Applications

In wavelet applications, the highpass and lowpass wavelet-based filters
are designed so that the aliasing introduced by the decimations are
exactly canceled in reconstruction.

3-69

3 Filters

Dyadic Synthesis Filter Banks
Dyadic synthesis filter banks are constructed from the following basic unit.
The unit can be cascaded to construct dyadic synthesis filter banks with either
a asymmetric or symmetric tree structure as illustrated in the figures entitled
n-Level Asymmetric Dyadic Synthesis Filter Bank and n-Level Symmetric
Dyadic Synthesis Filter Bank.

Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair,
preceded by an interpolation by a factor of 2. The filters are halfband filters
with a cutoff frequency of Fs / 4, a quarter of the input sampling frequency.
Each filter passes the frequency band that the other filter stops.

The unit takes in adjacent high-frequency and low-frequency subbands, and
reconstructs them into a wide-band signal. Compared to each subband input,
the output has twice the bandwidth and twice the sample rate.

Note The following figures illustrate the concept of a filter bank, but not how
the block implements a filter bank; the block uses a more efficient polyphase
implementation.

3-70

Multirate Filters

n-Level Asymmetric Dyadic Synthesis Filter Bank

Use the above figure and the following figure to compare the two tree
structures of the dyadic synthesis filter bank. Note that in the asymmetric
structure, the low-frequency subband input to each level is the output of
the previous level, while the high-frequency subband input to each level is
an input to the filter bank. In the symmetric structure, both the low- and
high-frequency subband inputs to each level are outputs from the previous
level.

3-71

3 Filters

n-Level Symmetric Dyadic Synthesis Filter Bank

The following table summarizes the key characteristics of symmetric and
asymmetric dyadic synthesis filter banks.

Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks

Characteristic N-Level Symmetric N-Level Asymmetric

Input Paths
Through the
Filter Bank

The low-frequency subband input
to each level (except the first)
is the output of the previous
level. The low-frequency subband
input to the first level, and the
high-frequency subband input to
each level, are inputs to the filter
bank.

Both the high-frequency and
low-frequency input subbands to each
level (except the first) are the outputs
of the previous level. The inputs to
the first level are the inputs to the
filter bank.

3-72

Multirate Filters

Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks
(Continued)

Characteristic N-Level Symmetric N-Level Asymmetric

Number of Input
Subbands

2n n+1

Bandwidth
and Number of
Samples in Input
Subbands

All inputs subbands have
bandwidth BW / 2n and N / 2n

samples, where the output has
bandwidth BW and N samples.

For an output with bandwidth BW
and N samples, the kth input subband
has the following bandwidth and
number of samples.

Input Sample
Periods

All input subbands have a sample
period of 2n(Tso), where the output
sample period is Tso.

Sample period of kth input subband

where the output sample period is Tso.

Total Number of
Input Samples

The number of samples in the output is always equal to the total number
of samples in all of the input subbands.

Wavelet
Applications

In wavelet applications, the highpass and lowpass wavelet-based filters
are carefully selected so that the aliasing introduced by the decimation in
the dyadic analysis filter bank is exactly canceled in the reconstruction
of the signal in the dyadic synthesis filter bank.

For more information, see Dyadic Synthesis Filter Bank.

3-73

3 Filters

Multirate Filtering Demos
The Signal Processing Blockset provides a collection of multirate filtering
demos that illustrate typical applications of the multirate filtering blocks,
listed in the following table.

Multirate Filtering Demos
Commands for Opening Demos
in MATLAB

Denoising dspwdnois

Interpolation of a Sinusoidal Signal dspintrp

Multistage Multirate Filtering Suite dspmrf_menu

Sample Rate Conversion dspsrcnv

Sigma-Delta A/D Converter dspsdadc

Three-Channel Wavelet
Transmultiplexer

dspwvtrnsmx

Wavelet Perfect Reconstruction
Filter Bank

dspwpr

Wavelet Reconstruction dspwlet

Opening Demos
To open the multirate filter demos, click on the links in the following table
in the MATLAB Help browser (not in a Web browser), or type the demo
names provided in the table at the MATLAB command line. To access all
Signal Processing Blockset demos, type demo blockset dsp at the MATLAB
command line.

3-74

4

Transforms

The Signal Processing Blockset Transforms library provides blocks for a
number of transforms that are of particular importance in signal processing
applications.

Signals in the Time Domain (p. 4-2) Display frame-based signals in
the time domain and transform
frame-based sinusoidal signals from
the time domain to the frequency
domain

Signals in the Frequency-Domain
(p. 4-9)

Display frame-based signals in the
frequency domain and transform
frame-based sinusoidal signals from
the frequency domain to the time
domain

Linear and Bit-Reversed Output
Order (p. 4-18)

Learn the meaning of linear and
bit-reversed output order as used by
the FFT and IFFT blocks

4 Transforms

Signals in the Time Domain
You can use the Signal Processing Blockset to work with signals in both the
time and frequency domain. The Signal Processing Sinks library contains the
following blocks for displaying time-domain signals:

• Time Scope

• Vector Scope

• Matrix Viewer

• Waterfall Scope

This section includes the following topics:

• “Displaying Time-Domain Data” on page 4-2 — Use the Vector Scope block
to display two frame-based signals in the time domain

• “Transforming Time-Domain Data into the Frequency Domain” on page 4-5
— Use the FFT block to transform two, frame-based sinusoidal signals
from the time domain to the frequency domain

Displaying Time-Domain Data
The following example shows you how you can use the Vector Scope block to
display time-domain signals:

1 At the MATLAB command prompt, type doc_vectorscope_tut.

The Vector Scope Example opens and the variables Fs and mtlb are loaded
into the MATLAB workspace.

4-2

Signals in the Time Domain

When you run this model, two frame-based signals are displayed in the
vectorscope_tut/Vector Scope window.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = mtlb

• Sample time = 1

• Samples per frame = 16

• Form output after final data value = Cyclic Repetition

Based on these parameters, the Signal From Workspace block outputs
a frame-based signal with a frame size of 16 and a sample period of 1
second. The signal’s frame period is 16 seconds. Your input signal is output
repeatedly from the Signal From Workspace block.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Digital Filter Design block.

4-3

4 Transforms

You are going to use this block to filter the input signal in order to produce
two distinct signals to send to the Vector Scope block.

6 To specify a lowpass filter, in the Response Type section, choose Lowpass.

7 In the Design Method section, choose FIR. Then, from the list, select
Window.

8 In the Filter Order section, select Specify order and enter 22.

9 From the Window list, select Hamming.

10 In the Frequency Specifications section, from the Units list, select
Normalized (0 to 1).

11 In the Frequency Specifications section, set the wc parameter to 0.25.

12 Click Design Filter. Then, close the Block Parameters: Digital Filter
Design dialog box.

13 Double-click the Matrix Concatenation block. The Block Parameters:
Matrix Concatenation dialog box opens.

14 Set the block parameters as follows:

• Number of inputs = 2

• Concatenation method = Horizontal.

Based on these parameters, the Matrix Concatenation block combines the
two signals so that each column corresponds to a different signal.

15 Save these parameters and close the dialog box by clicking OK.

16 Double-click the Vector Scope block.

17 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

• Input domain = Time

• Time display span (number of frames) = 2

4-4

Signals in the Time Domain

When you run the model, the Vector Scope block plots two consecutive
frames of each channel at each update.

18 Run the model.

The original and filtered signal appear in the Vector Scope window. You
have now successfully displayed two frame-based signals in the time
domain using the Vector Scope block.

Transforming Time-Domain Data into the Frequency
Domain
When you want to transform time-domain data into the frequency domain, use
the FFT block. You can find additional background information on transform
operations in the Signal Processing Toolbox documentation.

In this example, you use the Sine Wave block to generate two frame-based
sinusoids, one at 15 Hz and the other at 40 Hz. You sum the sinusoids
point-by-point to generate the compound sinusoid

u t t= () + ()sin sin30 80π π

Then, you transform this sinusoid into the frequency domain using an FFT
block:

1 At the MATLAB command prompt, type doc_fft_tut.

The FFT Example opens.

4-5

4 Transforms

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave
dialog box opens.

3 Set the block parameters as follows:

• Amplitude = 1

• Frequency = [15 40]

• Phase offset =o 0

• Sample time = 0.001

• Samples per frame = 128

Based on these parameters, the Sine Wave block outputs two, frame-based
sinusoidal signals with identical amplitudes, phases, and sample times.
One sinusoid oscillates at 15 Hz and the other at 40 Hz.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum
dialog box opens.

4-6

Signals in the Time Domain

6 Set the Sum along parameter to Rows, and then click OK.

Since each column represents a different signal, you need to sum along the
individual rows in order to add the values of the sinusoids at each time step.

7 Double-click the Complex to Magnitude-Angle block. The Block
Parameters: Complex to Magnitude-Angle dialog box opens.

8 Set the Output parameter to Magnitude, and then click OK.

This block takes the complex output of the FFT block and converts this
output to magnitude.

9 Double-click the Vector Scope block.

10 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

• Input domain = Frequency

• Click the Axis Properties tab.

• Frequency units = Hertz (This corresponds to the units of the input
signals.)

• Frequency range = [0...Fs/2]

• Select the Inherit sample time from input check box.

• Amplitude scaling = Magnitude

11 Run the model.

The scope shows the two peaks at 0.015 and 0.04 kHz, as expected.

4-7

4 Transforms

You have now transformed two, frame-based sinusoidal signals from the
time domain to the frequency domain.

Note that the sequence of FFT, Complex to Magnitude-Angle, and Vector Scope
blocks could be replaced by a single Spectrum Scope block, which computes
the magnitude FFT internally. Other blocks that compute the FFT internally
are the blocks in the Power Spectrum Estimation library. See “Power
Spectrum Estimation” on page 6-6 for more information about these blocks.

4-8

Signals in the Frequency-Domain

Signals in the Frequency-Domain
You can use the Signal Processing Blockset to work with signals in both the
time and frequency domain. To display frequency-domain signals, you can
use blocks from the Signal Processing Sinks library, such as the Vector Scope,
Spectrum Scope, Matrix Viewer, and Waterfall Scope blocks.

This section includes the following topics:

• “Displaying Frequency-Domain Data” on page 4-9 — Use the Spectrum
Scope block to display two, frame-based signals in the frequency domain

• “Transforming Frequency-Domain Data into the Time Domain” on page
4-13 — Use the IFFT block to transform two, frame-based sinusoidal
signals from the frequency domain to the time domain

Displaying Frequency-Domain Data
You can use the Spectrum Scope block to display the frequency spectra of
time-domain input data. In contrast to the Vector Scope block, the Spectrum
Scope block computes the FFT of the input signal internally, transforming it
into the frequency domain. In this example, you use a Spectrum Scope block
to display the frequency content of two frame-based signals simultaneously:

1 At the MATLAB command prompt, type doc_spectrumscope_tut.

The Spectrum Scope Example opens.

4-9

4 Transforms

Also, the variables Fs and mtlb are loaded into the MATLAB workspace.

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = mtlb

• Sample time = 1

• Samples per frame = 16

• Form output after final data value = Cyclic Repetition

Based on these parameters, the Signal From Workspace block repeatedly
outputs the input signal, mtlb, as a frame-based signal with a sample
period of 1 second.

3 Use the Digital Filter Design block to filter the input signal to produce
two distinct signals to send to the Spectrum Scope block. Use the default
parameters.

4-10

Signals in the Frequency-Domain

4 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 2

• Concatenation method = Horizontal

The Matrix Concatenation block combines the two signals so that each
column corresponds to a different signal.

4-11

4 Transforms

5 Double-click the Spectrum Scope block. On the Scope Properties tab, set
the block parameters as follows, and then click OK:

• Select the Buffer input check box.

• Buffer size = 128

• Buffer overlap = 64

• Window type = Hann

• Window sampling = Periodic

• Clear the Specify FFT length check box.

• Number of spectral averages = 2

Based on these parameters, the Spectrum Scope block buffers each input
channel to a new frame size of 128 (from the original frame size of 16) with
an overlap of 64 samples between consecutive frames. Because Specify
FFT length is not selected, the frame size of 128 is used as the number of
frequency points in the FFT. This is the number of points plotted for each
channel every time the scope display is updated.

6 Run the model.

7 While the model is running, right-click in the Spectrum Scope window.
Point to Ch1, point to Style, and point to :. Right-click again and point to
Autoscale.

The Spectrum Scope block computes the FFT of each of the input signals.
It then displays the magnitude of the frequency-domain signals in the
Spectrum Scope window.

4-12

Signals in the Frequency-Domain

The FFT of the first input signal, from column one, is the blue dotted line.
The FFT of the second input signal, from column two, is the black solid
line. Every time the scope display is updated, 128 points are plotted for
each channel.

You have now used the Spectrum Scope block to display two, frame-based
signals in the frequency domain.

Transforming Frequency-Domain Data into the Time
Domain
When you want to transform frequency-domain data into the time domain,
use the IFFT block. You can find additional background information on
transform operations in the Signal Processing Toolbox documentation.

In this example, you use the Sine Wave block to generate two frame-based
sinusoids, one at 15 Hz and the other at 40 Hz. You sum the sinusoids

4-13

4 Transforms

point-by-point to generate the compound sinusoid, u t t= () +sin sin()30 80π π .
You transform this sinusoid into the frequency domain using an FFT block,
and then immediately transform the frequency-domain signal back to the
time domain using the IFFT block. Lastly, you plot the difference between
the original time-domain signal and transformed time-domain signal using
a scope:

1 At the MATLAB command prompt, type doc_ifft_tut.

The IFFT Example opens.

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave
dialog box opens.

3 Set the block parameters as follows:

• Amplitude = 1

• Frequency = [15 40]

• Phase offset = 0

4-14

Signals in the Frequency-Domain

• Sample time = 0.001

• Samples per frame = 128

Based on these parameters, the Sine Wave block outputs two, frame-based
sinusoidal signals with identical amplitudes, phases, and sample times.
One sinusoid oscillates at 15 Hz and the other at 40 Hz.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum
dialog box opens.

6 Set the Sum along parameter to Rows, and then click OK.

Since each column represents a different signal, you need to sum along the
individual rows in order to add the values of the sinusoids at each time step.

7 Double-click the FFT block. The Block Parameters: FFT dialog box
opens.

8 Select the Output in bit-reversed order check box., and then click OK.

9 Double-click the IFFT block. The Block Parameters: IFFT dialog box
opens.

10 Set the block parameters as follows, and then click OK:

• Select the Input is in bit-reversed order check box.

• Select the Input is conjugate symmetric check box.

Because the original sinusoidal signal is real valued, the output of the FFT
block is conjugate symmetric. By conveying this information to the IFFT
block, you optimize its operation.

Note that the Sum block subtracts the original signal from the output of
the IIFT block, which is the estimation of the original signal.

11 Double-click the Vector Scope block.

12 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

4-15

4 Transforms

• Input domain = Time

13 Run the model.

The flat line on the scope suggests that there is no difference between the
original signal and the estimate of the original signal. Therefore, the IFFT
block has accurately reconstructed the original time-domain signal from
the frequency-domain input.

14 Right-click in the Vector Scope window, and select Autoscale.

4-16

Signals in the Frequency-Domain

In actuality, the two signals are identical to within round-off error. The
previous figure shows the enlarged trace. The differences between the
two signals is on the order of 10-15.

4-17

4 Transforms

Linear and Bit-Reversed Output Order
The FFT block enables you to output the frequency indices in linear or
bit-reversed order. Because linear ordering of the frequency indices requires
a butterfly operation, in some situations, the FFT block runs more quickly
when the output frequencies are in bit-reversed order.

The input to the IFFT block can be in linear or bit-reversed order. Therefore,
you do not have to alter the ordering of your data before transforming it back
into the time domain.

This section includes the following topic:

• “Finding the Bit-Reversed Order of Your Frequency Indices” on page 4-18
— Transform linearly ordered frequency indices into bit-reversed frequency
indices

Finding the Bit-Reversed Order of Your Frequency
Indices
Two numbers are bit-reversed values of each other when the binary
representation of one is the mirror image of the binary representation of
the other. For example, in a three-bit system, one and four are bit-reversed
values of each other, since the three-bit binary representation of one, 001,
is the mirror image of the three-bit binary representation of four, 100. In
the diagram below, the frequency indices are in linear order. To put them
in bit-reversed order

1 Translate the indices into their binary representation with the minimum
number of bits. In this example, the minimum number of bits is three
because the binary representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the original
binary representation.

3 Translate the indices back to their decimal representation.

The frequency indices are now in bit-reversed order.

4-18

Linear and Bit-Reversed Output Order

The next diagram illustrates the linear and bit-reversed outputs of the FFT
block. The output values are the same, but they appear in different order.

4-19

4 Transforms

4-20

5

Quantizers

This chapter shows you how to design and use scalar and vector quantizer
blocks. You create several scalar quantizer blocks and use them to encode and
decode signals in your model. Then, you use vector quantizer encoder and
decoder blocks to quantize vectors of data.

Scalar Quantizers (p. 5-2) Learn how to design scalar
quantizers and use them to quantize
signals in your model

Vector Quantizers (p. 5-11) Quantize your vector signal using
vector quantizers

5 Quantizers

Scalar Quantizers
You can use blocks from the Signal Processing Blockset Quantizers library to
design scalar quantizer encoders and decoders. Quantization is the process of
representing a signal with a reduced level of precision. If you decrease the
number of bits allocated for the quantization of your speech signal, the signal
would be distorted and the speech quality would degrade. In this section, you
create two scalar quantizer encoders and two scalar quantizer decoders and
use them to encode and decode signals in a demo model.

This section includes the following topics:

• “Analysis and Synthesis of Speech” on page 5-2 — Learn the theory behind
signal transmission

• “Identifying Your Residual Signal and Reflection Coefficients” on page
5-4 — Define the residual signal and the reflection coefficients in your
MATLAB workspace

• “Creating a Scalar Quantizer” on page 5-5 — Design two scalar quantizer
encoders and two scalar quantizer decoders and use them to quantize your
residual signal and reflection coefficients

Analysis and Synthesis of Speech
A speech signal is usually represented in digital format, which is a sequence
of binary bits. For storage and transmission applications, it is desirable
to compress a signal by representing it with as few bits as possible, while
maintaining its perceptual quality.

In narrowband digital speech compression, speech signals are sampled at
a rate of 8000 samples per second. Typically, each sample is represented
by 8 bits. This corresponds to a bit rate of 64 kbits per second. Further
compression is possible at the cost of quality. Most of the current low bit
rate speech coders are based on the principle of linear predictive speech
coding. An implementation of this compression technique is presented in the
linear prediction coefficient (LPC) Analysis and Synthesis of Speech (dsplpc)
demo. This topic describes this demo, which models the theory behind signal
transmission:

5-2

Scalar Quantizers

1 Open the LPC Analysis and Synthesis of Speech demo by typing dsplpcat
the MATLAB command line.

This model preemphasizes the input speech signal by applying an FIR
filter. Then, it calculates the reflection coefficients of each frame using the
Levinson-Durbin algorithm. The model uses these reflection coefficients
to create the linear prediction analysis filter (lattice-structure). Next,
the model calculates the residual signal by filtering each frame of the
preemphasized speech samples using the reflection coefficients. The
residual signal, which is the output of the analysis stage, usually has a
lower energy than the input signal. The blocks in the synthesis stage of the
model filter the residual signal using the reflection coefficients and apply an
all-pole deemphasis filter. Note that the deemphasis filter is the inverse of
the preemphasis filter. The result is the full recovery of the original signal.

2 Run this model.

3 Double-click the Original Signal and Processed Signal blocks and listen to
both the original and the processed signal.

5-3

5 Quantizers

There is no difference between the two because no quantization was
performed. The model fully recovered the original signal.

To better approximate a real-world speech analysis and synthesis system, you
need to quantize the residual signal and reflection coefficients before they are
transmitted. The following topics show you how to design scalar quantizers to
accomplish this task.

Identifying Your Residual Signal and Reflection
Coefficients
In the previous topic, “Analysis and Synthesis of Speech” on page 5-2,
you learned the theory behind the LPC Analysis and Synthesis of Speech
(dsplpc) demo. In this topic, you define the residual signal and the reflection
coefficients in your MATLAB workspace as the variables E and K, respectively.
Later, you use these values to create your scalar quantizers:

1 Open the LPC Analysis and Synthesis of Speech demo by typing dsplpc at
the MATLAB command line.

2 Save the dsplpc model file as scalar_quantizer_example.mdl in your
working directory.

3 From the Signal Processing Sinks library, click-and-drag two Signal To
Workspace blocks into your model.

4 Connect the output of the Levinson-Durbin block to one of the Signal To
Workspace blocks.

5 Double-click this Signal To Workspace block and set the Variable name
parameter to K. Click OK.

6 Connect the output of the Time-Varying Analysis Filter block to the other
Signal To Workspace block.

7 Double-click this Signal To Workspace block and set the Variable name
parameter to E. Click OK.

You model should now look similar to this figure.

5-4

Scalar Quantizers

8 Run your model.

The residual signal, E, and your reflection coefficients, K, are defined in the
MATLAB workspace. In the next topic, you use these variables to design
your scalar quantizers.

Creating a Scalar Quantizer
In this topic, you create scalar quantizer encoders and decoders to quantize
the residual signal, E, and the reflection coefficients, K:

5-5

5 Quantizers

1 If the model you created in “Identifying Your Residual Signal and Reflection
Coefficients” on page 5-4 is not open on your desktop, you can open an
equivalent model by typing

doc_scalar_quantizer_example

at the MATLAB command prompt.

2 Run this model to define the variables E and K in the MATLAB workspace.

3 From the Quantizers library, click-and-drag a Scalar Quantizer Design
block into your model. Double-click this block to open the SQ Design Tool
GUI.

4 For the Training Set parameter, enter K.

The variable K represents the reflection coefficients you want to quantize.
By definition, they range from -1 to 1.

Note Theoretically, the signal that is used as the Training Set parameter
should contain a representative set of values for the parameter to be
quantized. However, this example provides an approximation to this global
training process.

5 For the Number of levels parameter, enter 128.

Assume that your compression system has 7 bits to represent each
reflection coefficient. This means it is capable of representing or 128
values. The Number of levels parameter is equal to the total number of
codewords in the codebook.

6 Set the Block type parameter to Both.

7 For the Encoder block name parameter, enter SQ Encoder -
Reflection Coefficients.

8 For the Decoder block name parameter, enter SQ Decoder -
Reflection Coefficients.

5-6

Scalar Quantizers

9 Make sure that your desired destination model,
scalar_quantizer_example.mdl, is the current model. You can type gcs in
the MATLAB Command Window to display the name of your current model.

10 In the SQ Design Tool GUI, click the Design and Plot button to apply the
changes you made to the parameters.

The GUI should look similar to the following figure.

5-7

5 Quantizers

11 Click the Generate Model button.

Two new blocks, SQ Encoder - Reflection Coefficients and SQ Decoder -
Reflection Coefficients, appear in your model file.

5-8

Scalar Quantizers

12 Click the SQ Design Tool GUI and, for the Training Set parameter,
enter E.

13 Repeat steps 5 to 11 for the variable E, which represents the residual
signal you want to quantize. In steps 6 and 7, name your blocks SQ
Encoder - Residual and SQ Decoder - Residual.

Once you have completed these steps, two new blocks, SQ Encoder -
Residual and SQ Decoder - Residual, appear in your model file.

14 Close the SQ Design Tool GUI. You do not need to save the SQ Design
Tool session.

You have now created a scalar quantizer encoder and a scalar quantizer
decoder for each signal you want to quantize. You are ready to quantize the
residual signal, E, and the reflection coefficients, K.

15 Connect the blocks so your model looks similar to the following figure.

16 Run your model.

5-9

5 Quantizers

17 Double-click the Original Signal and Processed Signal blocks, and listen
to both signals.

Again, there is no perceptible difference between the two. You can therefore
conclude that quantizing your residual and reflection coefficients did not
affect the ability of your system to accurately reproduce the input signal.

You have now quantized the residual and reflection coefficients in the LPC
Analysis and Synthesis of Speech demo model. The bit rate of a quantization
system is calculated as (bits per frame)*(frame rate).

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) +
(12 reflection coefficient samples/frame)*(7 bits/sample)]*(100 frames/second),
or 64.4 kbits per second. This is higher than most modern speech coders,
which typically have a bit rate of 8 to 24 kbits per second. If you decrease the
number of bits allocated for the quantization of the reflection coefficients or
the residual signal, the overall bit rate would decrease. However, the speech
quality would also degrade.

For information about decreasing the bit rate without affecting speech quality,
see “Vector Quantizers” on page 5-11.

5-10

Vector Quantizers

Vector Quantizers
In the previous section, you created scalar quantizer encoders and decoders
and used them to quantize your residual signal and reflection coefficients.
The bit rate of your scalar quantization system was 64.4 kbits per second.
This bit rate is higher than most modern speech coders. To accommodate a
greater number of users in each channel, you need to lower this bit rate while
maintaining the quality of your speech signal. You can use vector quantizers,
which exploit the correlations between each sample of a signal, to accomplish
this task. In this section, you quantize your reflection coefficients using vector
quantizers to reduce the bit rate of your system.

This section includes the following topics:

• “Building Your Vector Quantizer Model” on page 5-11 — Reconfigure
your scalar quantization model to use vector quantizers to quantize your
reflection coefficients

• “Configuring and Running Your Model” on page 5-13 — Set your model
parameters and use a split vector quantizer to quantize your reflection
coefficients

Building Your Vector Quantizer Model
In this topic, you modify your scalar quantization model so that you are using
a split vector quantizer to quantize your reflection coefficients:

1 If the model you created in “Creating a Scalar Quantizer” on page 5-5 is not
open on your desktop, you can open an equivalent model by typing

doc_scalar_quantizer_example2

at the MATLAB command prompt.

2 Delete the SQ Encoder - Reflection Coefficients and SQ Decoder - Reflection
Coefficients blocks.

3 At the MATLAB command prompt, type dspcelpcoder.

The Signal Processing Blockset CELP-Based Vocoder demo opens. This
demo quantizes linear prediction parameters using the split vector
quantization method.

5-11

5 Quantizers

4 Double-click the CELP Encoder subsystem, and then double-click the
Frame Analysis subsystem. Copy the LSF Vector Quantization subsystem
and paste it in your model.

You use this subsystem to encode and decode your reflection coefficients
using the split vector quantization method.

5 From the Simulink library, and then from the Sinks library, click-and-drag
a Terminator block into your model.

6 From the Signal Processing Blockset library, from the Estimation library,
and then from the Linear Prediction library, click-and-drag a LSF/LSP to
LPC Conversion block and two LPC to/from RC blocks into your model.

7 Connect the blocks as shown in the following figure. You do not need to
connect Terminator blocks to the P ports of the LPC to/from RC blocks.
These ports disappear once you set block parameters.

5-12

Vector Quantizers

You have modified your model to include a subsystem capable of vector
quantization. In the next topic, you reset your model parameters to quantize
your reflection coefficients using the split vector quantization method.

Configuring and Running Your Model
In the previous topic, you configured your scalar quantization model for vector
quantization by adding the LSF Vector Quantization subsystem. In this topic,
you set your block parameters and quantize your reflection coefficients using
the split vector quantization method:

1 If the model you created in “Building Your Vector Quantizer Model” on
page 5-11 is not open on your desktop, you can open an equivalent model
by typing

5-13

5 Quantizers

doc_vector_quantizer_example

at the MATLAB command prompt.

2 Double-click the LSF Vector Quantization subsystem, and then double-click
the LSF Split VQ subsystem.

The subsystem opens, and you see the three Vector Quantizer Encoder
blocks used to implement the split vector quantization method.

This subsystem divides each vector of 10 line spectral frequencies (LSFs),
which represent your reflection coefficients, into three LSF subvectors.
Each of these subvectors is sent to a separate vector quantizer. This method
is called split vector quantization.

3 Double-click the VQ of LSF: 1st subvector block.

The Block Parameters: VQ of LSF: 1st subvector dialog box opens.

5-14

Vector Quantizers

The variable CB_lsf1to3_10bit is the codebook for the subvector that
contains the first three elements of the LSF vector. It is a 3-by-1024
matrix, where 3 is the number of elements in each codeword and 1024 is
the number of codewords in the codebook. Because , it takes 10
bits to quantize this first subvector. Similarly, a 10-bit vector quantizer is
applied to the second and third subvectors, which contain elements 4 to 6
and 7 to 10 of the LSF vector, respectively. Therefore, it takes 30 bits to
quantize all three subvectors.

Note If you used the vector quantization method to quantize your reflection
coefficients, you would need or 1.0737e9 codebook values to achieve the
same degree of accuracy as the split vector quantization method.

5-15

5 Quantizers

4 In your model file, double-click the Autocorrelation block and set the
Maximum non-negative lag (less than input length) parameter to
10. Click OK.

This parameter controls the number of linear polynomial coefficients
(LPCs) that are input to the split vector quantization method.

5 Double-click the LPC to/from RC block that is connected to the input of
the LSF Vector Quantization subsystem. Clear the Output normalized
prediction error power check box. Click OK.

6 Double-click the LSF/LSP to LPC Conversion block and set the Input
parameter to LSF in range (0 to pi). Click OK.

7 Double-click the LPC to/from RC block that is connected to the output
of the LSF/LSP to LPC Conversion block. Set the Type of conversion
parameter to LPC to RC, and clear the Output normalized prediction
error power check box. Click OK.

8 At the MATLAB command prompt, type load lpcvocoder.

The codebook values for your vector quantizer are loaded into memory. You
have now configured the parameters of your vector quantizer model and
are ready to quantize your reflection coefficients.

9 Run your model.

5-16

Vector Quantizers

10 Double-click the Original Signal and Processed Signal blocks to listen to
both the original and the processed signal.

There is no perceptible difference between the two. Quantizing your
reflection coefficients using a split vector quantization method produced
good quality speech without much distortion.

You have now used the split vector quantization method to quantize your
reflection coefficients. The vector quantizers in the LSF Vector Quantization
subsystem use 30 bits to quantize a frame containing 80 reflection coefficients.
The bit rate of a quantization system is calculated as (bits per frame)*(frame
rate).

5-17

5 Quantizers

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) +
(30 bits/frame)]*(100 frames/second), or 59 kbits per second. This is less than
64.4 kbits per second, the bit rate of the scalar quantization system. However,
the quality of the speech signal did not degrade. If you want to further
reduce the bit rate of your system, you can use the LSF Vector Quantization
subsystem to quantize the residual signal.

This example illustrates how you can use vector quantization to reduce the
bit rate of your coder.

5-18

6

Statistics, Estimation, and
Linear Algebra

This chapter describes several standard operations involved in simulating
signal processing models.

Statistics (p. 6-2) Learn to perform statistical
operations such as minimum,
maximum, mean, variance, and
standard deviation.

Power Spectrum Estimation (p. 6-6) Use the blocks in the Power
Spectrum Estimation library to
perform spectral analysis

Linear Algebra (p. 6-7) Solve systems of linear equations

6 Statistics, Estimation, and Linear Algebra

Statistics
The Statistics library provides fundamental statistical operations such as
minimum, maximum, mean, variance, and standard deviation. Most blocks in
the Statistics library support two types of operations:

• Basic operations

• Running operations

The blocks listed below toggle between basic and running modes using the
Running check box in the parameter dialog box:

• Histogram

• Mean

• RMS

• Standard Deviation

• Variance

An unselected Running check box means that the block is operating in
basic mode, while a selected Running box means that the block is operating
in running mode.

The Maximum and Minimum blocks are slightly different from the blocks
above, and provide a Mode parameter in the block dialog box to select the
type of operation. The Value and Index, Value, and Index options in the
Mode menu all specify basic operation, in each case enabling a different set
of output ports on the block. The Running option in the Mode menu selects
running operation.

The following sections explain how basic mode and running mode differ:

• “Basic Operations” on page 6-3

• “Running Operations” on page 6-4

The statsdem demo illustrates the operation of several blocks from the
Statistics library.

6-2

Statistics

Basic Operations
A basic operation is one that processes each input independently of previous
and subsequent inputs. For example, in basic mode (with Value and Index
selected, for example) the Maximum block finds the maximum value in each
column of the current input, and returns this result at the top output (Val).
Each consecutive Val output therefore has the same number of columns as
the input, but only one row. Furthermore, the values in a given output only
depend on the values in the corresponding input. The block repeats this
operation for each successive input.

This type of operation is exactly equivalent to the MATLAB command

val = max(u) % Equivalent MATLAB code

which computes the maximum of each column in input u.

The next section is an example of a basic statistical operation.

Example: Sliding Windows
You can use the basic statistics operations in conjunction with the Buffer
block to implement basic sliding window statistics operations. A sliding
window is like a stencil that you move along a data stream, exposing only a
set number of data points at one time.

For example, you may want to process data in 128-sample frames, moving the
window along by one sample point for each operation. One way to implement
such a sliding window is shown in the model below.

The Buffer block’s Buffer size (Mo) parameter determines the size of the
window. The Buffer overlap (L) parameter defines the "slide factor" for
the window. At each sample instant, the window slides by Mo-L points. The
Buffer overlap is often Mo-1 (the same as the Delay Line block), so that a
new statistic is computed for every new signal sample.

6-3

6 Statistics, Estimation, and Linear Algebra

To build the model, make the following settings:

• In the Signal From Workspace block, set:

- Signal = 1:256

- Sample time = 0.1

- Samples per frame = 1

• In the Buffer block, set:

- Output buffer size (per channel) = 128

- Buffer overlap = 127

Running Operations
A running operation is one that processes successive sample-based or
frame-based inputs, and computes a result that reflects both present and past
inputs. A reset port enables you to restart this tracking at any time. The
running statistic is computed for each input channel independently, so the
block’s output is the same size as the input.

For example, in running mode (Running selected from the Mode parameter)
the Maximum block outputs a record of the input’s maximum value over time.

The figure below illustrates how a Maximum block in running mode operates
on a frame-based 3-by-2 (two-channel) matrix input, u. The running maximum
is reset at t=2 by an impulse to the block’s optional Rst port.

6-4

Statistics

6-5

6 Statistics, Estimation, and Linear Algebra

Power Spectrum Estimation
The Power Spectrum Estimation library provides a number of blocks for
spectral analysis. Many of them have correlates in the Signal Processing
Toolbox, which are shown in parentheses:

• Burg Method (pburg)

• Covariance Method (pcov)

• Magnitude FFT (periodogram)

• Modified Covariance Method (pmcov)

• Short-Time FFT

• Yule-Walker Method (pyulear)

See “Spectral Analysis” in the Signal Processing Toolbox documentation for
an overview of spectral analysis theory and a discussion of the above methods.

The Signal Processing Blockset provides two demos that illustrate the
spectral analysis blocks:

• A Comparison of Spectral Analysis Techniques (dspsacomp)

• Spectral Analysis: Short-Time FFT (dspstfft)

6-6

Linear Algebra

Linear Algebra
The Matrices and Linear Algebra library provides three large sublibraries
containing blocks for linear algebra:

• Linear System Solvers

• Matrix Factorizations

• Matrix Inverses

A third library, Matrix Operations, provides other essential blocks for working
with matrices. See Chapter 1, “Working with Signals” for more information
about matrix signals.

The following sections provide examples to help you get started with the
linear algebra blocks:

• “Solving Linear Systems” on page 6-7

• “Factoring Matrices” on page 6-9

• “Inverting Matrices” on page 6-10

Solving Linear Systems
The Linear System Solvers library provides the following blocks for solving
the system of linear equations AX = B:

• Autocorrelation LPC

• Cholesky Solver

• Forward Substitution

• LDL Solver

• Levinson-Durbin

• LU Solver

• QR Solver

• SVD Solver

6-7

6 Statistics, Estimation, and Linear Algebra

Some of the blocks offer particular strengths for certain classes of problems.
For example, the Cholesky Solver block is particularly adapted for a square
Hermitian positive definite matrix A, whereas the Backward Substitution
block is particularly suited for an upper triangular matrix A.

Example: LU Solver
In the model below, the LU Solver block solves the equation Ax = b, where

and finds x to be the vector [-2 0 1]'.

To build the model, set the following parameters:

• In the DSP Constant block, set Constant value = [1 -2 3;4 0 6;2 -1 3].

• In the DSP Constant1 block, set Constant value = [1 -2 -1]'.

You can verify the solution by using the Matrix Multiply block to perform the
multiplication Ax, as shown in the model below.

6-8

Linear Algebra

Factoring Matrices
The Matrix Factorizations library provides the following blocks for factoring
various kinds of matrices:

• Cholesky Factorization

• LDL Factorization

• LU Factorization

• QR Factorization

• Singular Value Decomposition

Some of the blocks offer particular strengths for certain classes of problems.
For example, the Cholesky Factorization block is particularly suited to
factoring a Hermitian positive definite matrix into triangular components,
whereas the QR Factorization is particularly suited to factoring a rectangular
matrix into unitary and upper triangular components.

Example: LU Factorization
In the model below, the LU Factorization block factors a matrix Ap into upper
and lower triangular submatrices U and L, where Ap is row equivalent to
input matrix A, where

To build the model, in the DSP Constant block, set the Constant value
parameter to [1 -2 3;4 0 6;2 -1 3].

6-9

6 Statistics, Estimation, and Linear Algebra

The lower output of the LU Factorization, P, is the permutation index
vector, which indicates that the factored matrix Ap is generated from A by
interchanging the first and second rows.

The upper output of the LU Factorization, LU, is a composite matrix containing
the two submatrix factors, U and L, whose product LU is equal to Ap.

You can check that LU = Ap with the Matrix Multiply block, as shown in
the model below.

Inverting Matrices
The Matrix Inverses library provides the following blocks for inverting various
kinds of matrices:

• Cholesky Inverse

• LDL Inverse

• LU Inverse

• Pseudoinverse

6-10

Linear Algebra

Example: LU Inverse
In the model below, the LU Inverse block computes the inverse of input
matrix A, where

and then forms the product A-1A, which yields the identity matrix of order 3,
as expected.

To build the model, in the DSP Constant block, set the Constant value
parameter to [1 -2 3;4 0 6;2 -1 3].

As shown above, the computed inverse is

6-11

6 Statistics, Estimation, and Linear Algebra

6-12

7

Data Type Support

All Signal Processing Blockset blocks support the single- and double-precision
floating-point data type. Many blocks support other data types.

Supported Data Types and How to
Convert to Them (p. 7-2)

Overview of the data types supported
by the Signal Processing Blockset

Block Data Type Support Table
(p. 7-4)

A table that shows the data types
accepted on the data ports of each
Signal Processing Blockset block

Viewing Data Types of Signals In
Models (p. 7-13)

Enable data type labels of the signals
in a Simulink model

Correctly Defining Custom Data
Types (p. 7-14)

Define your own data types by
following the custom data types
guidelines

Boolean Support (p. 7-15) Learn about Signal Processing
Blockset blocks that accept or output
logical signals

7 Data Type Support

Supported Data Types and How to Convert to Them

Note All data type support applies to both simulation and Real-Time
Workshop C code generation. All Signal Processing Blockset blocks support
single- and double-precision floating point.

The following table lists all data types supported by the Signal Processing
Blockset, and how to convert to these data types. To see which data types
a particular block supports, see the “Supported Data Types” section in the
block’s reference page.

Supported Data Types and How to Convert to Them

Data Types
Supported
by Signal
Processing
Blockset Blocks

Commands and Blocks for
Converting Data Types Comments

Double-precision
floating point

• double

• Data Type Conversion block

Simulink built-in data type supported by
all Signal Processing Blockset blocks.

Single-precision
floating point

• single

• Data Type Conversion block

Simulink built-in data type supported by
all Signal Processing Blockset blocks.

Boolean • Data Type Conversion block Simulink built-in data type. To learn more,
see “Boolean Support” on page 7-15.

Integer (8-,16-,
or 32-bits)

• int8, int16, int32

• Data Type Conversion block

Simulink built-in data type

Unsigned integer
(8-,16-, or
32-bits)

• uint8, uint16, uint32

• Data Type Conversion block

Simulink built-in data type

7-2

Supported Data Types and How to Convert to Them

Supported Data Types and How to Convert to Them (Continued)

Data Types
Supported
by Signal
Processing
Blockset Blocks

Commands and Blocks for
Converting Data Types Comments

Fixed-point data
types

• Data Type Conversion block

• Simulink Fixed Point
num2fixpt function

• Functions and GUIs for
designing quantized filters
with the Filter Design
Toolbox (compatible with
Filter Realization Wizard
block)

To learn more about fixed-point data types
in the Signal Processing Blockset, see
Chapter 8, “Working with Fixed-Point
Data”.

Custom data
types

See “Correctly Defining Custom Data Types” on page 7-14 to learn about
custom data types.

7-3

7 Data Type Support

Block Data Type Support Table
The following table shows what data types are accepted on the main input
data ports of each Signal Processing Blockset block. If the block is a source,
the table shows what data types are accepted on the main output data ports
of each source block.

If the Double, Single, Boolean, and/or Custom Data Types columns are
populated by a x, the block supports those data types.

• If the Base Integer and/or Fixed-Point columns are populated with an s,
the block supports signed integers and/or fixed-point data types.

• If the Base Integer and/or Fixed-Point columns are populated with a u,
the block supports unsigned integers and/or fixed-point data types.

All blocks in the Signal Processing Blockset support code generation.

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

Analog Filter Design x

Analytic Signal x x

Autocorrelation x x s s

Autocorrelation LPC x x

Backward
Substitution

x x

Block LMS Filter x x

Buffer x x x s,u s x

Burg AR Estimator x x

Burg Method x x

Check Signal
Attributes

x x x s,u s x

Chirp x x

7-4

Block Data Type Support Table

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

Cholesky
Factorization

x x

Cholesky Inverse x x

Cholesky Solver x x

CIC Decimation s s

CIC Interpolation s s

Complex Cepstrum x x

Complex Exponential x x

Constant Diagonal
Matrix

x x s,u s,u

Constant Ramp x x s,u s,u

Convert 1-D to 2-D x x x s,u s,u x

Convert 2-D to 1-D x x x s,u s,u x

Convolution x x s s

Correlation x x s s

Counter x x x s,u

Covariance AR
Estimator

x x

Covariance Method x x

Create Diagonal
Matrix

x x x s,u s,u x

Cumulative Product x x s s

Cumulative Sum x x s s

Data Type Conversion Simulink block

dB Conversion x x

dB Gain x x s,u s,u

7-5

7 Data Type Support

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

DCT x x

Delay x x x s,u s,u x

Delay Line x x x s,u s,u x

Detrend x x

Difference x x s s

Digital Filter x x s s

Digital Filter Design x x

Discrete Impulse x x x s,u s,u

Display Simulink block

Downsample x x x s,u s,u x

DSP Constant x x x s,u s,u x

DWT x x

Dyadic Analysis Filter
Bank

x x

Dyadic Synthesis
Filter Bank

x x

Edge Detector x x x s,u s,u x

Event-Count
Comparator

x x x s,u s,u x

Extract Diagonal x x x s,u s,u x

Extract Triangular
Matrix

x x x s,u s,u x

Fast Block LMS Filter x x

FFT x x s s

Filter Realization
Wizard

x x s,u s,u

FIR Decimation x x s s

7-6

Block Data Type Support Table

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

FIR Interpolation x x s s

FIR Rate Conversion x x s s

Flip x x x s,u s,u x

Forward Substitution x x

Frame Conversion x x x s,u s x

From Wave Device x x s 16-bit
u 8-bit

From Wave File x x s 16-bit
u 8-bit

G711 Codec s 16-bit

Histogram x x s,u s,u

IDCT x x

Identity Matrix x x x s,u s,u x

IDWT x x

IFFT x x s s

Inherit Complexity x x x s,u s,u x

Interpolation x x

Inverse Short-Time
FFT

x x

Kalman Adaptive
Filter

x x

LDL Factorization x x

LDL Inverse x x

LDL Solver x x

Least Squares
Polynomial Fit

x x

Levinson-Durbin x x s s

7-7

7 Data Type Support

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

LMS Adaptive Filter x x

LMS Filter x x

LPC to LSF/LSP
Conversion

x x

LSF/LSP to LPC
Conversion

x x

LPC to/from Cepstral
Coefficients

x x

LPC to/from RC x x

LPC/RC to
Autocorrelation

x x

LU Factorization x x

LU Inverse x x

LU Solver x x

Magnitude FFT x x s s

Matrix 1-Norm x x s s

Matrix Concatenation Simulink block

Matrix Exponential x x

Matrix Multiply x x x s,u s,u

Matrix Product x x s,u s,u

Matrix Scaling x x s s

Matrix Square x x

Matrix Sum x x s,u s,u

Matrix Viewer x x x s,u s,u x

Maximum x x s,u s,u

Mean x x s s

7-8

Block Data Type Support Table

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

Median x x s,u s,u

Minimum x x s,u s,u

Modified Covariance
AR Estimator

x x

Modified Covariance
Method

x x

Multiphase Clock x x x

Multiport Selector x x x s,u s,u x

N-Sample Enable x x

N-Sample Switch x x x s,u s,u x

Normalization x x s s

Offset x x s s

Overlap-Add FFT
Filter

x x

Overlap-Save FFT
Filter

x x

Overwrite Values x x x s,u s,u x

Pad x x x s,u s,u x

Peak Finder x x s,u s,u

Periodogram x x

Permute Matrix x x x s,u s,u x

Polynomial
Evaluation

x x

Polynomial Stability
Test

x x

Pseudoinverse x x

QR Factorization x x

7-9

7 Data Type Support

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

QR Solver x x

Quantizer Simulink block

Queue x x x s,u s,u x

Random Source x x

Real Cepstrum x x

Reciprocal Condition x x

Repeat x x x s,u s,u x

RLS Adaptive Filter x x

RLS Filter x x

RMS x x

Sample and Hold x x x s,u s,u x

Scalar Quantizer
Decoder

s,u s,u

Scalar Quantizer
Design

x

Scalar Quantizer
Encoder

x x s s

Selector Simulink block

Short-Time FFT x x s s

Signal From
Workspace

x x s,u s,u

Signal To Workspace x x x s,u s,u x

Sine Wave x x s s

Singular Value
Decomposition

x x

Sort x x s,u s,u

Spectrum Scope x x x s,u s,u x

7-10

Block Data Type Support Table

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

Stack x x x s,u s,u x

Standard Deviation x x

Submatrix x x x s,u s,u x

SVD Solver x x

Time Scope Simulink block

Toeplitz x x x s,u s,u x

To Wave Device x x s 16-bit
u 8-bit

To Wave File x x s 16-bit
u 8-bit

Transpose x x x s,u s,u x

Triggered Delay Line x x x s,u s,u x

Triggered Signal From
Workspace

x x s,u s,u

Triggered To
Workspace

x x x s,u s,u x

Two-Channel Analysis
Subband Filter

x x s s

Two-Channel
Synthesis Subband
Filter

x x s s

Unbuffer x x x s,u s,u x

Uniform Decoder s,u

Uniform Encoder x x

Unwrap x x

Upsample x x x s,u s,u x

7-11

7 Data Type Support

Block Double Single Boolean
Base
Integer

Fixed-
Point

Custom
Data
Types

Variable Fractional
Delay

x x

Variable Integer Delay x x x s,u s,u x

Variable Selector x x x s,u s,u x

Variance x x s s

Vector Quantizer
Decoder

s,u s,u

Vector Quantizer
Design

x

Vector Quantizer
Encoder

x x s s

Vector Scope x x x s,u s,u x

Waterfall x x s,u s,u

Window Function x x s s

Yule-Walker AR
Estimator

x x

Yule-Walker Method x x

Zero Crossing x x s,u s,u

Zero Pad x x x s,u s x

7-12

Viewing Data Types of Signals In Models

Viewing Data Types of Signals In Models
You can enable data type labels of the signals in your model. In the model
window, from the Format menu, point to Port/Signal Displays, and select
Port Data Types. Now, the signal lines in the model have labels indicating
their data types. To see the labels, you may have to refresh the model
diagram. To do this, from the Edit menu, select Update Diagram.

Signal Lines Labeled with Their Data Types

7-13

7 Data Type Support

Correctly Defining Custom Data Types
Custom data types are user-defined data types. You must define your custom
data types by following the guidelines provided in the topic on custom data
types in the Writing S-Functions Simulink documentation. If you do not
follow the Simulink guidelines for creating custom data types, the Signal
Processing Blockset blocks may not properly support your custom data types.

7-14

Boolean Support

Boolean Support
Many Signal Processing Blockset blocks accept or output logical signals. All
such blocks support the Boolean data type at their appropriate ports:

• All block input ports that accept logical signals support the Boolean data
type.

• The default data type of all outputs that are logical signals is Boolean. You
can change this default setting and disable Boolean support as described in
“Effects of Enabling and Disabling Boolean Support” on page 7-17.

The following topics provide more information on Boolean data type support:

• “Advantages of Using the Boolean Data Type” on page 7-15

• “Lists of Blocks Supporting Boolean Inputs or Outputs” on page 7-15

• “Effects of Enabling and Disabling Boolean Support” on page 7-17

• “Steps to Disabling Boolean Support” on page 7-18

Advantages of Using the Boolean Data Type
Using the Boolean data type rather than floating-point data types speeds up
simulations and results in smaller, faster generated C code. For more on
generated code, see “Code Generation” in the Getting Started with Signal
Processing Blockset documentation.

Lists of Blocks Supporting Boolean Inputs or Outputs
The following blocks have reset ports that accept the Boolean data type:

Counter Minimum

Cumulative Product N-Sample Enable

Cumulative Sum N-Sample Switch

Delay RMS

Histogram Standard Deviation

7-15

7 Data Type Support

Maximum Variance

Mean

The following blocks have input ports that accept the Boolean data type:

Buffer Repeat

Check Signal Attributes Sample and Hold

Convert 1-D to 2-D Signal To Workspace

Convert 2-D to 1-D Spectrum Scope

Create Diagonal Matrix Stack

Delay Line Submatrix

Downsample Time Scope

Extract Triangular Matrix Toeplitz

Flip Transpose

Frame Conversion Triggered Delay Line

Identity Matrix Triggered To Workspace

Inherit Complexity Unbuffer

Matrix Viewer Upsample

Multiport Selector Variable Integer Delay

Overwrite Values Variable Selector

Pad Vector Scope

Permute Matrix Zero Pad

Queue

Some or all of the output ports of the following blocks support outputs with
the Boolean data type:

Buffer Multiport Selector

Check Signal Attributes N-Sample Enable

7-16

Boolean Support

Convert 1-D to 2-D Overwrite Values

Convert 2-D to 1-D Pad

Counter Permute Matrix

Create Diagonal Matrix Polynomial Stability Test

Delay Line Queue

Downsample Repeat

Edge Detector Sample and Hold

Event-Count Comparator Scalar Quantizer Encoder

Extract Diagonal Stack

Extract Triangular Matrix Submatrix

Flip Toeplitz

Frame Conversion Transpose

From Wave File Triggered Delay Line

Identity Matrix Unbuffer

Inherit Complexity Upsample

LPC to/from RC Variable Integer Delay

LPC to LSF/LSP Conversion Variable Selector

LU Factorization Zero Pad

Multiphase Clock

Effects of Enabling and Disabling Boolean Support
By default, Simulink enables Boolean support. When you leave Boolean
support enabled, all Boolean-supporting output ports always output the
Boolean data type.

In some cases, you may want to override the Simulink default and disable
Boolean support. For example, you may have a model that you created before
Boolean support existed. Leaving the Boolean support enabled in this model
may cause some blocks that used to output the double-precision data type to

7-17

7 Data Type Support

output the Boolean data type. If the introduction of the Boolean data type
breaks your model, you can fix the problem by disabling Boolean support.

The following table describes the effects of enabling and disabling
Boolean support. Note that when you disable Boolean support, some
Boolean-supporting output ports output double-precision data.

Type of
Boolean-Supporting
Output Port

Effect of Enabling Boolean
Support (Default)

Effect of Disabling Boolean
Support

• On a block with at least one
input port

• Did not support the Boolean
data type in versions of the
Signal Processing Blockset
before Version 5.0

(For example, the Edge
Detector block)

Output is always Boolean,
regardless of the input data
type.

• When input is double
precision, the output is also
double precision.

• When input is not double
precision, the output is
Boolean.

With a corresponding block
parameter for setting output
data type to Logical or
Boolean (for example, in the
N-Sample Enable block)

Output is always Boolean,
regardless of whether you set
the output port to Logical or
Boolean.

• When set to Logical, the
output is double precision.

• When set to Boolean, the
output is Boolean.

Steps to Disabling Boolean Support
To disable Boolean data type support in a particular model, clear the
Boolean-enabling configuration parameter in the model by completing the
following:

• “Step 1: Open the Configuration Parameters Dialog Box” on page 7-19

• “Step 2: Disable the Boolean Data Type in the Advanced Tab” on page 7-19

• “Step 3: (Optional) Verify Data Types of Signals” on page 7-20

7-18

Boolean Support

You can also set Simulink simulation preferences so that all new models you
create have Boolean support disabled. For more information, see “Setting
Simulink Preferences” in the Simulink Getting Started documentation.

Step 1: Open the Configuration Parameters Dialog Box
In the model for which you want to enable Boolean data type support, from the
Simulation menu, select Configuration Parameters. The Configuration
Parameters dialog box opens.

The following figure illustrates the Configuration Parameters dialog box with
the appropriate settings for signal processing simulations (note the discrete
Fixed-step solver setting).

Step 2: Disable the Boolean Data Type in the Advanced Tab
Open the Configuration Parameters dialog box. In the Select pane, click
Optimization. Clear the Implement logic signals as boolean data (vs.
double) check box. Click OK.

You have now disabled Boolean support in your model; for certain cases,
output ports that support the Boolean data type will output double-precision

7-19

7 Data Type Support

data rather than Boolean data, as explained in “Effects of Enabling and
Disabling Boolean Support” on page 7-17.

Step 3: (Optional) Verify Data Types of Signals
Check the data types of the signals in the model by turning on the automatic
labeling of signal data types (see “Viewing Data Types of Signals In Models”
on page 7-13). Some Boolean-supporting output ports might have output
signals labeled double rather than boolean, depending on whether the inputs

7-20

Boolean Support

to the block are double-precision (see “Effects of Enabling and Disabling
Boolean Support” on page 7-17).

If you do not see the data type labels after turning them on, you may have to
refresh the model diagram by selecting the Edit menu in your model and then
selecting Update diagram.

7-21

7 Data Type Support

7-22

8

Working with Fixed-Point
Data

Fixed-Point Signal Processing
Development (p. 8-3)

Discusses advantages of fixed-point
development in general and of
fixed-point support in the Signal
Processing Blockset in particular, as
well as lists common applications
of fixed-point signal processing
development

Blocks with Fixed-Point Support
(p. 8-6)

Lists the blocks in the Signal
Processing Blockset that currently
have fixed-point data type simulation
and code generation support

Concepts and Terminology (p. 8-8) Defines fixed-point concepts and
terminology that are helpful to know
as you use the Signal Processing
Blockset

Arithmetic Operations (p. 8-13) Describes the arithmetic operations
used by fixed-point Signal Processing
Blockset blocks, including operations
and casts that might invoke rounding
and overflow handling methods

Specifying Fixed-Point Attributes
(p. 8-22)

Teaches you how to specify
fixed-point attributes and
parameters in the Signal Processing
Blockset on both the block and
system levels

8 Working with Fixed-Point Data

Fixed-Point Filtering (p. 8-32) Discusses Signal Processing Blockset
filter blocks with fixed-point support

Interoperability with Other Products
(p. 8-34)

Discusses the interoperability of
the Signal Processing Blockset with
other fixed-point products from The
MathWorks

8-2

Fixed-Point Signal Processing Development

Fixed-Point Signal Processing Development
Many of the blocks in the Signal Processing Blockset have fixed-point support,
so you can design signal processing systems that use fixed-point arithmetic.
Fixed-point support in the Signal Processing Blockset includes

• Signed two’s complement and unsigned fixed-point data types

• Word lengths from 2 to 128 bits in simulation

• Word lengths from 2 to the size of a long on the Real-Time Workshop C
code-generation target

• Overflow handling and rounding methods

• C code generation for deployment on a fixed-point embedded processor,
with Real Time Workshop. The generated code uses all allowed data
types supported by the embedded target, and automatically includes all
necessary shift and scaling operations

Note To take full advantage of fixed-point support in the Signal Processing
Blockset, you must install Simulink Fixed Point.

Benefits of Fixed-Point Hardware
There are both benefits and trade-offs to using fixed-point hardware rather
than floating-point hardware for signal processing development. Many signal
processing applications require low-power and cost-effective circuitry, which
makes fixed-point hardware a natural choice. Fixed-point hardware tends to
be simpler and smaller. As a result, these units require less power and cost
less to produce than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality
and ease of development. Floating-point hardware can accurately represent
real-world numbers, and its large dynamic range reduces the risk of overflow,
quantization errors, and the need for scaling. In contrast, the smaller dynamic
range of fixed-point hardware that allows for low-power, inexpensive units
brings the possibility of these problems. Therefore, fixed-point development
must minimize the negative effects of these factors, while exploiting the

8-3

8 Working with Fixed-Point Data

benefits of fixed-point hardware; cost- and size-effective units, less power and
memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with the Signal
Processing Blockset
Simulating your fixed-point development choices before implementing them in
hardware saves time and money. The built-in fixed-point operations provided
by the Signal Processing Blockset save time in simulation and allow you to
generate code automatically.

The Signal Processing Blockset allows you to easily run multiple simulations
with different word length, scaling, overflow handling, and rounding
method choices to see the consequences of various fixed-point designs before
committing to hardware. The traditional risks of fixed-point development,
such as quantization errors and overflow, can be simulated and mitigated in
software before going to hardware.

Fixed-point C code generation with the Signal Processing Blockset and
Real-Time Workshop produces code ready for execution on a fixed-point
processor. All the choices you make in simulation with the Signal Processing
Blockset in terms of scaling, overflow handling, and rounding methods
are automatically optimized in the generated code, without necessitating
time-consuming and costly hand-optimized code. For more information on
generating fixed-point code, see “Code Generation” in the Simulink Fixed
Point User’s Guide documentation.

Fixed-Point Signal Processing Applications
Fixed-point support in the Signal Processing Blockset facilitates development
of a wide variety of signal processing applications:

• Wireless and broadband communications

- Cellular phones

- Radio

- Satellite communications

• Speech and audio processing

8-4

Fixed-Point Signal Processing Development

- Speech processing

- High-end audio processing

• Telephony

- Speech coding

- Dual tone multifrequency (DTMF)

- Echo cancellation

• Hand-held and battery-operated consumer electronics

- Digital recording devices

- Personal digital assistants (PDAs)

• Computer peripherals

• Radar and sonar

• Medical electronics

8-5

8 Working with Fixed-Point Data

Blocks with Fixed-Point Support
The following table lists all of the blocks in the Signal Processing Blockset
that support fixed-point data types in some or all modes. These blocks
are colored orange in the Signal Processing Blockset library. To take full
advantage of the fixed-point capabilities of the following blocks, you must
install Simulink Fixed Point.

Signal Processing Blockset Blocks with Fixed-Point Support

Autocorrelation Buffer Check Signal
Attributes

CIC Decimation

CIC Interpolation Constant Diagonal
Matrix

Constant Ramp Convert 1-D to 2-D

Convert 2-D to 1-D Convolution Correlation Counter

Create Diagonal
Matrix

Cumulative Product Cumulative Sum Data Type Conversion
(Simulink block)

dB Gain DCT Delay Delay Line

Difference Digital Filter Discrete Impulse Display (Simulink
block)

Downsample DSP Constant Edge Detector Event-Count
Comparator

Extract Diagonal Extract Triangular
Matrix

FFT Filter Realization
Wizard

FIR Decimation FIR Interpolation FIR Rate Conversion Flip

Frame Conversion G711 Codec Histogram IDCT

Identity Matrix IFFT Inherit Complexity Levinson-Durbin

LMS Filter Magnitude FFT Matrix-1 Norm Matrix Concatenation
(Simulink block)

Matrix Product Matrix Scaling Matrix Sum Matrix Viewer

Maximum Mean Median Minimum

Multiphase Clock Multiport Selector N-Sample Enable N-Sample Switch

Normalization Offset Overwrite Values Pad

8-6

Blocks with Fixed-Point Support

Signal Processing Blockset Blocks with Fixed-Point Support (Continued)

Peak Finder Permute Matrix Queue Repeat

Sample and Hold Scalar Quantizer
Decoder

Scalar Quantizer
Encoder

Selector (Simulink
block)

Short-Time FFT Signal From
Workspace

Signal To Workspace Sine Wave

Sort Spectrum Scope Stack Submatrix

Time Scope (Simulink
block)

Toeplitz Transpose Triggered Delay Line

Triggered Signal From
Workspace

Triggered To
Workspace

Two-Channel Analysis
Subband Filter

Two-Channel
Synthesis Subband
Filter

Unbuffer Upsample Variable Integer Delay Variable Selector

Variance Vector Quantizer
Decoder

Vector Quantizer
Encoder

Vector Scope

Waterfall Window Function Zero Crossing Zero Pad

8-7

8 Working with Fixed-Point Data

Concepts and Terminology
This section gives an overview of fixed-point concepts and terminology that
you might want to refer to as you take advantage of fixed-point support in the
Signal Processing Blockset:

• “Fixed-Point Data Types” on page 8-8

• “Scaling” on page 8-9

• “Precision and Range” on page 8-10

The Glossary on page 1 defines much of the vocabulary used in these sections.
For more information on these subjects, see the Simulink Fixed Point
documentation.

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. In this section, we discuss many terms and concepts relating to
fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

8-8

Concepts and Terminology

where

• is the ith binary digit.

• is the word length in bits.

• is the location of the most significant, or highest, bit (MSB).

• is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by the Signal Processing Blockset. See “Two’s
Complement” on page 8-14 for more information.

Scaling
Fixed-point numbers can be encoded according to the scheme

where the slope can be expressed as

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In the Signal Processing Blockset, the negative of the exponent is often
referred to as the fraction length.

8-9

8 Working with Fixed-Point Data

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in the Simulink Fixed Point’s [Slope Bias] representation that has a bias
equal to zero and a slope adjustment equal to one. This is referred to as
binary point-only scaling or power-of-two scaling:

or

In the Signal Processing Blockset, you can define a fixed-point data type
and scaling for the output or the parameters of many blocks by specifying
the word length and fraction length of the quantity. The Signal Processing
Blockset supports binary point-only scaling, so the whole of the data type and
scaling information is contained in these two quantities. This is in contrast to
Simulink Fixed Point, which supports [Slope Bias] scaling in its full generality.

Precision and Range
You must pay attention to the precision and range of the fixed-point data
types and scalings you choose for the blocks in your simulations, in order to
know whether rounding methods will be invoked or if overflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement
fixed-point number of word length wl, scaling S, and bias B is illustrated
below:

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

8-10

Concepts and Terminology

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl-1-1. Because there is only one
representation for zero, there are an unequal number of positive and negative
numbers. This means there is a representation for -2wl-1 but not for 2wl -1:

Overflow Handling. Because a fixed-point data type represents numbers
within a finite range, overflows can occur if the result of an operation is larger
or smaller than the numbers in that range.

The Signal Processing Blockset does not allow you to add guard bits to a data
type on-the-fly in order to avoid overflows. Any guard bits must be allocated
upon model initialization. However, the Signal Processing Blockset does allow
you to either saturate or wrap overflows. Saturation represents positive
overflows as the largest positive number in the range being used, and negative
overflows as the largest negative number in the range being used. Wrapping
uses modulo arithmetic to cast an overflow back into the representable range
of the data type. See “Modulo Arithmetic” on page 8-13 for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

8-11

8 Working with Fixed-Point Data

Rounding Methods. One of the limitations of representing numbers with
finite precision is that not every number in the available range can be
represented exactly. When the result of a fixed-point calculation is a number
that cannot be represented exactly by the data type and scaling being used,
precision is lost. A rounding method must be used to cast the result to a
representable number. The Signal Processing Blockset currently supports
Floor and Nearest rounding methods.

Floor, which is equivalent to truncation, rounds the output of a calculation to
the closest representable number in the direction of negative infinity.

Nearest rounds the output of a calculation to the closest representable
number, with the exact midpoint rounded to the closest representable number
in the direction of positive infinity.

8-12

Arithmetic Operations

Arithmetic Operations
The following sections describe the arithmetic operations used by fixed-point
Signal Processing Blockset blocks:

• “Modulo Arithmetic” on page 8-13

• “Two’s Complement” on page 8-14

• “Addition and Subtraction” on page 8-15

• “Multiplication” on page 8-16

• “Casts” on page 8-18

These sections will help you understand what data type and scaling choices
result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

8-13

8 Working with Fixed-Point Data

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s complement,
positive numbers always start with a 0 and negative numbers always start
with a 1. If the leading bit of a two’s complement number is 0, the value
is obtained by calculating the standard binary value of the number. If the
leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

8-14

Arithmetic Operations

2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

Next, add a 1, wrapping all numbers to 0 or 1:

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

8-15

8 Working with Fixed-Point Data

Most fixed-point Signal Processing Blockset blocks that perform addition cast
the adder inputs to an accumulator data type before performing the addition.
Therefore, no further shifting is necessary during the addition to line up the
binary points. See “Casts” on page 8-18 for more information.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication
in the Signal Processing Blockset. The diagrams illustrate the differences
between the data types used for real-real, complex-real, and complex-complex
multiplication. See individual reference pages in to determine whether a
particular block accepts complex fixed-point inputs.

In most cases, you can set the data types used during multiplication in the
block mask. See “Accumulator Parameters” on page 8-26, “Product Output
Parameters” on page 8-25, and “Output Parameters” on page 8-28. These data
types are defined in “Casts” on page 8-18.

8-16

Arithmetic Operations

Note The following diagrams show the use of fixed-point data types in
multiplication in the Signal Processing Blockset. They do not represent actual
subsystems used by the Signal Processing Blockset to perform multiplication.

Real-Real Multiplication. The following diagram shows the data types used
in the multiplication of two real numbers in the Signal Processing Blockset.
The output of this multiplication is in the product output data type:

Real-Complex Multiplication. The following diagram shows the data types
used in the multiplication of a real and a complex fixed-point number in the
Signal Processing Blockset. Real-complex and complex-real multiplication are
equivalent. The output of this multiplication is in the product output data
type:

8-17

8 Working with Fixed-Point Data

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers in the Signal Processing
Blockset. Note that the output of the multiplication is in the accumulator
data type:

Casts
Many fixed-point Signal Processing Blockset blocks that perform arithmetic
operations allow you to specify the accumulator, intermediate product, and
product output data types, as applicable, as well as the output data type of the
block. This section gives an overview of the casts to these data types, so that
you can tell if the data types you select will invoke sign extension, padding
with zeros, rounding, and/or overflow.

Casts to the Accumulator Data Type
For most fixed-point Signal Processing Blockset blocks that perform addition,
the addends are first cast to an accumulator data type. Most of the time, you
can specify the accumulator data type on the block mask. See “Accumulator
Parameters” on page 8-26. Since the addends are both cast to the same
accumulator data type before they are added together, no extra shift is
necessary to insure that their binary points align. The result of the addition
remains in the accumulator data type, with the possibility of overflow.

8-18

Arithmetic Operations

Casts to the Intermediate Product or Product Output Data Type
For Signal Processing Blockset blocks that perform multiplication, the output
of the multiplier is placed into a product output data type. Blocks that then
feed the product output back into the multiplier might first cast it to an
intermediate product data type. Most of the time, you can specify these data
types on the block mask. See “Intermediate Product Parameters” on page 8-24
and “Product Output Parameters” on page 8-25.

Casts to the Output Data Type
Many fixed-point Signal Processing Blockset blocks allow you to specify the
data type and scaling of the block output on the mask. Remember that the
Signal Processing Blockset does not allow mixed types on the input and output
ports of its blocks. Therefore, if you would like to specify a fixed-point output
data type and scaling for a Signal Processing Blockset block that supports
fixed-point data types, you must feed the input port of that block with a
fixed-point signal. The final cast made by a fixed-point Signal Processing
Blockset block is to the output data type of the block.

Note that although you can not mix fixed-point and floating-point signals on
the input and output ports of Signal Processing Blockset blocks, you can have
fixed-point signals with different word and fraction lengths on the ports of
blocks that support fixed-point signals.

Casting Examples
It is important to keep in mind the ramifications of each cast when selecting
these intermediate data types, as well as any other intermediate fixed-point
data types that are allowed by a particular block. Depending upon the data
types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

Casting from a Shorter Data Type to a Longer Data Type. Consider
the cast of a nonzero number, represented by a four-bit data type with two
fractional bits, to an eight-bit data type with seven fractional bits:

8-19

8 Working with Fixed-Point Data

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data
type, overflow might still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type. Consider the
cast of a nonzero number, represented by an eight-bit data type with seven
fractional bits, to a four-bit data type with two fractional bits:

8-20

Arithmetic Operations

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for the
highest bit from the source, so the result is sign extended to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter
data type, all the integer bits are maintained. Conversely, full precision can
be maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow might occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.

8-21

8 Working with Fixed-Point Data

Specifying Fixed-Point Attributes
The following sections describe how to set and monitor fixed-point settings
for Signal Processing Blockset blocks both on a block-by-block and on a
system-wide basis:

• “Setting Block Parameters” on page 8-22

• “Specifying System-Level Settings” on page 8-28

Setting Block Parameters
Blocks in the Signal Processing Blockset that have fixed-point support often
allow you to specify fixed-point characteristics through block parameters. In
many cases, such as with the accumulator and product output parameters,
specifying these parameters enables you to simulate your target hardware
more closely.

Note The fixed-point settings discussed in this section are ignored for
floating-point signals.

Most fixed-point parameters for Signal Processing Blockset blocks appear
when the Fixed-point tab is selected, for example on the Matrix Product
block dialog below.

8-22

Specifying Fixed-Point Attributes

Many of the Signal Processing Blockset blocks with fixed-point capabilities
share common parameters, though each block might have a different subset
of these fixed-point parameters. The following parameters are discussed in
this section:

• “Rounding Mode Parameter” on page 8-24

• “Overflow Mode Parameter” on page 8-24

• “Intermediate Product Parameters” on page 8-24

• “Product Output Parameters” on page 8-25

• “Accumulator Parameters” on page 8-26

• “Output Parameters” on page 8-28

For a discussion of all the parameters of a specific Signal Processing Blockset
block, refer to the block’s reference page in the Block Reference.

8-23

8 Working with Fixed-Point Data

Remember that the Signal Processing Blockset does not allow mixed
floating-point and fixed-point types on the input and output ports of its blocks.
Therefore, the parameters discussed in this section only take effect if you feed
the input port of that block with a fixed-point signal.

Rounding Mode Parameter
Use this parameter to specify the rounding method to be used when the result
of a fixed-point calculation does not map exactly to a number representable by
the data type and scaling that stores the result:

• Floor, which is equivalent to truncation, rounds the result of a calculation
to the closest representable number in the direction of negative infinity.

• Nearest rounds the result of a calculation to the closest representable
number, with the exact midpoint rounded to the closest representable
number in the direction of positive infinity.

Overflow Mode Parameter
Use this parameter to specify the method to be used if the magnitude of a
fixed-point calculation result does not fit into the range of the data type and
scaling that stores the result:

• Saturate represents positive overflows as the largest positive number
in the range being used, and negative overflows as the largest negative
number in the range being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable
range of the data type. See “Modulo Arithmetic” on page 8-13 for more
information.

Intermediate Product Parameters
Fixed-point Signal Processing Blockset blocks that feed multiplication results
back to the input of the multiplier usually allow you to specify the data type
and scaling of the intermediate product:

8-24

Specifying Fixed-Point Attributes

See the reference page of a specific block in to learn about the intermediate
product data type for a specific block.

Use the Intermediate product–Mode parameter to specify how you would
like to designate the intermediate product word and fraction lengths:

• When you select Same as input, these characteristics will match those of
the first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the intermediate product, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the intermediate product. The bias of all
signals in the Signal Processing Blockset is zero.

Product Output Parameters
Fixed-point Signal Processing Blockset blocks that must hold multiplication
results for further calculation usually allow you to specify the data type and
scaling of the product output:

See the reference page of a specific block in to learn about the product output
data type for a specific block. Note that for complex-complex multiplication,
the multiplication result is in the accumulator data type. See “Multiplication

8-25

8 Working with Fixed-Point Data

Data Types” on page 8-16 for more information on complex fixed-point
multiplication in the Signal Processing Blockset.

Use the Product output–Mode parameter to specify how you would like to
designate the product output word and fraction lengths:

• When you select Inherit via internal rule, the product output word
and fraction lengths will be automatically calculated for you. In general,
all the bits are preserved in the internal block algorithm for quantities
using this selection. That is, the product output word and fraction lengths
are selected such that

- No overflow occurs

- No precision loss occurs

- Rounding modes have no effect

Internal rule equations specific to each block are given in the block
reference pages.

• When you select Same as input, these characteristics will match those of
the first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. The bias of all signals
in the Signal Processing Blockset is zero.

Accumulator Parameters
Fixed-point Signal Processing Blockset blocks that must hold summation
results for further calculation usually allow you to specify the data type and
scaling of the accumulator. Most such blocks cast to the accumulator data
type prior to summation:

8-26

Specifying Fixed-Point Attributes

See the reference page of a specific block in for details on the accumulator
data type of a specific block.

Use the Accumulator–Mode parameter to specify how you would like to
designate the accumulator word and fraction lengths:

• When you select Inherit via internal rule, the accumulator output
word and fraction lengths will be automatically calculated for you. In
general, all the bits are preserved in the internal block algorithm for
quantities using this selection. That is, the accumulator word and fraction
lengths are selected such that

- No overflow occurs

- No precision loss occurs

- Rounding modes have no effect

Internal rule equations specific to each block are given in the block
reference pages.

• When you select Same as product output, these characteristics will
match those of the product output.

• When you select Same as input, these characteristics will match those of
the first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. The bias of all signals in
the Signal Processing Blockset is zero.

8-27

8 Working with Fixed-Point Data

Output Parameters
In many cases you can specify the output data type and scaling of fixed-point
Signal Processing Blockset blocks.

Use the Output–Mode parameter to choose how you will specify the word
length and fraction length of the output of the block:

• When you select Same as accumulator, these characteristics will match
those of the accumulator.

• When you select Same as product output, these characteristics will
match those of the product output.

• When you select Same as input, these characteristics will match those of
the first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. The bias of all signals in the
Signal Processing Blockset is zero.

Specifying System-Level Settings
You can monitor and control fixed-point settings for Signal Processing Blockset
blocks at a system or subsystem level via the Fixed-Point Settings interface.

Fixed-Point Settings Interface
Some fixed-point attributes of Signal Processing Blockset blocks can be
monitored or set at the system level via the Fixed-Point Settings interface.
For additional information on these subjects, see the following topics:

• The fxptdlg reference page — A reference page on the Fixed-Point
Settings interface in the Simulink documentation

• “Tutorial: Feedback Controller Simulation” — A tutorial that highlights
the use of the Fixed-Point Settings interface in the Simulink Fixed Point
documentation

8-28

Specifying Fixed-Point Attributes

Logging. The Fixed-Point Settings interface logs overflows and saturations
for fixed-point Signal Processing Blockset blocks. The Fixed-Point Settings
interface does not log overflows and saturations when the Data overflow line
in the Diagnostics > Data Integrity pane of the Configuration dialog is
set to None.

The Fixed-Point Settings interface also logs the simulation minimums and
maximums for certain fixed-point quantities of many Signal Processing
Blockset blocks. The blocks that currently support logging of simulation
minimums and maximums are:

• Autocorrelation

• Convolution

• Correlation

• Cumulative Product

• Cumulative Sum

• Difference

• Digital Filter

• FFT

• FIR Decimation

• FIR Interpolation

• FIR Rate Conversion

• IFFT

• Levinson-Durbin

• LMS Filter

• Magnitude FFT

• Matrix 1-Norm

• Matrix Product

• Matrix Scaling

• Matrix Sum

8-29

8 Working with Fixed-Point Data

• Maximum

• Mean

• Median

• Minimum

• Normalization

• Two-Channel Analysis Subband Filter

• Two-Channel Synthesis Subband Filter

• Variance

• Window Function

The minimums and maximums of the following quantities are logged for
the supported blocks:

• Product output(s)

• Accumulator(s)

• State

• Output(s)

• Stage input

• Stage output

• Tap sum

Autoscaling. You can use the Fixed-Point Settings interface autoscaling tool
to set the scaling for the following Signal Processing Blockset fixed-point
data types:

• Product output(s)

• Accumulator(s)

• State

• Output(s)

8-30

Specifying Fixed-Point Attributes

Note that autoscaling is only supported for blocks that log simulation
minimums and maximums.

Data type override. Signal Processing Blockset blocks obey the Use
local settings, True doubles, True singles, and Force off modes of
the Data type override parameter in the Fixed-Point Settings interface.
The Scaled doubles mode is also supported for Signal Processing Blockset
source and byte-shuffling blocks that support [Slope Bias] signals, but not
for arithmetic fixed-point Signal Processing Blockset blocks such as FFT or
Digital Filter.

8-31

8 Working with Fixed-Point Data

Fixed-Point Filtering
The following Signal Processing Blockset blocks enable you to design and/or
realize a variety of fixed-point filters:

• CIC Decimation

• CIC Interpolation

• Digital Filter

• Filter Realization Wizard

• FIR Decimation

• FIR Interpolation

• Two-Channel Analysis Subband Filter

• Two-Channel Synthesis Subband Filter

Filter Implementation Blocks
The FIR Decimation, FIR Interpolation, Two-Channel Analysis Subband
Filter, Two-Channel Synthesis Subband Filter, and Digital Filter blocks are
all implementation blocks. They allow you to implement filters for which you
already know the filter coefficients. The first four blocks each implement
their respective filter type, while the Digital Filter block can create a variety
of filter structures. All filter structures supported by the Digital Filter block
support fixed-point signals.

For more information on these filter implementation blocks, see their
reference pages in the Block Reference.

Filter Design and Implementation Blocks
The Filter Realization Wizard block invokes part of the Filter Design and
Analysis Tool from the Signal Processing Toolbox. This block allows you both
to design new filters and to implement filters for which you already know
the coefficients. In its implementation stage, the Filter Realization Wizard
creates a filter realization using Sum, Gain, and Delay blocks. You can use
this block to design and/or implement numerous types of fixed-point and
floating-point single-channel filters. See Chapter 3, “Filters” and the Filter

8-32

Fixed-Point Filtering

Realization Wizard reference page in the Block Reference more information
about this block.

The CIC Decimation and CIC Interpolation blocks allow you to design and
implement Cascaded Integrator-Comb filters. See their block reference pages
for more information.

8-33

8 Working with Fixed-Point Data

Interoperability with Other Products
The following tables compare the supported features of various fixed-point
products from The MathWorks:

• Fixed-Point Data Type Support on page 8-34

• Fixed-Point Scaling Support on page 8-36

• Fixed-Point Operations Support on page 8-37

• Fixed-Point Code Generation Support on page 8-37

Fixed-Point Data Type Support

Signal
Processing
Blockset
Fixed-Point

Filter Design
Toolbox

Simulink
Fixed-Point
Blocks Stateflow®

Custom
floating-point

Partial
support 1

Yes Yes
(simulation)

No
(code generation)

No

Signed two’s
complement
integer,
fractional, and
generalized
fixed-point
numbers

Yes Yes Yes Yes

8-34

Interoperability with Other Products

Fixed-Point Data Type Support (Continued)

Signal
Processing
Blockset
Fixed-Point

Filter Design
Toolbox

Simulink
Fixed-Point
Blocks Stateflow®

Unsigned
integer,
fractional, and
generalized
fixed-point
numbers

Partial
support 2

Yes Yes Yes

Data type
override

Partial
support via
the Fixed-Point
Settings
interface 3

Yes, via
the set function

Yes, via
the Fixed-Point
Settings
interface

No

1 Fixed-point Signal Processing Blockset blocks that only manipulate bits and
do not perform arithmetic operations accept custom floating-point inputs. The
source blocks Constant Diagonal Matrix and DSP Constant also allow you to
specify a custom floating-point output data type.

2 See the reference page of each fixed-point Signal Processing Blockset block
to determine whether it supports unsigned fixed-point signals.

3 Signal Processing Blockset blocks obey the Use local settings, True
doubles, True singles, and Force off modes of the Data type override
parameter in the Fixed-Point Settings interface. The Scaled doubles mode is
also supported for Signal Processing Blockset source and byte-shuffling blocks
that support [Slope Bias] signals, but not for other arithmetic fixed-point
Signal Processing Blockset blocks.

8-35

8 Working with Fixed-Point Data

Fixed-Point Scaling Support

Signal
Processing
Blockset
Fixed-Point

Filter Design
Toolbox

Simulink
Fixed-Point
Blocks Stateflow

[Slope Bias]
scaling

Partial
support 1

No Yes Yes

Binary
point-only
scaling

Yes Yes Yes Yes

Automatic
scaling

Yes, via the
Fixed-Point
Settings
interface

No Yes, via
the Fixed-Point
Settings
interface

No

1 Fixed-point Signal Processing Blockset blocks that only manipulate bits
and do not perform arithmetic operations accept [Slope Bias] signals with
nonpower-of-two slope and nonzero bias. The following source blocks also
allow you to specify a [Slope Bias] output signal: Constant Diagonal Matrix,
Discrete Impulse, DSP Constant, Identity Matrix, and Sine Wave. Blocks that
perform arithmetic operations require power-of-two slope and zero bias.

8-36

Interoperability with Other Products

Fixed-Point Operations Support

Signal
Processing
Blockset
Fixed-Point

Filter Design
Toolbox

Simulink
Fixed-Point
Blocks Stateflow

Rounding
methods

Floor, nearest Ceiling,
convergent,
fix, floor, round

Ceiling, floor,
nearest, zero

Offline
conversions are
rounded to
nearest

Online
conversions are
rounded to floor
or zero

Overflow
handling

Saturate, wrap Saturate, wrap Saturate, wrap Simulation
halts upon
overflow

Logging Yes, via the
Fixed-Point
Settings interface

No Yes, via
the Fixed-Point
Settings
interface

No

Fixed-Point Code Generation Support

Signal
Processing
Blockset
Fixed-Point

Filter Design
Toolbox

Simulink
Fixed-Point
Blocks Stateflow

C code
generation

Yes No Yes Yes

Building Models with Other Blocks
You can build models with fixed-point Signal Processing Blockset blocks that
include fixed-point and floating-point blocks both from the Signal Processing
Blockset and from other MathWorks products. The following sections discuss

8-37

8 Working with Fixed-Point Data

issues to keep in mind when connecting fixed-point Signal Processing Blockset
blocks to other types of blocks.

Connecting Fixed-Point and Floating-Point Blocks
Signal Processing Blockset blocks do not accept mixed floating-point and
fixed-point types on their input and output ports. Therefore, if you want a
Signal Processing Blockset block to have a fixed-point output data type, you
must feed the block with a fixed-point input signal.

To feed a Signal Processing Blockset block with a fixed-point signal from
another block that does not have fixed-point support, use the Simulink Data
Type Conversion block, as in the model below:

The Simulink Band-Limited White Noise block in the model does not allow you
to set a fixed-point output data type and scaling in its block mask. The Data
Type Conversion block, however, allows you to do so. The following shows the
mask parameter settings of the Data Type Conversion block in the model:

8-38

Interoperability with Other Products

Note that the Output scaling value parameter of the Data Type Conversion
block specifies a power-of-two scaling with 0 bias. This is a requirement for
fixed-point signals in the Signal Processing Blockset, as discussed in the next
section.

Similarly to the example above, you can feed the output of fixed-point Signal
Processing Blockset blocks to other blocks that do not accept fixed-point data
types by using the Data Type Conversion block.

Connecting Blocks with Different Scalings
Fixed-point signals in the Signal Processing Blockset must have a slope
adjustment of 1 and a bias of 0; that is, only power-of-two or binary point-only
scaling is accepted. You must make sure that any block that feeds the
input port of a fixed-point Signal Processing Blockset block specifies binary
point-only scaling for the output scaling of the block. Alternately, you can

8-39

8 Working with Fixed-Point Data

use the Simulink Data Type Conversion block between any two fixed-point
blocks of with different scalings.

8-40

9

Blocks — Categorical List

The Signal Processing Blockset contains the block libraries described in the
following list. Access the libraries with the Simulink Library Browser, which
you can open by typing simulink.

Note To find out about using blocks together for common signal processing
tasks, see Chapter 1, “Working with Signals”.

Select a library for a list of links to the online reference pages of its blocks.
(For an alphabetical reference to block reference pages, see Chapter 10,
“Blocks — Alphabetical List”.)

• “Estimation” on page 9-2

• “Filtering” on page 9-5

• “Math Functions” on page 9-8

• “Platform-Specific I/O” on page 9-12

• “Quantizers” on page 9-13

• “Signal Management” on page 9-15

• “Signal Operations” on page 9-18

• “Signal Processing Sinks” on page 9-20

• “Signal Processing Sources” on page 9-21

• “Statistics” on page 9-22

• “Transforms” on page 9-23

9 Blocks — Categorical List

Estimation
The following sublibraries reside in the Estimation library:

• “Linear Prediction” on page 9-2

• “Parametric Estimation” on page 9-3

• “Power Spectrum Estimation” on page 9-3

Linear Prediction
Blocks for linear prediction and working with linear prediction coefficients.

Autocorrelation LPC Determine coefficients of Nth-order
forward linear predictors

Levinson-Durbin Solve linear system of equations
using Levinson-Durbin recursion

LPC to LSF/LSP Conversion Convert linear prediction coefficients
(LPCs) to line spectral pairs (LSPs)
or line spectral frequencies (LSFs)

LPC to/from Cepstral Coefficients Convert linear prediction coefficients
(LPCs) to cepstral coefficients (CCs)
or cepstral coefficients to linear
prediction coefficients

LPC to/from RC Convert linear prediction coefficients
(LPCs) to reflection coefficients (RCs)
or reflection coefficients to linear
prediction coefficients

LPC/RC to Autocorrelation Convert linear prediction coefficients
(LPCs) or reflection coefficients
(RCs) to autocorrelation coefficients
(ACs)

LSF/LSP to LPC Conversion Convert line spectral frequencies
(LSFs) or line spectral pairs (LSPs)
to linear prediction coefficients
(LPCs)

9-2

Estimation

Parametric Estimation
Blocks for computing estimates of autoregressive model parameters using
various methods.

Burg AR Estimator Compute estimate of autoregressive
(AR) model parameters using Burg
method

Covariance AR Estimator Compute estimate of autoregressive
(AR) model parameters using
covariance method

Modified Covariance AR Estimator Compute estimate of autoregressive
(AR) model parameters using
modified covariance method

Yule-Walker AR Estimator Compute estimate of autoregressive
(AR) model parameters using
Yule-Walker method

Power Spectrum Estimation
Blocks for computing parametric and nonparametric spectral estimates using
various methods.

Burg Method Compute parametric spectral
estimate using Burg method

Covariance Method Compute parametric spectral
estimate using covariance method

Magnitude FFT Compute nonparametric estimate of
the spectrum using the periodogram
method

Modified Covariance Method Compute parametric spectral
estimate using modified covariance
method

9-3

9 Blocks — Categorical List

Periodogram Compute nonparametric estimate of
the spectrum

Yule-Walker AR Estimator Compute estimate of autoregressive
(AR) model parameters using
Yule-Walker method

9-4

Filtering

Filtering
The following sublibraries reside in the Filtering library:

• “Adaptive Filters” on page 9-5

• “Filter Designs” on page 9-5

• “Multirate Filters” on page 9-6

Adaptive Filters
Blocks for computing filter estimates of an input using various algorithms.

Block LMS Filter Compute filtered output, filter error,
and filter weights for a given input
and desired signal using Block LMS
adaptive filter algorithm

Fast Block LMS Filter Compute filtered output, filter error,
and filter weights for a given input
and desired signal using the Fast
Block LMS adaptive filter algorithm

Kalman Adaptive Filter Compute filter estimates for inputs
using Kalman adaptive filter
algorithm

LMS Filter Compute filtered output, filter
error, and filter weights for a given
input and desired signal using LMS
adaptive filter algorithm

RLS Filter Compute filtered output, filter
error, and filter weights for a given
input and desired signal using RLS
adaptive filter algorithm

Filter Designs
Blocks for designing and implementing various filters.

9-5

9 Blocks — Categorical List

Analog Filter Design Design and implement analog filters

Digital Filter Filter each channel of input over
time using static or time-varying
digital filter implementations

Digital Filter Design Design and implement digital FIR
and IIR filters

Filter Realization Wizard Construct filter realizations using
the Digital Filter block or the Sum,
Gain, and Delay blocks

Overlap-Add FFT Filter Implement overlap-add method of
frequency-domain filtering

Overlap-Save FFT Filter Implement overlap-save method of
frequency-domain filtering

Multirate Filters
Blocks for implementing various multirate filters.

CIC Decimation Decimate signal using Cascaded
Integrator-Comb filter

CIC Interpolation Interpolate signal using Cascaded
Integrator-Comb filter

Dyadic Analysis Filter Bank Decompose signals into subbands
with smaller bandwidths and slower
sample rates

Dyadic Synthesis Filter Bank Reconstruct signals from subbands
with smaller bandwidths and slower
sample rates

FIR Decimation Filter and downsample input signals

FIR Interpolation Upsample and filter input signals

FIR Rate Conversion Upsample, filter, and downsample
input signals

9-6

Filtering

Two-Channel Analysis Subband
Filter

Decompose signal into a
high-frequency subband and a
low-frequency subband

Two-Channel Synthesis Subband
Filter

Reconstruct signal from a
high-frequency subband and a
low-frequency subband

9-7

9 Blocks — Categorical List

Math Functions
The following sublibraries reside in the Math Functions library:

• “Math Operations” on page 9-8

• “Matrices and Linear Algebra” on page 9-8

• “Polynomial Functions” on page 9-11

Math Operations
Blocks for specialized math operations not provided in the Simulink math
library.

Complex Exponential Compute complex exponential
function

Cumulative Product Compute cumulative product of
channel, column, or row elements

Cumulative Sum Compute cumulative sum of channel,
column, or row elements

dB Conversion Convert magnitude data to decibels
(dB or dBm)

dB Gain Apply decibel gain

Difference Compute element-to-element
difference along rows or columns

Normalization Normalize input by its 2-norm or
squared 2-norm

Matrices and Linear Algebra
The following sublibraries reside in the Matrices and Linear Algebra
sublibrary:

• “Linear System Solvers” on page 9-9

• “Matrix Factorizations” on page 9-9

• “Matrix Inverses” on page 9-10

9-8

Math Functions

• “Matrix Operations” on page 9-10

Linear System Solvers
Blocks that solve the matrix equation AX = B for X using various methods.

Backward Substitution Solve UX=B for X when U is an
upper triangular matrix

Cholesky Solver Solve SX=B for X when S is square
Hermitian positive definite matrix

Forward Substitution Solve LX=B for X when L is lower
triangular matrix

LDL Solver Solve SX=B for X when S is square
Hermitian positive definite matrix

Levinson-Durbin Solve linear system of equations
using Levinson-Durbin recursion

LU Solver Solve AX=B for X when A is square
matrix

QR Solver Find minimum-norm-residual
solution to AX=B

SVD Solver Solve AX=B using singular value
decomposition

Matrix Factorizations
Blocks for factoring matrices using various methods.

Cholesky Factorization Factor square Hermitian positive
definite matrix into triangular
components.

LDL Factorization Factor square Hermitian positive
definite matrices into lower, upper,
and diagonal components

LU Factorization Factor square matrix into lower and
upper triangular components

9-9

9 Blocks — Categorical List

QR Factorization Factor rectangular matrix into
unitary and upper triangular
components

Singular Value Decomposition Factor matrix using singular value
decomposition

Matrix Inverses
Blocks for inverting matrices using various methods.

Cholesky Factorization Factor square Hermitian positive
definite matrix into triangular
components.

LDL Inverse Compute inverse of Hermitian
positive definite matrix using LDL
factorization

LU Inverse Compute inverse of square matrix
using LU factorization

Pseudoinverse Compute Moore-Penrose
pseudoinverse of matrix

Matrix Operations
Blocks for various matrix operations such as extracting the diagonal,
overwriting matrix values, and multiplying matrices.

Constant Diagonal Matrix Generate square, diagonal matrix

Create Diagonal Matrix Create square diagonal matrix from
diagonal elements

Extract Diagonal Extract main diagonal of input
matrix

Extract Triangular Matrix Extract lower or upper triangle from
input matrices

Identity Matrix Generate matrix with ones on the
main diagonal and zeros elsewhere

9-10

Math Functions

Matrix 1-Norm Compute the 1-norm of a matrix

Matrix Exponential Compute matrix exponential

Matrix Multiply Multiply or divide inputs

Matrix Product Multiply matrix elements along rows
or columns

Matrix Scaling Scale matrix rows or columns by
specified vector

Matrix Square Compute square of input matrix

Matrix Sum Sum matrix elements along rows or
columns

Overwrite Values Overwrite submatrix or subdiagonal
of input

Permute Matrix Reorder matrix rows or columns

Reciprocal Condition Compute reciprocal condition of
square matrix in the 1-norm

Submatrix Select subset of elements (submatrix)
from matrix input

Toeplitz Generate matrix with Toeplitz
symmetry

Transpose Compute matrix transpose

Polynomial Functions
Blocks for working with polynomials.

Least Squares Polynomial Fit Compute polynomial coefficients
that best fit input data in least
squares sense

Polynomial Evaluation Evaluate polynomial expression

Polynomial Stability Test Use Schur-Cohn algorithm to
determine whether all roots of input
polynomial are inside unit circle

9-11

9 Blocks — Categorical List

Platform-Specific I/O

Windows (WIN32)
Blocks for working with audio data in 32-bit Windows operating systems.

From Wave Device Read audio data from standard audio
device in real-time (32-bit Windows
operating systems only)

From Wave File Read audio data from Microsoft
Wave (.wav) file

To Wave Device Send audio data to standard audio
device in real-time (32-bit Windows
operating systems only)

To Wave File Write audio data to file in Microsoft
Wave (.wav) format (32-bit Windows
operating systems only)

9-12

Quantizers

Quantizers
Blocks for quantizing data.

G711 Codec Encode linear, pulse code modulation
(PCM) narrowband speech signals
using A-law or mu-law encoders.
Decode index values into quantized
output values using A-law or mu-law
decoders. Convert between A-law
and mu-law index values.

Scalar Quantizer Convert an input signal into a set of
quantized output values. Convert
an input signal into a set of index
values. Convert a set of index values
into a quantized output signal.

Scalar Quantizer Decoder Convert each index value into
quantized output value

Scalar Quantizer Design Start Scalar Quantizer Design Tool
(SQDTool) to design scalar quantizer
using Lloyd algorithm

Scalar Quantizer Encoder Encode each input value by
associating it with the index value of
a quantization region

Uniform Decoder Decode integer input into
floating-point output

Uniform Encoder Quantize and encode floating-point
input into integer output

Vector Quantizer Decoder Find vector quantizer codeword that
corresponds to a given, zero-based
index value

9-13

9 Blocks — Categorical List

Vector Quantizer Design Design vector quantizer using Vector
Quantizer Design Tool (VQDTool)

Vector Quantizer Encoder For a given input, find index
of nearest codeword based on
Euclidean or weighted Euclidean
distance measure

9-14

Signal Management

Signal Management
The following sublibraries reside in the Signal Management library:

• “Buffers” on page 9-15

• “Indexing” on page 9-15

• “Signal Attributes” on page 9-16

• “Switches and Counters” on page 9-16

Buffers
Blocks for changing the sample rate or frame rate of a signal by accumulating
input samples before outputting them.

Buffer Buffer input sequence to smaller or
larger frame size

Delay Line Rebuffer sequence of inputs with
one-sample shift

Queue Store inputs in FIFO register

Stack Store inputs into LIFO register.

Triggered Delay Line Buffer sequence of inputs into
frame-based output

Unbuffer Unbuffer input frame into sequence
of scalar outputs

Indexing
Blocks for manipulating the ordering of a signal such as selecting parts of
a signal or flipping a signal.

Flip Flip the input vertically or
horizontally

Multiport Selector Distribute arbitrary subsets of input
rows or columns to multiple output
ports

9-15

9 Blocks — Categorical List

Overwrite Values Overwrite submatrix or subdiagonal
of input

Submatrix Select subset of elements (submatrix)
from matrix input

Variable Selector Select subset of rows or columns
from input

Signal Attributes
Blocks for inspecting or modifying signal attributes such as frame status
and complexity.

Check Signal Attributes Generate error when input signal
does or does not match selected
attributes exactly

Convert 1-D to 2-D Reshape 1-D or 2-D input to a 2-D
matrix with specified dimensions

Convert 2-D to 1-D Convert 2-D matrix input to 1-D
vector

Frame Conversion Specify frame status of output signal

Inherit Complexity Change complexity of input to match
a reference signal

Switches and Counters
Blocks for performing an action when an event such as a threshold crossing in
the data occurs.

Counter Count up or down through specified
range of numbers

Edge Detector Detect transition from zero to a
nonzero value

Event-Count Comparator Detect threshold crossing of
accumulated nonzero inputs

9-16

Signal Management

Multiphase Clock Generate multiple binary clock
signals

N-Sample Enable Output ones or zeros for specified
number of sample times

N-Sample Switch Switch between two inputs after
specified number of sample periods

9-17

9 Blocks — Categorical List

Signal Operations
Blocks for performing operations on a signal.

Constant Ramp Generate ramp signal with length
based on input dimensions

Convolution Compute convolution of two inputs

Delay Delay discrete-time input by
specified number of samples or
frames

Downsample Resample input at lower rate by
deleting samples

Interpolation Interpolate values of real input
samples

Offset Truncate vectors by removing or
keeping beginning or ending values

Pad Alter input dimensions by padding
or truncating rows and/or columns

Peak Finder Determine whether each value of
input signal is local minimum or
maximum

Repeat Resample input at higher rate by
repeating values

Sample and Hold Sample and hold input signal

Triggered Signal From Workspace Import signal samples from
MATLAB workspace when triggered

Unwrap Unwrap signal phase

Upsample Resample input at higher rate by
inserting zeros

Variable Fractional Delay Delay input by time-varying
fractional number of sample periods

Variable Integer Delay Delay input by time-varying integer
number of sample periods

9-18

Signal Operations

Window Function Compute and/or apply window to
input signal

Zero Crossing Count number of times signal crosses
zero in a single time step

Zero Pad Alter input dimensions by
zero-padding (or truncating)
rows and/or columns

9-19

9 Blocks — Categorical List

Signal Processing Sinks
Various scopes and blocks for exporting signals to the MATLAB workspace.

Matrix Viewer Display matrices as color images

Signal To Workspace Write simulation data to array in
MATLAB workspace

Spectrum Scope Compute and display the
periodogram of each input signal

To Multimedia File Write video frames and/or audio
samples to multimedia file

Triggered To Workspace Write input sample to MATLAB
workspace when triggered

Vector Scope Display vector or matrix of
time-domain, frequency-domain, or
user-defined data

Waterfall View vectors of data over time

9-20

Signal Processing Sources

Signal Processing Sources
Blocks that generate discrete-time signals such as sine waves and uniform
random signals.

Chirp Generate swept-frequency cosine
(chirp) signal

Constant Diagonal Matrix Generate square, diagonal matrix

Discrete Impulse Generate discrete impulse

DSP Constant Generate discrete- or
continuous-time constant signal

From Multimedia File Read video frames and/or
audio samples from compressed
multimedia file

Identity Matrix Generate matrix with ones on the
main diagonal and zeros elsewhere

Multiphase Clock Generate multiple binary clock
signals

N-Sample Enable Output ones or zeros for specified
number of sample times

Random Source Generate randomly distributed
values

Signal From Workspace Import signal from MATLAB
workspace

Sine Wave Generate continuous or discrete sine
wave

9-21

9 Blocks — Categorical List

Statistics
Blocks for performing various statistical computations.

Autocorrelation Compute autocorrelation of vector
inputs

Correlation Compute cross-correlation of two
inputs

Detrend Remove linear trend from vectors

Histogram Generate histogram of input or
sequence of inputs

Maximum Find maximum values in an input or
sequence of inputs

Mean Find mean value of an input or
sequence of inputs

Minimum Find minimum values in an input or
sequence of inputs

RMS Compute root-mean-square (RMS)
value of an input or sequence of
inputs

Sort Sort input elements by value

Standard Deviation Find standard deviation of an input
or sequence of inputs

Variance Compute variance of an input or
sequence of inputs

9-22

Transforms

Transforms
Blocks for computing various transforms.

Analytic Signal Compute analytic signals of
discrete-time inputs

Complex Cepstrum Compute complex cepstrum of input

DCT Compute discrete cosine transform
(DCT) of input

DWT Compute discrete wavelet transform
(DWT) of input

FFT Compute fast Fourier transform
(FFT) of input

IDCT Compute inverse discrete cosine
transform (IDCT) of input

IDWT Compute inverse discrete wavelet
transform (IDWT) of input

IFFT Compute inverse fast Fourier
transform (IFFT) of input

Inverse Short-Time FFT Recover time-domain signals by
performing an inverse short-time,
fast Fourier transform (FFT)

Magnitude FFT Compute nonparametric estimate of
the spectrum using the periodogram
method

Real Cepstrum Compute real cepstrum of input

Short-Time FFT Compute nonparametric estimate of
the spectrum using short-time, fast
Fourier transform (FFT) method

9-23

9 Blocks — Categorical List

9-24

10

Blocks — Alphabetical List

Analog Filter Design

Purpose Design and implement analog filters

Library Filtering/ Filter Designs

Description The Analog Filter Design block designs and implements a Butterworth,
Chebyshev type I, Chebyshev type II, or elliptic filter in a highpass,
lowpass, bandpass, or bandstop configuration.

The input must be a sample-based scalar signal.

The design and band configuration of the filter are selected from the
Design method and Filter type pop-up menus in the dialog box.
For each combination of design method and band configuration, an
appropriate set of secondary parameters is displayed.

Filter Design Description

Butterworth The magnitude response of a Butterworth filter is maximally flat in the
passband and monotonic overall.

Chebyshev
type I

The magnitude response of a Chebyshev type I filter is equiripple in the
passband and monotonic in the stopband.

Chebyshev
type II

The magnitude response of a Chebyshev type II filter is monotonic in
the passband and equiripple in the stopband.

Elliptic The magnitude response of an elliptic filter is equiripple in both the
passband and the stopband.

The following table lists the available parameters for each design/band
combination. For lowpass and highpass band configurations, these
parameters include the passband edge frequency �p, the stopband edge
frequency �s, the passband ripple Rp, and the stopband attenuation Rs.
For bandpass and bandstop configurations, the parameters include the
lower and upper passband edge frequencies, �p1 and �p2, the lower and
upper stopband edge frequencies, �s1 and �s2, the passband ripple Rp,
and the stopband attenuation Rs. Frequency values are in rad/s, and
ripple and attenuation values are in dB.

10-2

Analog Filter Design

Lowpass Highpass Bandpass Bandstop

Butterworth Order, �p Order, �p Order, �p1, �p2 Order, �p1, �p2

Chebyshev
Type I

Order, �p, Rp Order, �p, Rp Order, �p1, �p2,
Rp

Order, �p1, �p2,
Rp

Chebyshev
Type II

Order, �s, Rs Order, �s, Rs Order, �s1, �s2,
Rs

Order, �s1, �s2,
Rs

Elliptic Order, �p, Rp, Rs Order, �p, Rp, Rs Order, �p1, �p2,
Rp, Rs

Order, �p1, �p2,
Rp, Rs

The analog filters are designed using the Signal Processing Toolbox’s
filter design commands buttap, cheb1ap, cheb2ap, and ellipap, and
are implemented in state-space form. Filters of order 8 or less are
implemented in controller canonical form for improved efficiency.

Dialog
Box

The parameters displayed in the dialog box vary for different
design/band combinations. Only some of the parameters listed below
are visible in the dialog box at any one time.

10-3

Analog Filter Design

Design method
The filter design method: Butterworth, Chebyshev type I,
Chebyshev type II, or Elliptic. Tunable.

Filter type
The type of filter to design: Lowpass, Highpass, Bandpass, or
Bandstop. Tunable.

Filter order
The order of the filter, for lowpass and highpass configurations.
For bandpass and bandstop configurations, the order of the final
filter is twice this value.

Passband edge frequency
The passband edge frequency, in rad/s, for the highpass and
lowpass configurations of the Butterworth, Chebyshev type I, and
elliptic designs. Tunable.

Lower passband edge frequency
The lower passband frequency, in rad/s, for the bandpass and
bandstop configurations of the Butterworth, Chebyshev type I,
and elliptic designs. Tunable.

Upper passband edge frequency
The upper passband frequency, in rad/s, for the bandpass and
bandstop configurations of the Butterworth, Chebyshev type I, or
elliptic designs. Tunable.

Stopband edge frequency
The stopband edge frequency, in rad/s, for the highpass and
lowpass band configurations of the Chebyshev type II design.
Tunable.

Lower stopband edge frequency
The lower stopband edge frequency, in rad/s, for the bandpass and
bandstop configurations of the Chebyshev type II design. Tunable.

Upper stopband edge frequency
The upper stopband edge frequency, in rad/s, for the bandpass and
bandstop filter configurations of the Chebyshev type II design.
Tunable.

10-4

Analog Filter Design

Passband ripple in dB
The passband ripple, in dB, for the Chebyshev Type I and elliptic
designs. Tunable.

Stopband attenuation in dB
The stopband attenuation, in dB, for the Chebyshev Type II and
elliptic designs. Tunable.

References Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd
ed. New York, NY: McGraw-Hill, 1993.

Supported
Data
Types

• Double-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Digital Filter Design Signal Processing Blockset

buttap Signal Processing Toolbox

cheb1ap Signal Processing Toolbox

cheb2ap Signal Processing Toolbox

ellipap Signal Processing Toolbox

See the following sections for related information:

• Chapter 3, “Filters”

• “Analog Filter Design Block” on page 3-51

10-5

Analytic Signal

Purpose Compute analytic signals of discrete-time inputs

Library Transforms

Description The Analytic Signal block computes the complex analytic signal
corresponding to each channel of the real M-by-N input, u

where and H{ } denotes the Hilbert transform. The real part
of the output in each channel is a replica of the real input in that
channel; the imaginary part is the Hilbert transform of the input. In
the frequency domain, the analytic signal retains the positive frequency
content of the original signal while zeroing-out negative frequencies
and doubling the DC component.

The block computes the Hilbert transform using an equiripple FIR
filter with the order specified by the Filter order parameter, n. The
linear phase filter is designed using the Remez exchange algorithm, and
imposes a delay of n/2 on the input samples.

The output has the same dimension and frame status as the input.

Sample-Based Operation

When the input is sample based, each of the M*N matrix elements
represents an independent channel. Thus, the block computes the
analytic signal for each channel (matrix element) over time.

Frame-Based Operation

When the input is frame based, each of the N columns in the matrix
contains M sequential time samples from an independent channel, and
the block computes the analytic signal for each channel over time.

10-6

Analytic Signal

Dialog
Box

Filter order
The length of the FIR filter used to compute the Hilbert transform.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-7

Autocorrelation

Purpose Compute autocorrelation of vector inputs

Library Statistics

Description The Autocorrelation block computes the autocorrelation of each channel
in an input matrix or vector, u. The block computes the autocorrelation
along each column of a frame-based input, and computes along the
vector dimension of a sample-based vector input. The block does not
accept sample-based matrix inputs. Outputs are always sample based.

M-by-N matrix inputs must be frame based. The result, y, is a
sample-based (l+1)-by-N matrix whose jth column has elements

where * denotes the complex conjugate, and l represents the maximum
lag. Note that y1,j is the zero-lag element in the jth column. When you
select Compute all non-negative lags, l=M. Otherwise, l is specified
as a nonnegative integer by the Maximum non-negative lag (less
than input length) parameter.

Input u is zero when indexed outside of its valid range. When the input
is real, the output is real; otherwise, the output is complex.

When the input is a sample-based vector (row, column, or 1-D), the
output is sample based, with the same shape as the input and length
l+1. The block computes the autocorrelation of sample-based vector
inputs along the vector dimensions. The Autocorrelation block does not
accept a sample-based full-dimension matrix input.

The Autocorrelation block accepts both real and complex fixed-point
and floating-point inputs. Fixed-point signals are not supported for the
frequency domain.

Fixed-Point Data Types

The following diagram shows the data types used within the
Autocorrelation block for fixed-point signals (time domain only).

10-8

Autocorrelation

You can set the product output, accumulator, and output data types in
the block dialog as discussed below.

The output of the multiplier is in the product output data type
when the input is real. When the input is complex, the result of the
multiplication is in the accumulator data type. For details on the
complex multiplication performed, refer to “Multiplication Data Types”
on page 8-16.

10-9

Autocorrelation

Dialog
Box

The Main pane of the Autocorrelation block dialog appears as follows:

Compute all non-negative lags
Select to compute the autocorrelation over all nonnegative lags in
the range [0, length(input)-1].

Maximum non-negative lag (less than input length)
Specify the maximum positive lag, l, for the autocorrelation. This
parameter is enabled when you do not select the Compute all
non-negative lags check box.

Scaling
This parameter controls the scaling that is applied to the output.
The following options are available:

10-10

Autocorrelation

• None — Generates the raw autocorrelation, yi,j, without
normalization

• Biased — Generates the biased estimate of the autocorrelation

• Unbiased — Generates the unbiased estimate of the
autocorrelation

• Unity at zero-lag — Normalizes the estimate of the
autocorrelation for each channel so that the zero-lag sum is
identically 1

Note The Scaling parameter must be set to None for fixed-point
signals.

This parameter is tunable, except in the Simulink external mode.

Computation domain
This parameter sets the domain in which the block computes
convolutions to one of the following settings:

• Time — Computes in the time domain, which minimizes
memory use

• Frequency — Computes in the frequency domain, which
might require fewer computations than computing in the time
domain, depending on the input length

10-11

Autocorrelation

Note This parameter must be set to Time for fixed-point
signals.

The Fixed-point pane of the Autocorrelation block dialog appears as
follows:

Note Fixed-point signals are only supported for the time domain. To
use the parameters on this pane, make sure Time is selected for the
Computation domain parameter on the Main pane.

10-12

Autocorrelation

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-8 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

10-13

Autocorrelation

Accumulator

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and
fraction lengths resulting from a complex-complex multiplication
in the block. Refer to “Multiplication Data Types” on page 8-16 for
more information.

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

If the input is real:

If the input is complex:

10-14

Autocorrelation

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and the block input is complex.
In that case, the output word length will be one less than the
accumulator word length.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

10-15

Autocorrelation

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Correlation Signal Processing Blockset

xcorr Signal Processing Toolbox

10-16

Autocorrelation LPC

Purpose Determine coefficients of Nth-order forward linear predictors

Library Estimation / Linear Prediction

Description The Autocorrelation LPC block determines the coefficients of an N-step
forward linear predictor for the time-series in length-M input vector, u,
by minimizing the prediction error in the least squares sense. A linear
predictor is an FIR filter that predicts the next value in a sequence from
the present and past inputs. This technique has applications in filter
design, speech coding, spectral analysis, and system identification.

The Autocorrelation LPC block can output the prediction error as
polynomial coefficients, reflection coefficients, or both. It can also output
the prediction error power. The length-M input, u, can be a scalar, 1-D
vector, frame- or sample-based column vector, or a sample-based row
vector. Frame-based row vectors are not valid inputs.

When you select Inherit prediction order from input dimensions,
the prediction order, N, is inherited from the input dimensions.
Otherwise, you can use the Prediction order parameter to specify
the value of N. Note that N must be less than the length of the input
vector or the block produces an error.

When Output(s) is set to A, port A is enabled. Port A outputs an
(N+1)-by-1 column vector, a = [1 a2 a3 ... aN+1]

T, containing the
coefficients of an Nth-order moving average (MA) linear process that
predicts the next value, ûM+1, in the input time-series.

ˆ ...u a u a u a uM M M N M N+ − + − += −() − () − − ()1 2 3 1 1 1

When Output(s) is set to K, port K is enabled. Port K outputs a length-N
column vector whose elements are the prediction error reflection
coefficients. When Output(s) is set to A and K, both port A and K are
enabled, and each port outputs its respective column vector of prediction
coefficients. The outputs at both port A and K are always 1-D vectors.

When you select Output prediction error power (P), port P is
enabled. The prediction error power, a scalar, is output at port P.

10-17

Autocorrelation LPC

Algorithm The Autocorrelation LPC block computes the least squares solution to

where indicates the 2-norm and

Solving the least squares problem via the normal equations

leads to the system of equations

where r = [r1 r2 r3 ... rn+1]
T is an autocorrelation estimate for u computed

using the Autocorrelation block, and * indicates the complex conjugate
transpose. The normal equations are solved in O(n2) operations by the
Levinson-Durbin block.

10-18

Autocorrelation LPC

Note that the solution to the LPC problem is very closely related to
the Yule-Walker AR method of spectral estimation. In that context,
the normal equations above are referred to as the Yule-Walker AR
equations.

Dialog
Box

Output(s)
The type of prediction coefficients output by the block. The block
can output polynomial coefficients (A), reflection coefficients (K),
or both (A and K).

Output prediction error power (P)
When selected, enables port P, which outputs the output
prediction error power.

Inherit prediction order from input dimensions
When selected, the block inherits the prediction order from the
input dimensions.

Prediction order (N)
The prediction order, N. This parameter is disabled when you
select the Inherit prediction order from input dimensions
parameter.

10-19

Autocorrelation LPC

References Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996.

Ljung, L. System Identification: Theory for the User. Englewood Cliffs,
NJ: Prentice Hall, 1987. Pgs. 278-280.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation Signal Processing Blockset

Levinson-Durbin Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

lpc Signal Processing Toolbox

10-20

Backward Substitution

Purpose Solve UX=B for X when U is an upper triangular matrix

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The Backward Substitution block solves the linear system UX=B
by simple backward substitution of variables, where U is the upper
triangular M-by-M matrix input to the U port, and B is the M-by-N
matrix input to the B port. The output is the solution of the equations,
the M-by-N matrix X, and is always sample based. The block does not
check the rank of the inputs.

The block uses only the elements in the upper triangle of input U; the
lower elements are ignored. When you select the Force input to be
unit-upper triangular check box, the block replaces the elements on
the diagonal of U with 1’s. This is useful when matrix U is the result
of another operation, such as an LDL decomposition, that uses the
diagonal elements to represent the D matrix.

A length-M vector input at port B is treated as an M-by-1 matrix.

Dialog
Box

Force input to be unit-upper triangular
Replaces the elements on the diagonal of U with 1’s when selected.
Tunable.

10-21

Backward Substitution

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Solver Signal Processing Blockset

Forward Substitution Signal Processing Blockset

LDL Solver Signal Processing Blockset

Levinson-Durbin Signal Processing Blockset

LU Solver Signal Processing Blockset

QR Solver Signal Processing Blockset

See “Solving Linear Systems” on page 6-7 for related information.

10-22

Biquadratic Filter

Purpose Apply a cascade of biquadratic (second-order section) filters to the input.

Library dspobslib

Description
Note The Biquadratic Filter block is still supported but is likely to be
obsoleted in a future release. We strongly recommend replacing this
block with the Digital Filter block.

The Biquadratic Filter block applies a cascade of biquadratic filters
independently to each input channel. Biquadratic filters are useful
for reduced precision implementations because the coefficients are
bounded between ±2 for typical minimum-phase designs. This may
reduce scaling and coefficient sensitivity problems.

The filter is constructed from L second-order sections, each having a
quadratic numerator and denominator.

The figure below illustrates the structure of a 4th-order biquadratic
filter (L=2) with states vik, where k is the section number.

10-23

Biquadratic Filter

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The SOS matrix parameter specifies the filter coefficients as a
second-order section matrix of the type produced by the ss2sos and
tf2sos functions in the Signal Processing Toolbox.

b b b a a a
b b b a a a

b b b a a aL L L L L

11 21 31 11 21 31

12 22 32 12 22 32

1 2 3 1 2

� � � � � �

33

11 12 1

L

La a a

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= = =...

This is an L-by-6 matrix whose rows contain the numerator and
denominator coefficients bik and aik of each second-order section in
H(z). Use the ss2sos and tf2sos functions to convert a state-space or
transfer-function description of the filter into the second-order section
description used by this block. Note that the filter uses a value of 1 for

10-24

Biquadratic Filter

the zero-delay denominator coefficients (a11 to a1L) regardless of the
value specified in the SOS matrix parameter.

The Initial conditions parameter sets the initial filter states, and can
be specified in the following different forms:

• Scalar to be used for all filter states (v11, v12, ..., v1L, v21 v22, ..., v2L) in
all channels. An empty vector, [], is the same as the scalar value 0.

• Vector of length 2*L (row or column) to initialize the filter states for
all channels.

Each pair of elements specifies v1k and v2k for second-order section
k in every channel.

• Matrix of dimension (2*L)-by-N containing the initial filter states for
each of the N channels.

Each pair of elements in a column specifies v1k and v2k for
second-order section k of the corresponding channel.

10-25

Biquadratic Filter

Dialog
Box

SOS matrix
The second-order section matrix specifying the filter’s coefficients.
This matrix can be generated from state-space or transfer-function
descriptions by using the Signal Processing Toolbox functions
ss2sos and tf2sos.

Initial conditions
The filter’s initial conditions, a scalar, vector, or matrix.

10-26

Block LMS Filter

Purpose Compute filtered output, filter error, and filter weights for a given input
and desired signal using Block LMS adaptive filter algorithm

Library Filtering / Adaptive Filters

Description The Block LMS Filter block implements an adaptive least mean-square
(LMS) filter, where the adaptation of filter weights occurs once for every
block of samples. The block estimates the filter weights, or coefficients,
needed to minimize the error, e(n), between the output signal, y(n),
and the desired signal, d(n). Connect the signal you want to filter to
the Input port. This input signal can be a sample-based scalar or a
single-channel frame-based signal. Connect the signal you want to
model to the Desired port. The desired signal must have the same data
type, frame status, complexity, and dimensions as the input signal.
The Output port outputs the filtered input signal, which can be sample
or frame based. The Error port outputs the result of subtracting the
output signal from the desired signal.

The block calculates the filter weights using the Block LMS adaptive
filter algorithm. This algorithm is defined by the following equations.

The weight update function for the Block LMS adaptive filter algorithm
is defined as

The variables are as follows.

10-27

Block LMS Filter

Variable Description

n The current time index

i The iteration variable in each block,

k The block number

N The block size

u(n) The vector of buffered input samples at step n

w(n) The vector of filter-tap estimates at step n

y(n) The filtered output at step n

e(n) The estimation error at time n

d(n) The desired response at time n

µ The adaptation step size

Use the Filter length parameter to specify the length of the filter
weights vector.

The Block size parameter determines how many samples of the input
signal are acquired before the filter weights are updated. The input
frame length must be a multiple of the Block size parameter.

The adaptation Step-size (mu) parameter corresponds to µ in the
equations. You can either specify a step-size using the input port,
Step-size, or enter a value in the Block Parameters: Block LMS Filter
dialog box.

Use the Leakage factor (0 to 1) parameter to specify the leakage
factor, , in the leaky LMS algorithm shown below.

Enter the initial filter weights as a vector or a scalar in the Initial
value of filter weights text box. When you enter a scalar, the block
uses the scalar value to create a vector of filter weights. This vector

10-28

Block LMS Filter

has length equal to the filter length and all of its values are equal to
the scalar value

When you select the Adapt port check box, an Adapt port appears on
the block. When the input to this port is greater than zero, the block
continuously updates the filter weights. When the input to this port is
zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial
values, use the Reset input parameter. The block resets the filter
weights whenever a reset event is detected at the Reset port. The reset
signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To
enable the Reset port, select one of the following from the Reset input
list:

• Rising edge — Triggers a reset operation when the Reset input
does one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure).

• Falling edge — Triggers a reset operation when the Reset input
does one of the following:

- Falls from a positive value to a negative value or zero

10-29

Block LMS Filter

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Reset input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Reset input is not zero

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Select the Output filter weights check box to create a Wts port on the
block. For each iteration, the block outputs the current updated filter
weights from this port.

10-30

Block LMS Filter

Dialog
Box

Filter length
Enter the length of the FIR filter weights vector.

Block size
Enter the number of samples to acquire before the filter weights
are updated. The input frame length must be an integer multiple
of the block size.

10-31

Block LMS Filter

Specify step-size via
Select Dialog to enter a value for mu in the Block parameters:
LMS Filter dialog box. Select Input port to specify mu using
the Step-size input port.

Step-size (mu)
Enter the step-size. Tunable.

Leakage factor (0 to 1)
Enter the leakage factor, . Tunable.

Initial value of filter weights
Specify the initial values of the FIR filter weights.

Adapt port
Select this check box to enable the Adapt input port.

Reset input
Select this check box to enable the Reset input port.

Output filter weights
Select this check box to export the filter weights from the Wts port.

References Hayes, M. H. Statistical Digital Signal Processing and Modeling. New
York: John Wiley & Sons, 1996.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

Desired • Double-precision floating point

• Single-precision floating point

Step-size • Double-precision floating point

• Single-precision floating point

10-32

Block LMS Filter

Port Supported Data Types

Adapt • Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Reset • Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

Error • Double-precision floating point

• Single-precision floating point

Wts • Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Fast Block LMS Filter Signal Processing Blockset

Kalman Adaptive Filter Signal Processing Blockset

10-33

Block LMS Filter

LMS Filter Signal Processing Blockset

RLS Filter Signal Processing Blockset

See “Adaptive Filters” on page 3-53 for related information.

10-34

Buffer

Purpose Buffer input sequence to smaller or larger frame size

Library Signal Management / Buffers

Description The Buffer block redistributes the input samples to a new frame size,
larger or smaller than the input frame size. Buffering to a larger
frame size yields an output with a slower frame rate than the input, as
illustrated below for scalar input.

Buffering to a smaller frame size yields an output with a faster frame
rate than the input, as illustrated below for scalar output.

The block coordinates the output frame size and frame rate of
nonoverlapping buffers so that the sample period of the signal is the
same at both the input and output, Tso = Tsi.

This block supports triggered subsystems when the block’s input and
output rates are the same.

Sample-Based Operation

Sample-based inputs are interpreted by the Buffer block as independent
channels of data. Thus, a sample-based length-N vector input is
interpreted as N independent samples.

10-35

Buffer

In sample-based operation, the Buffer block creates frame-based
outputs from sample-based inputs. A sequence of sample-based
length-N vector inputs (1-D, 2-D row, or 2-D column) is buffered into
an Mo-by-N matrix, where Mo is specified by the Output buffer size
parameter (Mo>1). That is, each input vector becomes a row in the
N-channel frame-based output matrix. When Mo=1, the input is simply
passed through to the output, and retains the same dimension.

Sample-based full-dimension matrix inputs are not accepted.

The Buffer overlap parameter, L, specifies the number of samples
(rows) from the current output to repeat in the next output, where L
< Mo. For 0 ≤L < Mo, the number of new input samples that the block
acquires before propagating the buffered data to the output is the
difference between the Output buffer size and Buffer overlap, Mo-L.

The output frame period is (Mo-L)*Tsi, which is equal to the input
sequence sample period, Tsi, when the Buffer overlap is Mo-1. For L
< 0, the block simply discards L input samples after the buffer fills,
and outputs the buffer with period (Mo-L)*Tsi, which is longer than
the zero-overlap case.

In the model below, the block buffers a four-channel sample-based input
using a Output buffer size of 3 and a Buffer overlap of 1.

10-36

Buffer

Notice that the input vectors do not begin appearing at the output until
the second row of the second matrix. This is due to the block’s latency.
The first output matrix (all zeros in this example) reflects the block’s
Initial conditions setting, while the first row of zeros in the second
output is a result of the one-sample overlap between consecutive output
frames.

You can use the rebuffer_delay function with a frame size of 1 to
precisely compute the delay (in samples) for sample-based signals. For
the previous example,

d = rebuffer_delay(1,3,1)
d =

4

This agrees with the four samples of delay (zeros) per channel shown in
the previous figure.

Frame-Based Operation

In frame-based operation, the Buffer block redistributes the samples
in the input frame to an output frame with a new size and rate. A

10-37

Buffer

sequence of Mi-by-N matrix inputs is buffered into a sequence of
Mo-by-N frame-based matrix outputs, where Mo is the output frame size
specified by the Output buffer size parameter (that is, the number
of consecutive samples from the input frame to buffer into the output
frame). Mo can be greater or less than the input frame size, Mi. Each of
the N input channels is buffered independently.

The Buffer overlap parameter, L, specifies the number of samples
(rows) from the current output to repeat in the next output, where L <
Mo. For 0 ≤L < Mo, the number of new input samples the block acquires
before propagating the buffered data to the output is the difference
between the Output buffer size and Buffer overlap, Mo-L.

The input frame period is Mi*Tsi, where Tsi is the sample period. The
output frame period is (Mo-L)*Tsi, which is equal to the sequence sample
period when the Buffer overlap is Mo-1. The output sample period is
therefore related to the input sample period by

Negative Buffer overlap values are not permitted.

In the model below, the block buffers a two-channel frame-based input
using a Output buffer size of 3 and a Buffer overlap of 1.

10-38

Buffer

Notice that the sequence is delayed by eight samples, which is the
latency of the block in the Simulink multitasking mode for the
parameter settings of this example. The first eight output samples
therefore adopt the value specified for the Initial conditions, which is
assumed here to be zero. Use the rebuffer_delay function to determine
the block’s latency for any combination of frame size and overlap.

Zero Latency

In the Simulink single tasking mode, the Buffer block has zero tasking
latency (the first input sample, received at t=0, appears as the first
output sample) for the following special cases:

• Scalar input and output (Mo = Mi = 1) with zero or negative Buffer
overlap (L ≤0)

• Input frame size is integer multiple of the output frame size (Mi =
kMo, for k an integer) with zero Buffer overlap (L = 0); notable
cases of this include

- Any input frame size Mi with scalar output (Mo = 1) and zero
Buffer overlap (L = 0)

- Equal input and output frame sizes (Mo = Mi) with zero Buffer
overlap (L = 0)

Nonzero Latency

• “Sample-Based Operation” on page 10-39

• “Frame-Based Operation” on page 10-40

Sample-Based Operation

For all cases of sample-based single-tasking operation other than those
listed above, the Buffer block’s buffer is initialized to the value(s)
specified by the Initial conditions parameter, and the block reads
from this buffer to generate the first D output samples, where

10-39

Buffer

When the Buffer overlap, L, is zero, the Initial conditions parameter
can be a scalar to be repeated across the first Mo output samples, or a
length-Mo vector containing the values of the first Mo output samples.
For nonzero Buffer overlap, the Initial conditions parameter must
be a scalar.

Frame-Based Operation

For frame-based single-tasking operation and all multitasking
operation, use the rebuffer_delay function to compute the exact delay
(in samples) that the Buffer block introduces for a given combination
of buffer size and buffer overlap.

For general buffering between arbitrary frame sizes, the Initial
conditions parameter must be a scalar value, which is then repeated
across all elements of the initial output(s). However, in the special
case where the input is 1-by-N (and the block’s output is therefore an
Mo-by-N matrix), Initial conditions can be

• An Mo-by-N matrix

• A length-Mo vector to be repeated across all columns of the initial
output(s)

• A scalar to be repeated across all elements of the initial output(s)

In the special case where the output is 1-by-N (the result of unbuffering
an Mi-by-N frame-based matrix), Initial conditions can be

• A vector containing Mi samples to output sequentially for each
channel during the first Mi sample times

• A scalar to be repeated across all elements of the initial output(s)

10-40

Buffer

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56
and “Models with Multiple Sample Rates” in the Real-Time Workshop
User’s Guide documentation.

Dialog
Box

Output buffer size
The number of consecutive samples, Mo, from each channel to
buffer into the output frame.

Buffer overlap
The number of samples, L, by which consecutive output frames
overlap.

Initial conditions
The value of the block’s initial output for cases of nonzero latency;
a scalar, vector, or matrix.

10-41

Buffer

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Delay Line Signal Processing Blockset

Unbuffer Signal Processing Blockset

rebuffer_delay Signal Processing Blockset

See “Converting Sample and Frame Rates” on page 2-12 and
“Converting Frame Status” on page 2-33 for more information.

10-42

Burg AR Estimator

Purpose Compute estimate of autoregressive (AR) model parameters using Burg
method

Library Estimation / Parametric Estimation

Description The Burg AR Estimator block uses the Burg method to fit an
autoregressive (AR) model to the input data by minimizing (least
squares) the forward and backward prediction errors while constraining
the AR parameters to satisfy the Levinson-Durbin recursion.

The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only) representing a frame of consecutive time samples
from a single-channel signal, which is assumed to be the output of an
AR system driven by white noise. The block computes the normalized
estimate of the AR system parameters, A(z), independently for each
successive input frame.

When you select the Inherit estimation order from input
dimensions parameter, the order, p, of the all-pole model is one less
that the length of the input vector. Otherwise, the order is the value
specified by the Estimation order parameter.

The Output(s) parameter allows you to select between two realizations
of the AR process:

• A — The top output, A, is a column vector of length p+1 with the same
frame status as the input, and contains the normalized estimate of
the AR model polynomial coefficients in descending powers of z.

[1 a(2) ... a(p+1)]

• K — The top output, K, is a column vector of length p with the same
frame status as the input, and contains the reflection coefficients
(which are a secondary result of the Levinson recursion).

10-43

Burg AR Estimator

• A and K — The block outputs both realizations.

The scalar gain, G, is provided at the bottom output (G).

The following table compares the features of the Burg AR Estimator
block to the Covariance AR Estimator, Modified Covariance AR
Estimator, and Yule-Walker AR Estimator blocks.

Burg AR
Estimator

Covariance
AR Estimator

Modified
Covariance
AR Estimator

Yule-Walker
AR Estimator

Characteristics Does not apply
window to data

Does not apply
window to data

Does not apply
window to data

Applies window
to data

Minimizes
the forward
and backward
prediction
errors in the
least squares
sense, with the
AR coefficients
constrained to
satisfy the L-D
recursion

Minimizes
the forward
prediction error
in the least
squares sense

Minimizes
the forward
and backward
prediction
errors in the
least squares
sense

Minimizes
the forward
prediction error
in the least
squares sense
(also called
“autocorrelation
method”)

Advantages Always
produces a
stable model

Always
produces a
stable model

10-44

Burg AR Estimator

Burg AR
Estimator

Covariance
AR Estimator

Modified
Covariance
AR Estimator

Yule-Walker
AR Estimator

Disadvantages May produce
unstable
models

May produce
unstable
models

Performs
relatively
poorly for short
data records

Conditions for
Nonsingularity

Order must be
less than or
equal to half
the input frame
size

Order must be
less than or
equal to 2/3 the
input frame
size

Because of
the biased
estimate, the
autocorrelation
matrix is
guaranteed to
positive-definite,
hence
nonsingular

Dialog
Box

Output(s)
The realization to output, model coefficients, reflection coefficients,
or both.

10-45

Burg AR Estimator

Inherit estimation order from input dimensions
When selected, sets the estimation order p to one less than the
length of the input vector.

Estimation order
The order of the AR model, p. This parameter is enabled when
you do not select Inherit estimation order from input
dimensions.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

A • Double-precision floating point

• Single-precision floating point

G • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

10-46

Burg AR Estimator

See Also

Burg Method Signal Processing Blockset

Covariance AR Estimator Signal Processing Blockset

Modified Covariance AR
Estimator

Signal Processing Blockset

Yule-Walker AR Estimator Signal Processing Blockset

arburg Signal Processing Toolbox

10-47

Burg Method

Purpose Compute parametric spectral estimate using Burg method

Library Estimation / Power Spectrum Estimation

Description The Burg Method block estimates the power spectral density (PSD)
of the input frame using the Burg method. This method fits an
autoregressive (AR) model to the signal by minimizing (least squares)
the forward and backward prediction errors while constraining the AR
parameters to satisfy the Levinson-Durbin recursion.

The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only) representing a frame of consecutive time samples
from a single-channel signal. The block’s output (a column vector) is
the estimate of the signal’s power spectral density at Nfft equally spaced
frequency points in the range [0,Fs), where Fs is the signal’s sample
frequency.

When you select the Inherit estimation order from input
dimensions parameter, the order of the all-pole model is one less that
the input frame size. Otherwise, the order is the value specified by the
Estimation order parameter. The spectrum is computed from the FFT
of the estimated AR model parameters.

When you select the Inherit FFT length from estimation order
parameter, Nfft is specified by the frame size of the input, which must
be a power of 2. When you do not select Inherit FFT length from
estimation order, Nfft is specified as a power of 2 by the FFT length
parameter, and the block zero pads or truncates the input to Nfft before
computing the FFT. The output is always sample based.

The Burg Method and Yule-Walker Method blocks return similar results
for large frame sizes. The following table compares the features of the
Burg Method block to the Covariance Method, Modified Covariance
Method, and Yule-Walker Method blocks.

10-48

Burg Method

Burg Covariance
Modified
Covariance Yule-Walker

Characteristics Does not apply
window to data

Does not apply
window to data

Does not apply
window to data

Applies window
to data

Minimizes
the forward
and backward
prediction
errors in the
least squares
sense, with the
AR coefficients
constrained to
satisfy the L-D
recursion

Minimizes
the forward
prediction
error in the
least squares
sense

Minimizes
the forward
and backward
prediction
errors in the
least squares
sense

Minimizes
the forward
prediction error
in the least
squares sense
(also called
“autocorrelation
method”)

High resolution
for short data
records

Better
resolution than
Y-W for short
data records
(more accurate
estimates)

High resolution
for short data
records

Performs as
well as other
methods for
large data
records

Always
produces a
stable model

Able to extract
frequencies
from data
consisting of
p or more pure
sinusoids

Able to extract
frequencies
from data
consisting of
p or more pure
sinusoids

Always
produces a
stable model

Advantages

Does not
suffer spectral
line-splitting

10-49

Burg Method

Burg Covariance
Modified
Covariance Yule-Walker

Peak locations
highly
dependent on
initial phase

May produce
unstable
models

May produce
unstable
models

Performs
relatively
poorly for short
data records

May suffer
spectral
line-splitting
for sinusoids in
noise, or when
order is very
large

Frequency bias
for estimates
of sinusoids in
noise

Peak locations
slightly
dependent on
initial phase

Frequency bias
for estimates
of sinusoids in
noise

Disadvantages

Frequency bias
for estimates
of sinusoids in
noise

Minor
frequency bias
for estimates
of sinusoids in
noise

Conditions for
Nonsingularity

Order must
be less than
or equal to half
the input frame
size

Order must be
less than or
equal to 2/3 the
input frame
size

Because of
the biased
estimate, the
autocorrelation
matrix is
guaranteed to
positive-definite,
hence
nonsingular

Examples The dspsacomp demo compares the Burg method with several other
spectral estimation methods.

10-50

Burg Method

Dialog
Box

Inherit estimation order from input dimensions
When selected, sets the estimation order to one less than the
length of the input vector. Nontunable.

Estimation order
The order of the AR model. This parameter is enabled when
you do not select Inherit estimation order from input
dimensions. Nontunable.

Inherit FFT length from estimation order
When selected, uses the input frame size as the number of data
points, Nfft, on which to perform the FFT. Nontunable.

FFT length
The number of data points, Nfft, on which to perform the FFT.
When Nfft exceeds the input frame size, the frame is zero-padded
as needed. This parameter is enabled when you do not select
Inherit FFT length from input dimensions. Nontunable.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Orfanidis, J. S. Optimum Signal Processing: An Introduction. 2nd ed.
New York, NY: Macmillan, 1985.

10-51

Burg Method

Supported
Data
Types Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

Output • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Burg AR Estimator Signal Processing Blockset

Covariance Method Signal Processing Blockset

Modified Covariance Method Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

pburg Signal Processing Toolbox

See “Power Spectrum Estimation” on page 6-6 for related information.

10-52

Check Signal Attributes

Purpose Generate error when input signal does or does not match selected
attributes exactly

Library Signal Management / Signal Attributes

Description The Check Signal Attributes block terminates the simulation with an
error when the input characteristics differ from those specified by the
block parameters.

When the Error when input parameter is set to Does not match
attributes exactly, the block generates an error only when the input
possesses none of the attributes specified by the other parameters.
Signals that possess at least one of the specified attributes are
propagated to the output unaltered, and do not generate an error.

When the Error when input parameter is set to Matches attributes
exactly, the block generates an error only when the input possesses
all attributes specified by the other parameters. Signals that do not
possess all of the specified attributes are propagated to the output
unaltered, and do not generate an error.

Signal Attributes

The Check Signal Attributes block can test for up to five different signal
attributes, as specified by the following parameters. When you select
the Ignore in any parameter, the block does not check the signal for
the corresponding attribute. For example, when Complexity is set to
Ignore, neither real nor complex inputs cause the block to generate an
error. The attributes are

• Complexity

Checks whether the signal is real or complex. (Note that this
information can be displayed in a model by attaching a Probe block
with Probe complex signal selected. Alternatively, in the model
window, from the Format menu, point to Port/Signal Displays,
and select Port Data Types.)

10-53

Check Signal Attributes

• Frame status

Checks whether the signal is frame based or sample based. (Note
that Simulink displays sample-based signals using a single line, ,
and frame-based signals using a double line,

• Dimensionality

Checks the dimension of signal for compliance (Is...) or
noncompliance (Is not...) with the attributes in the subordinate
Dimension menu, which are shown in the table below. M and N are
positive integers unless otherwise indicated below.

Dimensions Is... Is not...

1-D 1-D vector,
1-D scalar

M-by-N matrix,
1-by-N matrix
(row vector),
M-by-1 matrix
(column vector),
1-by-1 matrix (2-D
scalar)

2-D M-by-N matrix,
1-by-N matrix
(row vector),
M-by-1 matrix
(column vector),
1-by-1 matrix (2-D
scalar)

1-D vector,
1-D scalar

Scalar
(1-D or 2-D)

1-D scalar,
1-by-1 matrix (2-D
scalar)

1-D vector
with length>1,
M-by-N matrix with
M>1 and/or N>1

10-54

Check Signal Attributes

Dimensions Is... Is not...

Vector
(1-D or 2-D)

1-D vector,
1-D scalar,
1-by-N matrix
(row vector),
M-by-1 matrix
(column vector),
1-by-1 matrix
(2-D scalar)
Vector (1-D or 2-D)
or scalar

M-by-N matrix with
M>1 and N>1

Row Vector
(2-D)

1-by-N matrix
(row vector),
1-by-1 matrix
(2-D scalar)
Row vector (2-D) or
scalar

1-D vector,
1-D scalar,
M-by-N matrix with
M>1

Column
Vector
(2-D)

M-by-1 matrix (column
vector), 1-by-1
matrix (2-D scalar)
Column vector (2-D) or
scalar

1-D vector,
1-D scalar,
M-by-N matrix with
N>1

Full matrix M-by-N matrix with
M>1 and N>1

1-D vector,
1-D scalar,
1-by-N matrix
(row vector),
M-by-1 matrix
(column vector),
1-by-1 matrix (2-D
scalar)

Square
matrix

M-by-N matrix
with M=N,
1-D scalar,

M-by-N matrix
with M N≠ ,
1-D vector,

10-55

Check Signal Attributes

Dimensions Is... Is not...

1-by-1 matrix (2-D
scalar

1-by-N matrix
(row vector),
M-by-1 matrix (column
vector)

If, in the model window, from the Format menu, you point to
Port/Signal Displays, and select Signal Dimensions, Simulink
displays the size of a 1-D vector signal as an unbracketed integer,
and displays the dimension of a 2-D signal as a pair of bracketed
integers, [MxN]. Simulink does not display any size information for
a 1-D or 2-D scalar signal. Dimension information for a signal can
also be displayed in a model by attaching a Probe block with Probe
signal dimensions selected.

• Data type

Checks the signal data type for compliance (Is...) or noncompliance
(Is not...) with the attributes in the subordinate General data
type menu, which are shown in the table below. Any of the specific
data types listed in the Is... column below can be individually
selected from the subordinate Specific data type menu.

General Data
Type Is... Is not...

Boolean boolean single, double, uint8,
int8, uint16, int16, uint32,
int32, fixed-point

Floating-point single,
double

boolean, uint8, int8,
uint16, int16, uint32,
int32, fixed-point

10-56

Check Signal Attributes

General Data
Type Is... Is not...

Fixed-point fixed-point boolean, uint8, int8,
uint16, int16, uint32,
int32, single, double

Integer Signed integer
int8, int16,
int32
Unsigned
integer
uint8, uint16,
uint32

boolean, single, double

To display data type information, in your model window, from the
Format menu, point to Port/Signal Displays, and select Port Data
Types.

• Sample mode

Checks whether the signal is discrete-time or continuous-time. (If,
from the Format menu, you point to Port/Signal Displays, and
select Sample Time Colors, Simulink displays continuous-time
signal lines in black or grey and discrete-time signal lines in colors
corresponding to the relative rate. When a Probe block with Probe
sample time enabled is attached to a continuous-time signal, the
block icon displays the string Ts:[0 x], where x is the sample time
offset. When a Probe block is attached to a discrete-time signal, the
block icon displays the string Ts:[t 0] for a sample-based signal or
Tf:[t 0] for a frame-based signal, where t is the nonzero sample
period or frame period, respectively. Frame-based signals are almost
always discrete time.

10-57

Check Signal Attributes

Dialog
Box

Error when input
Specifies whether the block generates an error when the input
possesses none of the required attributes (Does not match
attributes exactly), or when the input possesses all of the
required attributes (Matches attributes exactly).

Complexity
The complexity for which the input should be checked, Real or
Complex. When you select Ignore from the list, the block does
not check the input’s complexity.

Frame status
The frame status for which the input should be checked,
Sample-based or Frame-based. When you select Ignore from the
list, the block does not check the input’s frame status.

Dimensionality
Specifies whether the input should be checked for compliance
(Is...) or noncompliance (Is not...) with the attributes in the
subordinate Dimension menu. When you select Ignore from the
list, the block does not check the input’s dimensionality.

10-58

Check Signal Attributes

Data type
Specifies whether the input should be checked for compliance
(Is...) or noncompliance (Is not...) with the attributes in the
subordinate General data type menu. When you select Ignore
from the list, the block does not check the input’s data type.

Sample mode
The sample mode for which the input should be checked, Discrete
or Continuous. When you select Ignore from the list, the block
does not check the input’s sample mode.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8, 16, and 32-bit signed integers

• 8, 16, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8, 16, and 32-bit signed integers

• 8, 16, and 32-bit unsigned integers

10-59

Check Signal Attributes

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Convert 1-D to 2-D Signal Processing Blockset

Convert 2-D to 1-D Signal Processing Blockset

Data Type Conversion Simulink

Frame Status Conversion Signal Processing Blockset

Inherit Complexity Signal Processing Blockset

Probe Simulink

Reshape Simulink

Submatrix Signal Processing Blockset

10-60

Chirp

Purpose Generate swept-frequency cosine (chirp) signal

Library Signal Processing Sources

Description The Chirp block outputs a swept-frequency cosine (chirp) signal with
unity amplitude and continuous phase. To specify the desired output
chirp signal, you must define its instantaneous frequency function, also
known as the output frequency sweep. The frequency sweep can be
linear, quadratic, or logarithmic, and repeats once every Sweep time
by default. See other sections of this reference page for more details
about the block.

Sections of This Reference Page

• “Variables Used in This Reference Page” on page 10-61

• “Setting the Output Frame Status” on page 10-62

• “Shaping the Frequency Sweep by Setting Frequency Sweep and
Sweep Mode” on page 10-62

• “Unidirectional and Bidirectional Sweep Modes” on page 10-64

• “Setting Instantaneous Frequency Sweep Values” on page 10-65

• “Block Computation Methods” on page 10-66

• “Cautions Regarding the Swept Cosine Sweep” on page 10-69

• “Dialog Box” on page 10-71

• “Examples” on page 10-73

• “Supported Data Types” on page 10-79

• “See Also” on page 10-79

Variables Used in This Reference Page

f0 Initial frequency parameter (Hz)

fi(tg) Target frequency parameter (Hz)

10-61

Chirp

tg Target time parameter (seconds)

Tsw Sweep time parameter (seconds)

Initial phase parameter (radians)

Phase of the chirp signal (radians)

fi(t) User-specified output instantaneous frequency function
(Hz); user-specified sweep

fi(actual)(t) Actual output instantaneous frequency function (Hz);
actual output sweep

ychirp(t) Output chirp function

Setting the Output Frame Status

Use Samples per frame parameter to set the block’s output frame
status, as summarized in the following table. The Sample time
parameter sets the sample time of both sample- and frame-based
outputs.

Setting of Samples Per Frame
Parameter Output Frame Status

1 Sample based

n (any integer greater than 1) Frame based, frame size n

Shaping the Frequency Sweep by Setting Frequency Sweep
and Sweep Mode

The basic shape of the output instantaneous frequency sweep, fi(t), is
set by the Frequency sweep and Sweep mode parameters, described
in the following table.

10-62

Chirp

Parameters for
Setting Sweep
Shape

Possible
Settings Parameter Description

Frequency sweep Linear

Quadratic

Logarithmic

Swept cosine

Determines whether the sweep frequencies vary
linearly, quadratically, or logarithmically. Linear
and swept cosine sweeps both vary linearly.

Sweep mode Unidirectional

Bidirectional

Determines whether the sweep is unidirectional
or bidirectional. For details, see “Unidirectional
and Bidirectional Sweep Modes” on page 10-64.

The following diagram illustrates the possible shapes of the frequency
sweep that you can obtain by setting the Frequency sweep and
Sweep mode parameters.

10-63

Chirp

For information on how to set the frequency values in your sweep, see
“Setting Instantaneous Frequency Sweep Values” on page 10-65.

Unidirectional and Bidirectional Sweep Modes

The Sweep mode parameter determines whether your sweep is
unidirectional or bidirectional, which affects the shape of your output
frequency sweep (see “Shaping the Frequency Sweep by Setting
Frequency Sweep and Sweep Mode” on page 10-62). The following table
describes the characteristics of unidirectional and bidirectional sweeps.

10-64

Chirp

Sweep Mode
Parameter
Settings Sweep Characteristics

Unidirectional • Lasts for one Sweep time, Tsw

• Repeats once every Tsw

Bidirectional • Lasts for twice the Sweep time, 2*Tsw

• Repeats once every 2*Tsw

• First half is identical to its unidirectional
counterpart.

• Second half is a mirror image of the first half.

The following diagram illustrates a linear sweep in both sweep modes.
For information on setting the frequency values in your sweep, see
“Setting Instantaneous Frequency Sweep Values” on page 10-65.

Setting Instantaneous Frequency Sweep Values

Set the following parameters to tune the frequency values of your
output frequency sweep. Note that because this is a source block, the

10-65

Chirp

simulation will pause while the block dialog box is open. You must close
the dialog box by clicking OK to resume the simulation.

• Initial frequency (Hz), f0

• Target frequency (Hz), fi(tg)

• Target time (seconds), tg

The following table summarizes the sweep values at specific times
for all Frequency sweep settings. For information on the formulas
used to compute sweep values at other times, see “Block Computation
Methods” on page 10-66.

Instantaneous Frequency Sweep Values

Frequency
Sweep

Sweep Value at
t = 0

Sweep Value at
t = tg

Time when Sweep
Value Is Target
Frequency, fi(tg)

Linear f0 fi(tg) tg

Quadratic f0 fi(tg) tg

Logarithmic f0 fi(tg) tg

Swept cosine f0 2fi(tg) - f0 tg/2

Block Computation Methods

The Chirp block uses one of two formulas to compute the block output,
depending on the Frequency Sweep parameter setting. For details,
see the following sections:

• “Equations for Output Computation” on page 10-67

• “Output Computation Method for Linear, Quadratic, and Logarithmic
Frequency Sweeps” on page 10-68

• “Output Computation Method for Swept Cosine Frequency Sweep”
on page 10-69

10-66

Chirp

Equations for Output Computation

The following table shows the equations used by the block to compute
the user-specified output frequency sweep, fi(t), the block output,
ychirp(t), and the actual output frequency sweep, fi(actual)(t). The only time
the user-specified sweep is not the actual output sweep is when the
Frequency sweep parameter is set to Swept cosine.

Note The following equations apply only to unidirectional sweeps in
which fi(0) < fi(tg). To derive equations for other cases, you might find
it helpful to examine the following table and the diagram in “Shaping
the Frequency Sweep by Setting Frequency Sweep and Sweep Mode”
on page 10-62.

The table below contains the following variables:

• fi(t) — the user-specified frequency sweep

• fi(actual)(t) — the actual output frequency sweep, usually equal to fi(t)

• y(t) — the Chirp block output

• — the phase of the chirp signal, where , and is
the derivative of the phase

• — the Initial phase parameter value, where

10-67

Chirp

Equations Used by the Chirp Block for Unidirectional Positive Sweeps

Frequency
Sweep

Block Output
Chirp Signal

User-Specified
Frequency
Sweep, fi(t) β

Actual Frequency
Sweep, fi(actual)(t)

Linear

Quadratic Same as Linear

Logarithmic Same as Linear

F t f
f t

fi
i g

t
tg

() =
()⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

0

Where fi(tg) > f0> 0

N/A

Swept
cosine

Same as Linear Same as
Linear

Output Computation Method for Linear, Quadratic, and
Logarithmic Frequency Sweeps

The derivative of the phase of a chirp function gives the instantaneous
frequency of the chirp function. The Chirp block uses this principle to
calculate the chirp output when the Frequency Sweep parameter is
set to Linear, Quadratic, or Logarithmic.

Linear, quadratic, or logarithmic
chirp signal with phase

Phase derivative is instantaneous
frequency

For instance, if you want a chirp signal with a linear instantaneous
frequency sweep, you should set the Frequency Sweep parameter to
Linear, and tune the linear sweep values by setting other parameters

10-68

Chirp

appropriately. Note that because this is a source block, the simulation
will pause while the block dialog box is open. You must close the
dialog box by clicking OK to resume the simulation. The block will
output a chirp signal, the phase derivative of which is the specified
linear sweep. This ensures that the instantaneous frequency of the
output is the linear sweep you desired. For equations describing the
linear, quadratic, and logarithmic sweeps, see “Equations for Output
Computation” on page 10-67.

Output Computation Method for Swept Cosine Frequency
Sweep

To generate the swept cosine chirp signal, the block sets the swept
cosine chirp output as follows.

Swept cosine
chirp output
(instantaneous
frequency equation,
shown above, does
not hold.)

Note that the instantaneous frequency equation, shown above, does not
hold for the swept cosine chirp, so the user-defined frequency sweep,
fi(t), is not the actual output frequency sweep, fi(actual)(t), of the swept
cosine chirp. Thus, the swept cosine output might not behave as you
expect. To learn more about swept cosine chirp behavior, see “Cautions
Regarding the Swept Cosine Sweep” on page 10-69 and “Equations for
Output Computation” on page 10-67.

Cautions Regarding the Swept Cosine Sweep

When you want a linearly swept chirp signal, we recommend you use a
linear frequency sweep. Though a swept cosine frequency sweep also
yields a linearly swept chirp signal, the output might have unexpected
frequency content. For details, see the following two sections.

10-69

Chirp

Swept Cosine Instantaneous Output Frequency at the Target
Time is not the Target Frequency

The swept cosine sweep value at the Target time is not necessarily the
Target frequency. This is because the user-specified sweep is not the
actual frequency sweep of the swept cosine output, as noted in “Output
Computation Method for Swept Cosine Frequency Sweep” on page
10-69. See the table Instantaneous Frequency Sweep Values on page
10-66 for the actual value of the swept cosine sweep at the Target time.

Swept Cosine Output Frequency Content May Greatly Exceed
Frequencies in the Sweep

In Swept cosine mode, you should not set the parameters so that
1/Tsw is very large compared to the values of the Initial frequency
and Target frequency parameters. In such cases, the actual frequency
content of the swept cosine sweep might be closer to 1/Tsw, far exceeding
the Initial frequency and Target frequency parameter values.

10-70

Chirp

Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Frequency sweep
The type of output instantaneous frequency sweep, fi(t): Linear,
Logarithmic, Quadratic, or Swept cosine. Tunable.

10-71

Chirp

Sweep mode
The directionality of the chirp signal: Unidirectional or
Bidirectional. Nontunable.

Initial frequency (Hz)
For Linear, Quadratic, and Swept cosine sweeps, the initial
frequency, f0, of the output chirp signal. For Logarithmic sweeps,
Initial frequency is one less than the actual initial frequency of
the sweep. Also, when the sweep is Logarithmic, you must set
the Initial frequency to be less than the Target frequency.
Tunable.

Target frequency (Hz)
For Linear, Quadratic, and Logarithmic sweeps, the
instantaneous frequency, fi(tg), of the output at the Target
time, tg. For a Swept cosine sweep, Target frequency is the
instantaneous frequency of the output at half the Target time,
tg/2. When Frequency sweep is Logarithmic, you must set the
Target frequency to be greater than the Initial frequency
Tunable.

Target time (sec)
For Linear, Quadratic, and Logarithmic sweeps, the time, tg,
at which the Target frequency, fi(tg), is reached by the sweep.
For a Swept cosine sweep, Target time is the time at which
the sweep reaches 2fi(tg) - f0. You must set Target time to be no
greater than Sweep time, . Tunable.

Sweep time (sec)
In Unidirectional Sweep mode, the Sweep time, Tsw, is the
period of the output frequency sweep. In Bidirectional Sweep
mode, the Sweep time is half the period of the output frequency
sweep. You must set Sweep time to be no less than Target time,

. Tunable.

Initial phase (radians)
The phase, , of the cosine output at t=0; .
Tunable.

10-72

Chirp

Sample time
The sample period, Ts, of the output. The output frame period is
Mo*Ts.

Samples per frame
The number of samples, Mo, to buffer into each output frame.

Output data type
The data type of the output, single-precision or double-precision.

Examples The first few examples demonstrate how to use the Chirp block’s main
parameters, how to view the output in the time domain, and how to
view the output spectrogram:

• “Example 1: Setting a Final Frequency Value for Unidirectional
Sweeps” on page 10-73

• “Example 2: Bidirectional Sweeps” on page 10-75

• “Example 3: When Sweep Time is Greater Than Target Time” on
page 10-76

Examples 4 and 5 illustrate Chirp block settings that might produce
unexpected outputs:

• “Example 4: Output Sweep with Negative Frequencies” on page 10-77

• “Example 5: Output Sweep with Frequencies Greater Than Half the
Sampling Frequency” on page 10-78

Example 1: Setting a Final Frequency Value for Unidirectional
Sweeps

Often times, you might want a unidirectional sweep for which you
know the initial and final frequency values. You can specify the final
frequency of a unidirectional sweep by setting Target time equal to
Sweep time, in which case the Target frequency becomes the final
frequency in the sweep. The following model demonstrates this method.

10-73

Chirp

This technique might not work for swept cosine sweeps. For details, see
“Cautions Regarding the Swept Cosine Sweep” on page 10-69.

Open the Example 1 model by typing doc_chirp_ref at the MATLAB
command line. You can also rebuild the model yourself; see the following
list for model parameter settings (leave unlisted parameters in their
default states).

Since Target time is set to equal Sweep time (1 second), the Target
frequency (25 Hz) is the final frequency of the unidirectional sweep.

Run your model to see the time domain output, and then type the
following command to view the chirp output spectrogram.

spectrogram(dsp_examples_yout,hamming(128),110,[0:.01:40],400)

10-74

Chirp

Chirp Block Parameters for Example 1

Frequency sweep Linear

Sweep mode Unidirectional

Initial frequency 0

Target frequency 25

Target time 1

Sweep time 1

Initial phase 0

Sample time 1/400

Samples per frame 400

Vector Scope Block Parameters for Example 1

Input domain Time

Time display span 6

Signal To Workspace Block Parameters for Example 1

Variable name dsp_examples_yout

Configuration Dialog Parameters for Example 1

Stop time 5

Example 2: Bidirectional Sweeps

Change the Sweep mode parameter in the Example 1 model to
Bidirectional, and leave all other parameters the same to view the
following bidirectional chirp. Note that in the bidirectional sweep, the
period of the sweep is twice the Sweep time (2 seconds), whereas it was
one Sweep time (1 second) for the unidirectional sweep in Example 1.

Open the Example 2 model by typing doc_chirp_ref2 at the MATLAB
command line.

10-75

Chirp

Run your model to see the time domain output, and then type the
following command to view the chirp output spectrogram.

spectrogram(dsp_examples_yout,hamming(128),110,[0:.01:40],400)

Example 3: When Sweep Time is Greater Than Target Time

Setting Sweep time to 1.5 and leaving the rest of the parameters as in
the Example 1 model gives the following output. The sweep still reaches
the Target frequency (25 Hz) at the Target time (1 second), but since
Sweep time is greater than Target time, the sweep continues on its
linear path until one Sweep time (1.5 seconds) is traversed.

Unexpected behavior might arise when you set Sweep time greater
than Target time; see “Example 4: Output Sweep with Negative
Frequencies” on page 10-77 for details.

Open the Example 3 model by typing doc_chirp_ref3 at the MATLAB
command line.

10-76

Chirp

Run your model to see the time domain output, and then type the
following command to view the chirp output spectrogram.

spectrogram(dsp_examples_yout,hamming(128),110,[0:.01:40],400)

Example 4: Output Sweep with Negative Frequencies

Modify the Example 1 model by changing Sweep time to 1.5, Initial
frequency to 25, and Target frequencyto 0. The output chirp of this
example might not behave as you expect because the sweep contains
negative frequencies between 1 and 1.5 seconds. The sweep reaches
the Target frequency of 0 Hz at one second, then continues on its
negative slope, taking on negative frequency values until it traverses
one Sweep time (1.5 seconds).

The spectrogram might reflect negative sweep frequencies along the
x-axis so they appear to be positive. If you unexpectedly get a chirp
output with a spectrogram resembling the one below, your chirp’s sweep
might contain negative frequencies. See the next example for another
possible unexpected chirp output.

Open the Example 4 model by typing doc_chirp_ref4 at the MATLAB
command line.

10-77

Chirp

Run your model to see the time domain output, and then type the
following command to view the chirp output spectrogram.

spectrogram(dsp_examples_yout,hamming(128),110,[0:.1:30],400);

Example 5: Output Sweep with Frequencies Greater Than Half
the Sampling Frequency

Modify the Example 1 model by changing the Target frequency
parameter to 275. The output chirp of this model might not behave
as you expect because the sweep contains frequencies greater than
half the sampling frequency (200 Hz), which causes aliasing. If you
unexpectedly get a chirp output with a spectrogram resembling the
one following, your chirp’s sweep might contain frequencies greater
than half the sampling frequency. See the previous example for another
possible unexpected chirp output.

Open the Example 5 model by typing doc_chirp_ref5 at the MATLAB
command line.

10-78

Chirp

Run your model to see the time domain output, and then type the
following command to view the chirp output spectrogram.

spectrogram(dsp_examples_yout,hamming(64),60,256,400)

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Signal From Workspace Signal Processing Blockset

Signal Generator Simulink

Sine Wave Signal Processing Blockset

chirp Signal Processing Toolbox

spectrogram Signal Processing Toolbox

10-79

Cholesky Factorization

Purpose Factor square Hermitian positive definite matrix into triangular
components.

Library Math Functions / Matrices and Linear Algebra / Matrix Factorizations

Description The Cholesky Factorization block uniquely factors the square Hermitian
positive definite input matrix S as

where L is a lower triangular square matrix with positive diagonal
elements and L* is the Hermitian (complex conjugate) transpose of L.
The block outputs a matrix with lower triangle elements from L and
upper triangle elements from L*. The output is always sample based.
The output is not in the same form as the output of the MATLAB chol
function. In order to convert the output of the Cholesky Factorization
block to the MATLAB form, use the following equation:

R = triu(LL');

Here, LL' is the output of the Cholesky Factorization block. Due to
roundoff error, these equations do not produce a result that is exactly
the same as the MATLAB result.

10-80

Cholesky Factorization

Block Output Composed of L and L*

Input Requirements for Valid Output

The block output is valid only when its input has the following
characteristics:

• Hermitian — The block does not check whether the input is
Hermitian; it uses only the diagonal and upper triangle of the input
to compute the output.

• Real-valued diagonal entries — The block disregards any imaginary
component of the input’s diagonal entries.

• Positive definite — Set the block to notify you when the input is not
positive definite as described in “Response to Nonpositive Definite
Input” on page 10-81

Response to Nonpositive Definite Input

To generate a valid output, the block algorithm requires a positive
definite input (see “Input Requirements for Valid Output” on page
10-81). Set the Non-positive definite input parameter to determine
how the block responds to a nonpositive definite input:

• Ignore — Proceed with the computation and do not issue an alert.
The output is not a valid factorization. A partial factorization will be
present in the upper left corner of the output.

• Warning — Display a warning message in the MATLAB Command
Window, and continue the simulation. The output is not a valid

10-81

Cholesky Factorization

factorization. A partial factorization will be present in the upper
left corner of the output.

• Error — Display an error dialog and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic
parameter. Like all diagnostic parameters on the Configuration
Parameters dialog box, it is set to Ignore in the Real-Time Workshop
code generated for this block.

Performance Comparisons with Other Blocks

Note that L and L* share the same diagonal in the output matrix.
Cholesky factorization requires half the computation of Gaussian
elimination (LU decomposition), and is always stable.

Dialog
Box

Non-positive definite input
Response to nonpositive definite matrix inputs: Ignore, Warning,
or Error. See “Response to Nonpositive Definite Input” on page
10-81. Nontunable.

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

10-82

Cholesky Factorization

Supported
Data
Types

Port Supported Data Types

S • Double-precision floating point

• Single-precision floating point

LL' • Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Inverse Signal Processing Blockset

Cholesky Solver Signal Processing Blockset

LDL Factorization Signal Processing Blockset

LU Factorization Signal Processing Blockset

QR Factorization Signal Processing Blockset

chol MATLAB

See “Factoring Matrices” on page 6-9 for related information.

10-83

Cholesky Inverse

Purpose Compute inverse of Hermitian positive definite matrix using Cholesky
factorization

Library Math Functions / Matrices and Linear Algebra / Matrix Inverses

Description The Cholesky Inverse block computes the inverse of the Hermitian
positive definite input matrix S by performing Cholesky factorization.

L is a lower triangular square matrix with positive diagonal elements
and L* is the Hermitian (complex conjugate) transpose of L. Only the
diagonal and upper triangle of the input matrix are used, and any
imaginary component of the diagonal entries is disregarded. Cholesky
factorization requires half the computation of Gaussian elimination
(LU decomposition), and is always stable. The output is always sample
based.

The algorithm requires that the input be Hermitian positive definite.
When the input is not positive definite, the block reacts with the
behavior specified by the Non-positive definite input parameter.
The following options are available:

• Ignore — Proceed with the computation and do not issue an alert.
The output is not a valid inverse.

• Warning — Display a warning message in the MATLAB Command
Window, and continue the simulation. The output is not a valid
inverse.

• Error — Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic
parameter. Like all diagnostic parameters on the Configuration
Parameters dialog box, it is set to Ignore in the Real-Time Workshop
code generated for this block.

10-84

Cholesky Inverse

Dialog
Box

Non-positive definite input
Response to nonpositive definite matrix inputs. Nontunable.

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Factorization Signal Processing Blockset

Cholesky Solver Signal Processing Blockset

LDL Inverse Signal Processing Blockset

LU Inverse Signal Processing Blockset

Pseudoinverse Signal Processing Blockset

inv MATLAB

See “Inverting Matrices” on page 6-10 for related information.

10-85

Cholesky Solver

Purpose Solve SX=B for X when S is square Hermitian positive definite matrix

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The Cholesky Solver block solves the linear system SX=B by applying
Cholesky factorization to input matrix at the S port, which must be
square (M-by-M) and Hermitian positive definite. Only the diagonal and
upper triangle of the matrix are used, and any imaginary component
of the diagonal entries is disregarded. The input to the B port is the
right side M-by-N matrix, B. The output is the unique solution of the
equations, M-by-N matrix X, and is always sample based.

When the input is not positive definite, the block reacts with the
behavior specified by the Non-positive definite input parameter.
The following options are available:

• Ignore — Proceed with the computation and do not issue an alert.
The output is not a valid solution.

• Warning — Proceed with the computation and display a warning
message in the MATLAB Command Window. The output is not a
valid solution.

• Error — Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic
parameter. Like all diagnostic parameters on the Configuration
Parameters dialog box, it is set to Ignore in the Real-Time Workshop
code generated for this block.

A length-M vector input for right side B is treated as an M-by-1 matrix.

Algorithm Cholesky factorization uniquely factors the Hermitian positive definite
input matrix S as

10-86

Cholesky Solver

where L is a lower triangular square matrix with positive diagonal
elements.

The equation SX=B then becomes

which is solved for X by making the substitution Y L X= ∗ , and
solving the following two triangular systems by forward and backward
substitution, respectively.

Dialog
Box

Non-positive definite input
Response to nonpositive definite matrix inputs. Nontunable.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-87

Cholesky Solver

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Factorization Signal Processing Blockset

Cholesky Inverse Signal Processing Blockset

LDL Solver Signal Processing Blockset

LU Solver Signal Processing Blockset

QR Solver Signal Processing Blockset

chol MATLAB

See “Solving Linear Systems” on page 6-7 for related information.

10-88

CIC Decimation

Purpose Decimate signal using Cascaded Integrator-Comb filter

Library Filtering / Multirate Filters

Description The CIC Decimation block performs a sample rate decrease (decimation)
on an input signal by an integer factor. Cascaded Integrator-Comb
(CIC) filters are a class of linear phase FIR filters comprised of a comb
section and an integrator section.

The transfer function of a CIC decimator filter is

H z H z H z
z

z
zI

N
c
N

RM N

N
k

k

RM N

() () ()= =
−()

−()
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

−

−

=

−

∑
1

1 1 0

1

where

• HI is the transfer function of the integrator portion of the filter.

• HC is the transfer function of the comb portion of the filter.

• N is the number of stages. The number of stages in a CIC filter is
defined as the number of stages in either the comb section or the
integrator section of the filter, not as the total number of stages
throughout the entire filter.

• R is the decimation factor.

• M is the differential delay.

The CIC Decimation block supports real and complex fixed-point inputs.
Each channel of a complex input is treated as two real input channels.

CIC Filter Structures

Some of the filter structures supported by the CIC Decimation and
CIC Interpolation blocks exactly match those created by the mfilt CIC
objects of the Filter Design Toolbox. If you have the Filter Design
Toolbox installed, you can create an mfilt object in the MATLAB

10-89

CIC Decimation

workspace to specify in the Multirate filter variable parameter of this
block. Otherwise, you can specify the CIC filter completely using only
block dialog parameters. Using the block parameters also allows you to
specify a resampler phase R for the filter, and to specify that the word
length of the output should be the same as that of the final filter stage.

This block can be used to create either of the following CIC filter
structures:

• “Decimator” on page 10-90

• “Zero-latency decimator” on page 10-90

Decimator

This decimator has a latency of N, where N is the number of stages in
either the comb or the integrator section of the filter.

Zero-latency decimator

This filter is the classical Hogenauer CIC decimator, which has zero
latency.

The word length and fraction length at each stage of the decimator
are shown in the following table. You specify the word length for each
filter stage in the Word length for each of the (2*N) filter stages
parameter. The calculation for each fraction length is shown below:

10-90

CIC Decimation

Decimator Word Lengths and Fraction Lengths

Word Length Fraction Length

Filter Input InputWL InputFL

1st Stage Output StageOneWL InputFL

2nd Stage Output StageTwoWL InputFL + (StageTwoWL - StageOneWL)

3rd Stage Output StageThreeWL StageTwoFL + (StageThreeWL -
StageTwoWL)

4th Stage Output StageFourWL StageThreeFL + (StageFourWL -
StageThreeWL)

Nth Stage Output Stage(N)WL Stage(N-1)FL + (Stage(N)WL -
Stage(N-1)WL)

Filter Output OutputWL FinalStageFL + (OutputWL -
FinalStageWL)

Constraints and Conversions

The classic paper on CIC filters by Eugene B. Hogenauer, “An
Economical Class of Digital Filters for Decimation and Interpolation”
[3], describes the constraints on CIC decimator filters. These constraints
are enforced by the CIC Decimation block.

CIC decimators have the following two constraints:

• The word lengths of the filter stages must be nonincreasing. That
is, the word length of each filter stage must be the same size as, or
smaller than, the word length of the previous filter stage.

• The number of bits of the first filter stage should be greater than or
equal to the quantity Bmax.

The formula for Bmax, the most significant bit at the filter output, is
given in the Hogenauer paper.

10-91

CIC Decimation

where Bin is the number of bits of the input. You can choose whether the
simulation will Warn, Error, or Ignore when the number of bits of the
first filter stage is less than Bmax.

The conversions denoted by the Convert blocks in the decimator
diagrams in “CIC Filter Structures” on page 10-89 perform the changes
between the word lengths of each stage. When you specify word lengths
that do not follow the constraints described in this section, the block
returns an error.

When you specify the word lengths correctly, the most significant bit
Bmax stays the same throughout the filter, while the word length of each
stage either decreases or stays the same. This can cause the fraction
length to change throughout the filter as least significant bits are
truncated to decrease the word length, as shown in Decimator Word
Lengths and Fraction Lengths on page 10-91.

When you select Same as final filter stage for the Output data
type parameter, the final conversion shown in “CIC Filter Structures”
on page 10-89 is not performed.

Sharing Models

You can share models that include CIC Decimation blocks among
different people in your company, whether they have the Filter Design
Toolbox installed or not. If you have the Filter Design Toolbox installed,
you can configure a CIC Decimation block by selecting Multirate
object in workspace for the Filter specified via parameter and
entering a multirate filter object name in the Multirate filter variable
parameter. As long as you run the model first, you can then share it
with others who have the Signal Processing Blockset, even if they do
not have the Filter Design Toolbox installed. When the Filter Design
Toolbox is not installed, the block dialog parameters will automatically
be populated with the values that correspond to the multirate filter
object with which you ran the model previously.

10-92

CIC Decimation

Dialog
Box

Filter specified via
Choose to design the CIC filter either through parameters in the
dialog, or by defining a CIC multirate filter object (mfilt) in the

10-93

CIC Decimation

MATLAB workspace. This parameter is only visible when you
have the Filter Design Toolbox installed.

Multirate filter variable
Specify the multirate filter variable that you have defined in
the MATLAB workspace that defines the CIC filter you want to
create. This parameter is only visible when you select Multirate
object in workspace for the Filter specified via parameter.

The variable name you enter into this field must be the name of a
filter object created with mfilt.cicdecim, a Filter Design Toolbox
function.

Filter structure
Select one of the following CIC filter structures:

• Decimator — CIC decimator with latency N

• Zero-latency decimator — Classical Hogenauer CIC decimator
with zero latency

Refer to “CIC Filter Structures” on page 10-89 for diagrams of
these filter structures.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Decimation factor (R)
Specify the decimation factor of the filter.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Resampler phase (0 to R-1)
Specify the number of sample periods by which to delay the
downsample operation internal to the CIC filter. The resampler
phase must be an integer between 0 and 1 less than the
decimation factor.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

10-94

CIC Decimation

Differential delay (M)
Specify the differential delay of the comb portion of the filter, M, as
shown in the diagrams in “CIC Filter Structures” on page 10-89.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Number of stages (N)
Specify the number of filter stages. This number is equal to the
number of stages in either the comb portion of the filter or in the
integrator portion of the filter. This value is not equal to the total
number of stages in the comb and integrator sections combined.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Word length for each of the (2*N) filter stages
Enter the word length, in bits, of each of the stages of the filter.
You need to enter a value for each stage in both the integrator and
comb sections of the filter. Therefore, you need to enter a vector of
length (2*N).

Alternately, you can enter a single integer when the word lengths
of all the filter stages are the same.

The word lengths of the filter stages of a decimator must be
nonincreasing. For more information about valid values for this
parameter, refer to “Constraints and Conversions” on page 10-91.

Note The word length of the input signal to the block must be
shorter than the word length that you designate for the first filter
stage (in accordance with the equation for Bmax in “Constraints
and Conversions” on page 10-91). Otherwise, the block will return
an error.

10-95

CIC Decimation

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Output data type
Choose how you will specify the output word length and fraction
length. Refer to the table Decimator Word Lengths and Fraction
Lengths on page 10-91 for more information.

• When you select Same as final filter stage, the final
conversion shown in the diagrams in “CIC Filter Structures”
on page 10-89 is not performed. Therefore, the output word
length is the same as the final filter stage word length, and
the output fraction length is

Stage(N-1)FL + (Stage(N)WL - Stage(N-1)WL)

where Stage(N) is the final filter stage, as shown in the table
Decimator Word Lengths and Fraction Lengths on page 10-91.

• When you select Same as input, these characteristics will
match those of the block input.

• When you select User-defined, the Output word length
parameter appears. You define the word length of the output,
and the output fraction length is

FinalStageFL + (OutputWL - FinalStageWL)

as shown in Decimator Word Lengths and Fraction Lengths
on page 10-91.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Output word length
Specify the word length of the output of the filter in bits. This
parameter is only visible when you select User-defined for the
Output data type parameter.

Action when first stage word length is less than Bmax
Choose whether the simulation will Warn, Error, or Ignore when
the number of bits of the first filter stage is less than Bmax.

10-96

CIC Decimation

Launch Filter Visualization Tool (FVTool)
Select to open the Filter Visualization Tool. Deselect to close
FVTool. For more information on this GUI, refer to the fvtool
reference page in the Signal Processing Toolbox User’s Guide
documentation.

This check box is only visible when you have the Filter Design
Toolbox installed.

References [1] Donadio, M., Cascaded Integrator-Comb (CIC) Filter Introduction,
http://www.dspguru.com/info/tutor/cic.htm

[2] Frerking, Marvin E., Digital Signal Processing in Communications
Systems, Kluwer Academic Publishers, 1994.

[3] Hogenauer, E.B., “An Economical Class of Digital Filters for
Decimation and Interpolation,” IEEE Transactions on Acoustics, Speech
and Signal Processing, ASSP-29(2): pp. 155-162, 1981.

[4] LogicCore Cascaded Integrator-Comb
(CIC) Filter V3.0 (product specification)
http://www.xilinx.com/ipcenter/catalog/logicore/docs/cic.pdf

[5] Meyer-Baese, U., Digital Signal Processing with Field Programmable
Gate Arrays, Springer Verlag, 2001.

Supported
Data
Types

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

CIC Interpolation Signal Processing Blockset

FIR Decimation Signal Processing Blockset

10-97

http://www.dspguru.com/info/tutor/cic.htm
http://www.xilinx.com/ipcenter/catalog/logicore/docs/cic.pdf

CIC Decimation

FIR Interpolation Signal Processing Blockset

filter Filter Design Toolbox

mfilt.cicdecim Filter Design Toolbox

mfilt.cicinterp Filter Design Toolbox

10-98

CIC Interpolation

Purpose Interpolate signal using Cascaded Integrator-Comb filter

Library Filtering / Multirate Filters

Description The CIC Interpolation block performs a sample rate increase
(interpolation) on an input signal by an integer factor. Cascaded
Integrator-Comb (CIC) filters are a class of linear phase FIR filters
comprised of a comb section and an integrator section.

The transfer function of a CIC interpolator filter is

where

• HI is the transfer function of the integrator portion of the filter.

• HC is the transfer function of the comb portion of the filter.

• N is the number of stages. The number of stages in a CIC filter is
defined as the number of stages in either the comb section or the
integrator section of the filter, not as the total number of stages
throughout the entire filter.

• R is the interpolation factor.

• M is the differential delay.

The CIC Interpolation block supports real and complex fixed-point
inputs. Each channel of a complex input is treated as two real input
channels.

CIC Filter Structures

Some of the filter structures supported by the CIC Interpolation and
CIC Decimation blocks exactly match those created by the mfilt CIC
objects of the Filter Design Toolbox. If you have the Filter Design
Toolbox installed, you can create an mfilt object in the MATLAB
workspace to specify in the Multirate filter variable parameter of this

10-99

CIC Interpolation

block. Otherwise, you can specify the CIC filter completely using only
block dialog parameters. Using the block parameters also allows you to
specify a resampler phase R for the filter, and to specify that the word
length of the output should be the same as that of the final filter stage.

This block can be used to create either of the following CIC filter
structures:

• “Interpolator” on page 10-100

• “Zero-latency interpolator” on page 10-100

Interpolator

This interpolator has a latency of N, where N is the number of stages in
either the comb or the integrator section of the filter.

Zero-latency interpolator

This filter is the classical Hogenauer CIC interpolator, which has zero
latency.

The word length and fraction length at each stage of the interpolator
are shown in the following table. When you select User-defined for the
Filter stages word length mode parameter, you specify the word
length for each filter stage in the Word length for each of the (2*N)
filter stages parameter. When you select Use minimum number of
bits per stage, the filter stage word lengths are automatically set to
the minimum number of bits possible in a valid CIC interpolator, in

10-100

CIC Interpolation

accordance with the formula for Wj in “Constraints and Conversions” on
page 10-101. The calculation for each fraction length is shown below:

Interpolator Word Lengths and Fraction Lengths

Word Length Fraction Length

Filter Input InputWL InputFL

1st Stage Output StageOneWL InputFL

Nth Stage Output Stage(N)WL InputFL

Filter Output OutputWL InputFL + (OutputWL - FinalStageWL)

Constraints and Conversions

The classic paper on CIC filters by Eugene B. Hogenauer, "An
Economical Class of Digital Filters for Decimation and Interpolation"
[3], describes the constraints on CIC interpolator filters. These
constraints are enforced by the CIC Interpolation block.

CIC interpolators have the following two constraints:

• The word lengths of the filter stages must be nondecreasing. That
is, the word length of each filter stage must be the same size as, or
greater than, the word length of the previous filter stage.

• The word length of each filter stage must be greater than or equal
to the quantity Wj.

The formula for Wj, the minimum register width, is derived in the
Hogenauer paper. The formula for Wj is given by

where Gj, the maximum register growth up to the jth stage, is given by

10-101

CIC Interpolation

When the differential delay, M, is 1, there is also a special condition for
the register width of the last comb, WN, that is given by

The conversions denoted by the Convert blocks in the integrator
diagrams in “CIC Filter Structures” on page 10-89 perform the changes
between the word lengths of each stage. When you specify word lengths
that do not follow the constraints described in this section, the block
returns an error.

The fraction lengths and scalings of the filter stages will not change,
because at each stage the word length is either staying the same or
increasing. The scaling of the signal can change at the output after the
final filter stage if you choose the output word length to be less than the
word length of the final filter stage.

When you select Same as final filter stage for the Output data
type parameter, the final conversion shown in “CIC Filter Structures”
on page 10-99 is not performed.

Sharing Models

You can share models that include CIC Interpolation blocks among
different people in your company, whether they have the Filter Design
Toolbox installed or not. If you have the Filter Design Toolbox installed,
you can configure a CIC Interpolation block by selecting Multirate
object in workspace for the Filter specified via parameter and
entering a multirate filter object name in the Multirate filter variable
parameter. As long as you run the model first, you can then share it
with others who have the Signal Processing Blockset, even if they do
not have the Filter Design Toolbox installed. When the Filter Design
Toolbox is not installed, the block dialog parameters will automatically
be populated with the values that correspond to the multirate filter
object with which you ran the model previously.

10-102

CIC Interpolation

Dialog
Box

Filter specified via
Choose to design the CIC filter either through parameters in the
dialog, or by defining a CIC multirate filter object (mfilt) in the
MATLAB workspace. This parameter is only visible when you
have the Filter Design Toolbox installed.

10-103

CIC Interpolation

Multirate filter variable
Specify the multirate filter variable that you have defined in
the MATLAB workspace that defines the CIC filter you want to
create. This parameter is only visible when you select Multirate
object in workspace for the Filter specified via parameter.

The variable name you enter into this field must be the name of a
filter object created with mfilt.cicinterp, a Filter Design Toolbox
function.

Filter structure
Select one of the following CIC filter structures:

• Interpolator — CIC interpolator with latency N

• Zero-latency interpolator — Classical Hogenauer CIC
interpolator with zero latency

Refer to “CIC Filter Structures” on page 10-99 for diagrams of
these filter structures.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Interpolation factor (R)
Specify the interpolation factor of the filter.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Resampler phase (0 to R-1)
Specify the number of sample periods by which to delay the
upsample operation internal to the CIC filter. The resampler
phase must be an integer between 0 and 1 less than the
interpolation factor.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

10-104

CIC Interpolation

Differential delay (M)
Specify the differential delay of the comb portion of the filter, M, as
shown in the diagrams in “CIC Filter Structures” on page 10-89.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Number of stages (N)
Specify the number of filter stages. This number is equal to the
number of stages in either the comb portion of the filter or in the
integrator portion of the filter. This value is not equal to the total
number of stages in the comb and integrator sections combined.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Filter stages word length mode
Specify the method by which the word lengths of the filter stages
are determined.

• When you select Use minimum number of bits per stage,
the filter stage word lengths are automatically set to the
minimum number of bits possible in a valid CIC interpolator,
in accordance with the formula for Wj in “Constraints and
Conversions” on page 10-101.

• When you select User-defined, the Word length for each of
the (2*N) filter stages parameter appears.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Word length for each of the (2*N) filter stages
Enter the word length, in bits, of each of the stages of the filter.
You need to enter a value for each stage in both the integrator and
comb sections of the filter. Therefore, you need to enter a vector of
length (2*N).

10-105

CIC Interpolation

Alternately, you can enter a single integer if the word lengths of
all the filter stages are the same.

The word lengths of the filter stages of an interpolator must be
nondecreasing. For more information about valid values for this
parameter, refer to “Constraints and Conversions” on page 10-91.

Note The word length of the input signal to the block must be
shorter than the word length that you designate for the first filter
stage (in accordance with the formula for Wj in “Constraints and
Conversions” on page 10-101). Otherwise, the block will return
an error.

This parameter is only visible when you select Dialog for
the Filter specified via parameter, and when you select
User-defined for the Filter stages word length mode
parameter.

Output data type
Choose how you will specify the output word length and fraction
length. Refer to the table Interpolator Word Lengths and Fraction
Lengths on page 10-101 for more information.

• When you select Same as final filter stage, the final
conversion shown in the diagrams in “CIC Filter Structures”
on page 10-99 is not performed. Therefore, the output word
length is the same as the final filter stage word length, and the
output fraction length is the input fraction length, as shown in
the table Interpolator Word Lengths and Fraction Lengths on
page 10-101.

• When you select Same as input, these characteristics will
match those of the block input.

• When you select User-defined, the Output word length
parameter appears. You define the word length of the output,
and the output fraction length is

10-106

CIC Interpolation

InputFL + (OutputWL - FinalStageWL)

as shown in Interpolator Word Lengths and Fraction Lengths
on page 10-101.

This parameter is only visible when you select Dialog for the
Filter specified via parameter.

Output word length
Specify the word length of the output of the filter in bits. This
parameter is only visible when you select User-defined for the
Output data type parameter.

Launch Filter Visualization Tool (FVTool)
Select to open the Filter Visualization Tool. Deselect to close
FVTool. For more information on this GUI, refer to the fvtool
reference page in the Signal Processing Toolbox User’s Guide
documentation.

This check box is only visible when you have the Filter Design
Toolbox installed.

Framing
Specify the method by which to implement the interpolation for
frame-based inputs, Maintain input frame size or Maintain
input frame rate.

References [1] Donadio, M., Cascaded Integrator-Comb (CIC) Filter Introduction,
http://www.dspguru.com/info/tutor/cic.htm

[2] Frerking, Marvin E., Digital Signal Processing in Communications
Systems, Kluwer Academic Publishers, 1994.

[3] Hogenauer, E.B., “An Economical Class of Digital Filters for
Decimation and Interpolation,” IEEE Transactions on Acoustics, Speech
and Signal Processing, ASSP-29(2): pp. 155-162, 1981.

[4] LogicCore Cascaded Integrator-Comb
(CIC) Filter V3.0(product specification)
http://www.xilinx.com/ipcenter/catalog/logicore/docs/cic.pdf

10-107

http://www.dspguru.com/info/tutor/cic.htm
http://www.xilinx.com/ipcenter/catalog/logicore/docs/cic.pdf

CIC Interpolation

[5] Meyer-Baese, U., Digital Signal Processing with Field Programmable
Gate Arrays, Springer Verlag, 2001.

Supported
Data
Types

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

CIC Decimation Signal Processing Blockset

FIR Decimation Signal Processing Blockset

FIR Interpolation Signal Processing Blockset

filter Filter Design Toolbox

mfilt.cicdecim Filter Design Toolbox

mfilt.cicinterp Filter Design Toolbox

10-108

Complex Cepstrum

Purpose Compute complex cepstrum of input

Library Transforms

Description The Complex Cepstrum block computes the complex cepstrum of
each channel in the real-valued M-by-N input matrix, u. For both
sample-based and frame-based inputs, the block assumes that each
input column is a frame containing M consecutive samples from an
independent channel. The block does not accept complex-valued inputs.

The input is altered by the application of a linear phase term so that
there is no phase discontinuity at ±π radians. That is, each input
channel is independently zero padded and circularly shifted to have
zero phase at π radians.

The output is a real Mo-by-N matrix, where Mo is specified by the FFT
length parameter. Each output column contains the length-Mo complex
cepstrum of the corresponding input column.

y = cceps(u,Mo) % Equivalent MATLAB code

When you select the Inherit FFT length from input port
dimensions check box, the output frame size matches the input frame
size (Mo=M). In this case, a sample-based length-M row vector input is
processed as a single channel (that is, as an M-by-1 column vector),
and the output is a length-M row vector. A 1-D vector input is always
processed as a single channel, and the output is a 1-D vector.

The output is always sample based, and the output port rate is the
same as the input port rate.

10-109

Complex Cepstrum

Dialog
Box

Inherit FFT length from input port dimensions
When selected, matches the output frame size to the input frame
size.

FFT length
The number of frequency points at which to compute the FFT,
which is also the output frame size, Mo. This parameter is
available when you do not select Inherit FFT length from
input port dimensions.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

DCT Signal Processing Blockset

FFT Signal Processing Blockset

10-110

Complex Cepstrum

Real Cepstrum Signal Processing Blockset

cceps Signal Processing Toolbox

10-111

Complex Exponential

Purpose Compute complex exponential function

Library Math Functions / Math Operations

Description The Complex Exponential block computes the complex exponential
function for each element of the real input, u.

where . The output is complex, with the same size and frame
status as the input.

Dialog
Box

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Math Function Simulink

Sine Wave Signal Processing Blockset

exp MATLAB

10-112

Constant Diagonal Matrix

Purpose Generate square, diagonal matrix

Library • Signal Processing Sources

• Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Constant Diagonal Matrix block outputs a square diagonal matrix
constant. The Constant along diagonal parameter determines the
values along the matrix diagonal. This parameter can be a scalar to be
repeated for all elements along the diagonal, or a vector containing the
values of the diagonal elements. To generate the identity matrix, set
the Constant along diagonal to 1, or use the Identity Matrix block.

The output is frame based when you select the Frame-based output
check box; otherwise, the output is sample based.

Dialog
Box

The Main pane of the Constant Diagonal Matrix block dialog appears
as follows:

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Constant(s) along diagonal
Specify the values of the elements along the diagonal. You can
input a scalar or a vector. Tunable.

10-113

Constant Diagonal Matrix

When you specify any data type information in this field, it is
overridden by the value of the Output data type parameter
on the Data Types pane, unless you select Inherit from
'Constant(s) along diagonal'.

Frame-based output
Select to cause the output of the block to be frame based.
Otherwise, the output is sample based.

The Data types pane of the Constant Diagonal Matrix block dialog
appears as follows:

Output data type
Specify the output data type in one of the following ways:

• Choose one of the built-in data types from the list.

• Choose Fixed-point to specify the output data type and scaling
in the Signed, Word length, Set fraction length in output
to, and Fraction length parameters.

10-114

Constant Diagonal Matrix

• Choose User-defined to specify the output data type and
scaling in the User-defined data type, Set fraction length
in output to, and Fraction length parameters.

• Choose Inherit from 'Constant(s) along diagonal' to set
the output data type and scaling to match the values of the
Constant(s) along diagonal parameter on the Main pane.

• Choose Inherit via back propagation to set the output data
type and scaling to match the next block downstream.

The value of this parameter overrides any data type information
specified in the Constant(s) along diagonal parameter on the
Main pane, except when you select Inherit from 'Constant(s)
along diagonal'.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is only visible when you select
Fixed-point for the Output data type parameter.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

10-115

Constant Diagonal Matrix

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible when you select Fixed-point
for the Output data type parameter, or when you select
User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Create Diagonal Matrix Signal Processing Blockset

DSP Constant Signal Processing Blockset

Identity Matrix Signal Processing Blockset

diag MATLAB

10-116

Constant Ramp

Purpose Generate ramp signal with length based on input dimensions

Library Signal Operations

Description The Constant Ramp block generates the constant ramp signal

y = (0:L-1)*m + b

where m is the slope specified by the scalar Slope parameter, and b is
the y-intercept specified by the scalar Offset parameter.

For a matrix input, the length L of the output ramp is equal to either the
number of rows or the number of columns in the input, as determined
by the Ramp length equals number of parameter. For a 1-D vector
input, L is equal to the length of the input vector. The output, y, is
always a 1-D vector.

Dialog
Box

The Main pane of the Constant Ramp block dialog appears as follows:

10-117

Constant Ramp

Ramp length equals number of
Specify the dimension of the input matrix that determines the
length of the output ramp, Rows or Columns.

Slope
Specify the scalar slope of the ramp.

Offset
Specify the scalar y-intercept of the ramp.

The Data types pane of the Constant Ramp block dialog appears as
follows:

Output data type
Specify the output data type in one of the following ways:

• Choose Same as input to force the data type of the output to
be the same as the data type of the input to the block.

• Choose one of the built-in data types from the list.

• Choose Fixed-point to specify the output data type and scaling
in the Signed, Word length, Set fraction length in output
to, and Fraction length parameters.

10-118

Constant Ramp

• Choose User-defined to specify the output data type and
scaling in the User-defined data type, Set fraction length
in output to, and Fraction length parameters.

• Choose Inherit via back propagation to set the output data
type and scaling to match the next block downstream.

This block differs from other Signal Processing Blockset blocks in
that unless you choose Same as input for this parameter, the
data types of the input and the output do not need to be the same.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is only visible when you select
Fixed-point for the Output data type parameter.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

10-119

Constant Ramp

This parameter is only visible when you select Fixed-point
for the Output data type parameter, or when you select
User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

This block differs from other Signal Processing Blockset blocks in that
unless you choose Same as input for the Output data type parameter,
the data types of the input and the output do not need to be the same.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Create Diagonal Matrix Signal Processing Blockset

DSP Constant Signal Processing Blockset

Identity Matrix Signal Processing Blockset

10-120

Contiguous Copy

Purpose Create a discontiguous input in a contiguous block of memory for
Real-Time Workshop code generated from blocks linked to versions
of the DSP Blockset prior to 4.0

Library dspobslib

Description
Note The Contiguous Copy block is still supported but is likely to be
obsoleted in a future release.

The Contiguous Copy block copies the input to a contiguous block of
memory, and passes this new copy to the output. The output is identical
to the input, but is guaranteed to reside in a contiguous section of
memory.

Because Simulink employs an efficient copy-by-reference method for
propagating data in a model, some operations produce outputs with
discontiguous memory locations.

Although this does not present a problem during simulation, blocks
linked to versions of the DSP Blockset prior to 4.0 may require
contiguous inputs for code generation with Real-Time Workshop. When
such blocks are used in a model intended for code generation, they
should be preceded by the Contiguous Copy block to ensure that their
inputs are contiguous.

Dialog
Box

10-121

Contiguous Copy

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

10-122

Convert 1-D to 2-D

Purpose Reshape 1-D or 2-D input to a 2-D matrix with specified dimensions

Library Signal Management / Signal Attributes

Description The Convert 1-D to 2-D block reshapes a length-Mi 1-D vector or
an Mi-by-Ni matrix to an Mo-by-No matrix, where Mo is specified by
the Number of output rows parameter, and No is specified by the
Number of output columns parameter.

y = reshape(u,Mo,No) % Equivalent MATLAB code

The input is reshaped columnwise, as shown in the two cases below.
The length-6 vector and the 2-by-3 matrix are both reshaped to the
same 3-by-2 output matrix.

An error is generated when (Mo*No)≠(Mi*Ni). That is, the total number
of input elements must be conserved in the output.

The output is frame based when you select the Frame-based output
check box; otherwise, the output is sample based.

10-123

Convert 1-D to 2-D

Dialog
Box

Number of output rows
The number of rows, Mo, in the output matrix.

Number of output columns
The number of rows, No, in the output matrix.

Frame-based output
Creates a frame-based output when selected.

10-124

Convert 1-D to 2-D

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Convert 2-D to 1-D Signal Processing Blockset

Frame Status Conversion Signal Processing Blockset

Reshape Simulink

Submatrix Signal Processing Blockset

10-125

Convert 2-D to 1-D

Purpose Convert 2-D matrix input to 1-D vector

Library Signal Management / Signal Attributes

Description The Convert 2-D to 1-D block reshapes an M-by-N matrix input to a 1-D
vector with length M*N.

y = u(:) % Equivalent MATLAB code

The input is reshaped columnwise, as shown below for a 3-by-2 matrix.

The output is always sample-based.

Dialog
Box

10-126

Convert 2-D to 1-D

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Convert 1-D to 2-D Signal Processing Blockset

Frame Status Conversion Signal Processing Blockset

10-127

Convert 2-D to 1-D

Reshape Simulink

Submatrix Signal Processing Blockset

10-128

Convolution

Purpose Compute convolution of two inputs

Library Signal Operations

Description The Convolution block mathematically convolves analogous columns of
an Mu-by-N input matrix u and an Mv-by-N input matrix v. This block
can also independently convolve a single-channel column vector with
each channel of a multiple-channel matrix.

The Convolution block does not accept sample-based full-dimension
matrix inputs, or mixed sample-based row vector and column vector
inputs. All outputs are sample based.

The Convolution block accepts both real and complex floating-point
and fixed-point inputs. Fixed-point signals are not supported for the
frequency domain.

Convolving Frame-Based Inputs

Matrix inputs to the Convolution block must be frame based. The
output, y, is a frame-based (Mu+Mv-1)-by-N matrix whose jth column
has elements

Inputs u and v are zero when indexed outside of their valid ranges.
When both inputs are real, the output is real; when one or both inputs
are complex, the output is complex.

When one input is a column vector (single channel) and the other is a
matrix (multiple channels), the single-channel input is independently
convolved with each channel of the multichannel input. For example,
when u is a Mu-by-1 column vector and v is an Mv-by-N matrix, the
output is an (Mu+Mv-1)-by-N matrix whose jth column has elements

10-129

Convolution

Convolving Sample-Based Inputs

When u and v are sample-based vectors with lengths Mu and Mv, the
Convolution block performs the vector convolution

The dimensions of the sample-based output vector are determined by
the dimensions of the input vectors:

• When both inputs are row vectors, or when one input is a row vector
and the other is a 1-D vector, the output is a 1-by-(Mu+Mv-1) row
vector.

• When both inputs are column vectors, or when one input is a column
vector and the other is a 1-D vector, the output is a (Mu+Mv-1)-by-1
column vector.

• When both inputs are 1-D vectors, the output is a 1-D vector of
length Mu+Mv-1.

Fixed-Point Data Types

The following diagram shows the data types used within the
Convolution block for fixed-point signals (time domain only).

10-130

Convolution

You can set the product output, accumulator, and output data types in
the block dialog as discussed below.

The output of the multiplier is in the product output data type
when the input is real. When the input is complex, the result of the
multiplication is in the accumulator data type. For details on the
complex multiplication performed, refer to “Multiplication Data Types”
on page 8-16.

Dialog
Box

The Main pane of the Convolution block dialog appears as follows:

Computation domain
Set the domain in which the block computes convolutions:

• Time — The block computes in the time domain, which
minimizes memory use.

10-131

Convolution

• Frequency — The block computes in the frequency domain,
which might require fewer computations than computing in the
time domain, depending on the input length.

• Fastest — The block computes in the domain, which minimizes
the number of computations.

The Fixed-point pane of the Convolution block dialog appears as
follows:

Note Fixed-point signals are only supported for the time domain. To
use the parameters on this pane, make sure Time is selected for the
Computation domain parameter on the Main pane.

10-132

Convolution

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-8 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product

10-133

Convolution

output. This block requires power-of-two slope and a bias of
zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and
fraction lengths resulting from a complex-complex multiplication
in the block. Refer to “Multiplication Data Types” on page 8-16 for
more information.

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

If at least one of the inputs is real:

10-134

Convolution

If both inputs are complex:

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the data type and scaling of the
output of the block:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and both block inputs are complex.
In that case, the output word length will be one less than the
accumulator word length.

10-135

Convolution

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Correlation Signal Processing Blockset

conv MATLAB

10-136

Correlation

Purpose Compute cross-correlation of two inputs

Library Statistics

Description The Correlation block computes the cross-correlation of analogous
columns of an Mu-by-N input matrix u and an Mv-by-N input matrix
v. This block can also independently cross-correlate a single-channel
column vector with each channel of a multiple-channel matrix.

The frame status of both inputs to the Correlation block must be the
same. The block does not accept sample-based full-dimension matrix
inputs or 2-D row vector inputs. The outputs are always sample based.

The Convolution block accepts both real and complex floating-point
and fixed-point inputs. Fixed-point signals are not supported for the
frequency domain.

Correlating Frame-Based Inputs

Matrix inputs to the Correlation block must be frame based. The
output, y, is a frame-based (Mu+Mv-1)-by-N matrix whose jth column
has elements

where * denotes the complex conjugate. Inputs u and v are zero when
indexed outside of their valid ranges. When both inputs are real,
the output is real; when one or both inputs are complex, the output
is complex.

When one input is a column vector (single channel) and the other is a
matrix (multiple channels), the single-channel input is independently
cross-correlated with each channel of the multichannel input. For
example, when u is a Mu-by-1 column vector and v is an Mv-by-N matrix,
the output is an (Mu+Mv-1)-by-N matrix whose jth column has elements

10-137

Correlation

Correlating Sample-Based Inputs

The Correlation block does not support sample-based matrix inputs
or 2-D row vector inputs. Therefore, all sample-based inputs are
column vectors or 1-D vectors. When u and v are sample-based vectors
with lengths Mu and Mv, the Correlation block performs the vector
cross-correlation

The dimensions of the sample-based output vector are determined by
the dimensions of the input vectors:

• When both inputs are column vectors, or when one input is a column
vector and the other is a 1-D vector, the output is a (Mu+Mv-1)-by-1
column vector.

• When both inputs are 1-D vectors, the output is a 1-D vector of
length Mu+Mv-1.

Fixed-Point Data Types

The following diagram shows the data types used within the Correlation
block for fixed-point signals (time domain only).

10-138

Correlation

You can set the product output, accumulator, and output data types in
the block dialog as discussed below.

The output of the multiplier is in the product output data type
when the input is real. When the input is complex, the result of the
multiplication is in the accumulator data type. For details on the
complex multiplication performed, refer to “Multiplication Data Types”
on page 8-16.

10-139

Correlation

Dialog
Box

The Main pane of the Correlation block dialog appears as follows:

Computation domain
Set the domain in which the block computes correlations:

• Time — The block computes in the time domain, which
minimizes memory use.

• Frequency — The block computes in the frequency domain,
which might require fewer computations than computing in the
time domain, depending on the input length.

• Fastest — The block computes in the domain, which minimizes
the number of computations.

10-140

Correlation

The Fixed-point pane of the Correlation block dialog appears as
follows:

Note Fixed-point signals are only supported for the time domain. To
use the parameters on this pane, make sure Time is selected for the
Computation domain parameter on the Main pane.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point

10-141

Correlation

Data Types” on page 10-8 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

10-142

Correlation

Accumulator

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and
fraction lengths resulting from a complex-complex multiplication
in the block. Refer to “Multiplication Data Types” on page 8-16 for
more information.

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

If at least one of the inputs is real:

10-143

Correlation

If both inputs are complex:

ideal accumulator fraction length
ideal product output fra

=
cction length

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the word length and fraction length of
the output of the block:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and both block inputs are complex.

10-144

Correlation

In that case, the output word length will be one less than the
accumulator word length.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-145

Correlation

See Also

Autocorrelation Signal Processing Blockset

Convolution Signal Processing Blockset

xcorr Signal Processing Toolbox

10-146

Counter

Purpose Count up or down through specified range of numbers

Library Signal Management / Switches and Counters

Description The Counter block increments or decrements an internal counter each
time it receives a trigger event at the Clk port. A trigger event at the
Rst port resets the counter to its initial state.

The input to the Rst port must be a real sample based scalar. The input
to the Clk port can be a real sample-based scalar, or a real frame-based
vector (that is, single channel). When both inputs are sample based,
they must have the same sample period. When the Clk input is frame
based, the frame period must equal the sample period of the Rst input.

Sections of This Reference Page

• “Setting the Count Event Parameter” on page 10-147

• “Setting the Counter Size and Initial Count Parameters” on page
10-149

• “Sample-Based Operation” on page 10-150

• “Frame-Based Operation” on page 10-151

• “Free-Running Operation” on page 10-151

• “Examples” on page 10-152

• “Dialog Box” on page 10-155

• “Supported Data Types” on page 10-157

• “See Also” on page 10-158

Setting the Count Event Parameter

The trigger event for both inputs is specified by the Count event
parameter, and can be one of the following:

• Rising edge — Triggers a count or reset operation when the Clk or
Rst input does one of the following:

10-147

Counter

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

• Falling edge — Triggers a count or reset operation when the Clk or
Rst input does one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a count or reset operation when the Clk or
Rst input is a Rising edge or Falling edge (as described above).

10-148

Counter

• Non-zero sample — Triggers a count or reset operation at each
sample time when the Clk or Rst input is not zero.

• Free running disables the Clk port, and enables the Samples per
output frame and Sample time parameters. The block increments
or decrements the counter at a constant interval, Ts, specified by the
Sample time parameter (for more information, see “Free-Running
Operation” on page 10-151). The Rst port behaves as if the Count
event parameter were set to Non-zero sample.

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset and clock signals have one frame of latency. Thus,
there is a one-sample or one-frame delay between the time the block
detects a trigger event at the Clk or Rst port, and when it applies the
trigger. For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page
2-56 and “Models with Multiple Sample Rates” in the Real-Time
Workshop User’s Guide documentation.

When running simulations in the Simulink MultiTasking mode,
sample-based reset signals have a one-sample latency, and frame-based
reset signals have one frame of latency. Thus, there is a one-sample
or one-frame delay between the time the block detects a reset event,
and when it applies the reset. For more information on latency and
the Simulink tasking modes, see “Excess Algorithmic Delay (Tasking
Latency)” on page 2-56 and “Models with Multiple Sample Rates” in the
Real-Time Workshop User’s Guide documentation.

Setting the Counter Size and Initial Count Parameters

At the start of the simulation, the block sets the counter to the value
specified by the Initial count parameter, which can be any integer in
the range defined by the Counter size parameter. The Counter size
parameter allows you to choose from three standard counter ranges, or
to specify an arbitrary counter limit:

10-149

Counter

• 8 bits specifies a counter with a range of 0 to 255.

• 16 bits specifies a counter with a range of 0 to 65535.

• 32 bits specifies a counter with a range of 0 to 232-1.

• User defined enables the supplementary Maximum count
parameter, which allows you to specify an arbitrary integer as
the upper count limit. The range of the counter is then 0 to the
Maximum count value.

Sample-Based Operation

The block operates in sample-based mode when the Clk input is a
sample-based scalar. Sample-based vectors and matrices are not
accepted.

When the Count direction parameter is set to Up, a sample-based
trigger event at the Clk input causes the block to increment the counter
by one. The block continues incrementing the counter when triggered
until the counter value reaches the upper count limit (that is 255
for an 8-bit counter). At the next Clk trigger event, the block resets
the counter to 0, and resumes incrementing the counter with the
subsequent Clk trigger event.

When the Count direction parameter is set to Down, a sample-based
trigger event at the Clk input causes the block to decrement the counter
by one. The block continues decrementing the counter when triggered
until the counter value reaches 0. At the next Clk trigger event, the
block resets the counter to the upper count limit (that is 255 for an 8-bit
counter), and resumes decrementing the counter with the subsequent
Clk trigger event.

Between triggering events the block holds the output at its most recent
value. The block resets the counter to its initial state when the trigger
event specified in the Count event menu is received at the optional
Rst input. When trigger events are received simultaneously at the Clk
and Rst ports, the block first resets the counter, and then increments
or decrements appropriately. (If you do not need to reset the counter

10-150

Counter

during the simulation, you can disable the Rst port by clearing the
Reset input check box.)

The Output pop-up menu provides three options for the output port
configuration of the block icon:

• Count configures the block icon to show a Cnt port, which produces
the current value of the counter as a sample-based scalar with the
same sample period as the inputs.

• Hit configures the block icon to show a Hit port. The Hit port
produces zeros while the value of the counter does not equal the
integer Hit value parameter setting. When the counter value does
equal the Hit value setting, the block generates a value of 1 at the
Hit port. The output is sample based with the same sample period
as the inputs.

• Count and Hit configures the block icon with both ports.

Frame-Based Operation

The block operates in frame-based mode when the Clk input is a
frame-based vector (that is, single channel). Multichannel frame-based
inputs are not accepted.

Frame-based operation is the same as sample-based operation, except
that the block increments or decrements the counter by the total
number of trigger events contained in the Clk input frame. A trigger
event that is split across two consecutive frames is counted in the
frame that contains the conclusion of the event. When a trigger event
is received at the Rst port, the block first resets the counter, and then
increments or decrements the counter by the number of trigger events
contained in the Clk frame.

The Cnt and Hit outputs are sample-based scalars with sample period
equal to the Clk input frame period.

Free-Running Operation

The block operates in free-running mode when you select Free running
from the Count event menu.

10-151

Counter

The Rst port behaves as if the Count event parameter were set to
Non-zero sample (triggers a reset at each sample time that the Rst
input is not zero).

The Clk input port is disabled in this mode, and the block simply
increments or decrements the counter using the constant sample period
specified by the Sample time parameter, Ts. The Cnt output is a
frame-based M-by-1 matrix containing the count value at each of M
consecutive sample times, where M is specified by the Samples per
output frame parameter. The Hit output is a frame-based M-by-1
matrix containing the hit status (0 or 1) at each of those M consecutive
sample times. Both outputs have a frame period of M*Ts.

Examples In the model below, the Clk port of the Counter block is driven by the
Simulink Pulse Generator block, and the Rst port is triggered by an
N-Sample Enable block. All of the Counter block’s inputs and outputs
are multiplexed into a single To Workspace block using a 4-port Mux
block.

To run the model, first select Configuration Parameters from the
Simulation menu. In the Select pane, click Solver, and set the Stop
time to 30. Then adjust the block parameters as described below. (Use
the default settings for the Pulse Generator and To Workspace blocks.)

• Set the N-Sample Enable block parameters as follows:

- Trigger count = 6

- Active level = High (1)

10-152

Counter

• Set the Counter block parameters as follows:

- Count direction: Down

- Count event: Rising edge

- Counter size: User defined

- Maximum count: 20

- Initial count: 5

- Output: Count and Hit

- Hit value: 4

- Reset input

- Count data type: Double

- Hit data type: Logical

• Set the Number of inputs parameter of the Mux block to 4.

The figure below shows the first 22 samples of the model’s four-column
output, yout. The first column is the Counter block’s Clk input, the
second column is the block’s Rst input, the third column is the block’s
Cnt output, and the fourth column is the block’s Hit output.

10-153

Counter

You can see that the seventh input samples to both the Clk and Rst
ports of the Counter block represent trigger events (rising edges), so at
this time step the block first resets the counter to its initial value of 5,
and then immediately decrements the count to 4. When the counter
reaches its minimum value of 0, it rolls over to its maximum value of 20
with the following trigger event at the Cnt port.

10-154

Counter

Dialog
Box

Count direction
The counter direction, Up or Down. Tunable, except in the Simulink
external mode.

Count event
The type of event that triggers the block to increment, decrement,
or reset the counter when received at the Clk or Rst ports. Free
running disables the Clk port, and counts continuously with

10-155

Counter

the period specified by the Sample time parameter. For more
information on all the possible settings, see “Setting the Count
Event Parameter” on page 10-147.

Counter size
The range of integer values the block should count through before
recycling to zero. For more information, see “Setting the Counter
Size and Initial Count Parameters” on page 10-149.

Maximum count
The counter’s maximum value when Counter size is set to User
defined. Tunable.

Initial count
The counter’s initial value at the start of the simulation and after
reset. Tunable, except in the Simulink external mode.

Output
Selects the output port(s) to enable: Cnt, Hit, or both.

Hit value
The scalar value whose occurrence in the count should be flagged
by a 1 at the (optional) Hit output. This parameter is available
when Hit or Count and Hit are selected in the Output menu.
Tunable, except in the Simulink external mode.

Reset input
Enables the Rst input port when selected.

Samples per output frame
The number of samples, M, in each output frame. This parameter
is available when you select Free running in the Count event
menu.

Sample time
The output sample period, Ts, in free-running mode. This
parameter is available when you select Free running in the
Count event menu.

10-156

Counter

Count data type
The data type of the output from the Cnt output port. This
parameter is available when the Output parameter is set to
Count or Count and Hit.

Hit data type
The data type of the output from the Hit output port. For
information on the Logical and Boolean options of this
parameter, see “Effects of Enabling and Disabling Boolean
Support” on page 7-17. This parameter is available when the
Output parameter is set to Hit or the Output parameter is set
to Count and Hit and the Count data type parameter is set
to Double.

Supported
Data
Types Port Supported Data Types

Clk • Double-precision floating point

• Single-precision floating point

• Boolean

Rst • Double-precision floating point

• Single-precision floating point

• Boolean

10-157

Counter

Port Supported Data Types

Cnt • Double-precision floating point

• Single-precision floating point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Hit • Logical

• Boolean — The block might output Boolean values from
the Hit output port depending on the Hit data type
parameter setting, as described in “Effects of Enabling
and Disabling Boolean Support” on page 7-17. To learn
how to disable Boolean output support, see “Steps to
Disabling Boolean Support” on page 7-18.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Edge Detector Signal Processing Blockset

N-Sample Enable Signal Processing Blockset

N-Sample Switch Signal Processing Blockset

10-158

Covariance AR Estimator

Purpose Compute estimate of autoregressive (AR) model parameters using
covariance method

Library Estimation / Parametric Estimation

Description The Covariance AR Estimator block uses the covariance method to fit
an autoregressive (AR) model to the input data. This method minimizes
the forward prediction error in the least squares sense.

The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only) representing a frame of consecutive time samples
from a single-channel signal, which is assumed to be the output of an
AR system driven by white noise. The block computes the normalized
estimate of the AR system parameters, A(z), independently for each
successive input frame.

The order, p, of the all-pole model is specified by the Estimation order
parameter. To guarantee a valid output, you must set the Estimation
order parameter to be less than or equal to half the input vector length.

The top output, A, is a column vector of length p+1 with the same frame
status as the input, and contains the normalized estimate of the AR
model coefficients in descending powers of z.

[1 a(2) ... a(p+1)]

The scalar gain, G, is provided at the bottom output (G).

See the Burg AR Estimator block reference page for a comparison of the
Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR
Estimator, and Yule-Walker AR Estimator blocks.

10-159

Covariance AR Estimator

Dialog
Box

Estimation order
The order of the AR model, p. To guarantee a nonsingular output,
you must set p to be less than the input length. Otherwise, the
output might be singular.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported
Data
Types Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

A • Double-precision floating point

• Single-precision floating point

G • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and

10-160

Covariance AR Estimator

Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Burg AR Estimator Signal Processing Blockset

Covariance Method Signal Processing Blockset

Modified Covariance AR
Estimator

Signal Processing Blockset

Yule-Walker AR Estimator Signal Processing Blockset

arcov Signal Processing Toolbox

10-161

Covariance Method

Purpose Compute parametric spectral estimate using covariance method

Library Estimation / Power Spectrum Estimation

Description The Covariance Method block estimates the power spectral density
(PSD) of the input using the covariance method. This method fits an
autoregressive (AR) model to the signal by minimizing the forward
prediction error in the least squares sense. The order of the all-pole
model is the value specified by the Estimation order parameter, and
the spectrum is computed from the FFT of the estimated AR model
parameters. To guarantee a valid output, you must set the Estimation
order parameter to be less than or equal to half the input vector length.

The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only) representing a frame of consecutive time samples
from a single-channel signal. The block’s output (a column vector) is
the estimate of the signal’s power spectral density at Nfft equally spaced
frequency points in the range [0,Fs), where Fs is the signal’s sample
frequency.

When you select Inherit FFT length from input dimensions, Nfft
is specified by the frame size of the input, which must be a power of 2.
When you do not select Inherit FFT length from input dimensions,
Nfft is specified as a power of 2 by the FFT length parameter, and the
block zero pads or truncates the input to Nfft before computing the FFT.
The output is always sample based.

See the Burg Method block reference for a comparison of the Burg
Method, Covariance Method, Modified Covariance Method, and
Yule-Walker Method blocks.

10-162

Covariance Method

Dialog
Box

Estimation order
The order of the AR model. To guarantee a nonsingular output,
you must set the value of this parameter to be less than the input
length. Otherwise, the output might be singular.

Inherit FFT length from input dimensions
When selected, uses the input frame size as the number of data
points, Nfft, on which to perform the FFT. Tunable.

FFT length
The number of data points, Nfft, on which to perform the FFT.
When Nfft exceeds the input frame size, the frame is zero-padded
as needed. This parameter is enabled when you do not select
Inherit FFT length from input dimensions.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

10-163

Covariance Method

Supported
Data
Types Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

Output • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Burg Method Signal Processing Blockset

Covariance AR Estimator Signal Processing Blockset

Modified Covariance Method Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

pcov Signal Processing Toolbox

See “Power Spectrum Estimation” on page 6-6 for related information.

10-164

Create Diagonal Matrix

Purpose Create square diagonal matrix from diagonal elements

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Create Diagonal Matrix block populates the diagonal of the M-by-M
matrix output with the elements contained in the length-M vector
input, D. The elements off the diagonal are zero.

A = diag(D) Equivalent MATLAB code

The output is always sample based.

Dialog
Box

10-165

Create Diagonal Matrix

Supported
Data
Types

Port Supported Data Types

D • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

A • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Constant Diagonal Matrix Signal Processing Blockset

Extract Diagonal Signal Processing Blockset

diag MATLAB

10-166

Cumulative Product

Purpose Compute cumulative product of channel, column, or row elements

Library Math Functions / Math Operations

Description The Cumulative Product block computes the cumulative product of
elements in each channel, column, or row of the M-by-N input matrix.

The inputs can be sample-based or frame-based vectors and matrices.
The output always has the same dimensions, rate, frame status, data
type, and complexity as the input.

The Cumulative Product block accepts real and complex fixed-point
and floating-point inputs.

Sections of This Reference Page

• “Input and Output Characteristics” on page 10-167

• “Multiplying Along Channels” on page 10-168

• “Resetting the Cumulative Product Along Channels” on page 10-170

• “Multiplying Along Columns” on page 10-172

• “Multiplying Along Rows” on page 10-173

• “Dialog Box” on page 10-175

• “Supported Data Types” on page 10-179

• “See Also” on page 10-180

Input and Output Characteristics

Valid Input

The block computes the cumulative product of both sample- and
frame-based vector and matrix inputs. Inputs can be real or complex.
When multiplying along channels or columns, 1-D unoriented vectors
are treated as column vectors. When multiplying along rows, 1-D
vectors are treated as row vectors.

10-167

Cumulative Product

Valid Reset Signal

The optional reset port, Rst, accepts scalar values, which can be any
built-in Simulink data type including boolean. The rate of the reset
signal must be a positive integer multiple of the rate of the data signal
input.

Output Characteristics

The output always has the same dimensions, rate, frame status, data
type, and complexity as the data signal input.

Multiplying Along Channels

When the Multiply input along parameter is set to Channels
(running product), the block computes the cumulative product of the
elements in each input channel. The running product of the current
input takes into account the running product of all previous inputs. See
the following sections for more information:

• “Multiplying Along Channels of Frame-Based Inputs” on page 10-168

• “Multiplying Along Channels of Sample-Based Inputs” on page
10-169

• “Resetting the Cumulative Product Along Channels” on page 10-170

Multiplying Along Channels of Frame-Based Inputs

For frame-based inputs, the block treats each input column as an
independent channel. As the following figure and equation illustrate,
the output has the following characteristics:

• The first row of the first output is the same as the first row of the
first input.

• The first row of each subsequent output is the element-wise product
of the first row of the current input (time t), and the last row of the
previous output (time t - Tf, where Tf is the frame period).

• The output has the same size, dimension, frame status, data type,
and complexity as the input.

10-168

Cumulative Product

Given an M-by-N frame-based input, u, the output, y, is a frame-based
M-by-N matrix whose first row has elements

y t u t y t Tj j M j f1 1, , ,() = () ⋅ −()

Multiplying Along Channels of Sample-Based Inputs

For sample-based inputs, the block treats each element of the input
matrix as an independent channel. As the following figure and equation
illustrate, the output has the following characteristics:

• The first output is the same as the first input.

• Each subsequent output is the element-wise product of the current
input (time t) and the previous output (time t - Ts, where Ts is the
sample period).

• The output has the same size, dimension, frame status, data type,
and complexity as the input.

Given an M-by-N sample-based input, u, the output, y, is a sample-based
M-by-N matrix with the elements

10-169

Cumulative Product

For convenience, length-M 1-D vector inputs are treated as M-by-1
column vectors when multiplying along channels, and the output is a
length-M 1-D vector.

Resetting the Cumulative Product Along Channels

When you set the Multiply input along parameter to Channels
(running product), you can set the block to reset the running product
whenever it detects a reset event at the optional Rst port. The rate of
the reset signal must be a positive integer multiple of the rate of the
data signal input. The input to the Rst port can be of the Boolean data
type.

When the block is reset for sample-based inputs, the block initializes
the current output to the values of the current input. For frame-based
inputs, the block initializes the first row of the current output to the
values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one
of the following:

• None disables the Rst port.

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

10-170

Cumulative Product

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero

10-171

Cumulative Product

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when
the block detects a reset event, there is a one-sample delay at
the reset port rate before the block applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Multiplying Along Columns

When the Multiply input along parameter is set to Columns, the block
computes the cumulative product of each column of the input, where the
current cumulative product is independent of the cumulative products
of previous inputs.

y = cumprod(u) % Equivalent MATLAB code

The output has the same size, dimension, frame status, data type,
and complexity as the input. The mth output row is the element-wise
product of the first m input rows.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose
jth column has elements

y u i Mi j k j
k

i

, ,= ≤ ≤
=

∏
1

1

The block treats length-M 1-D vector inputs as M-by-1 column vectors
when multiplying along columns.

10-172

Cumulative Product

Multiplying Along Rows

When the Multiply input along parameter is set to Rows, the block
computes the cumulative product of the row elements, where the
current cumulative product is independent of the cumulative products
of previous inputs.

y = cumprod(u,2) % Equivalent MATLAB code

The output has the same size, dimension, frame status, and data type
as the input. The nth output column is the element-wise product of
the first n input columns.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose
ith row has elements

The block treats length-N 1-D vector inputs as 1-by-N row vectors when
multiplying along rows.

10-173

Cumulative Product

Fixed-Point Data Types

The following diagram shows the data types used within the Cumulative
Product block for fixed-point signals.

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” on page 8-16. You
can set the accumulator, product output, intermediate product, and
output data types in the block dialog as discussed in “Dialog Box” on
page 10-175.

10-174

Cumulative Product

Dialog
Box

The Main pane of the Cumulative Product block dialog appears as
follows:

Multiply input along
The dimension along which to compute the cumulative products.
The options allow you to multiply along Channels (running
product), Columns, and Rows. For more information, see the
following sections:

“Multiplying Along Channels” on page 10-168

“Multiplying Along Columns” on page 10-172

“Multiplying Along Rows” on page 10-173

10-175

Cumulative Product

Reset port
Determines the reset event that causes the block to reset the
product along channels. The rate of the reset signal must be
a positive integer multiple of the rate of the data signal input.
This parameter is enabled only when you set the Multiply
input along parameter to Channels (running product). For
more information, see “Resetting the Cumulative Product Along
Channels” on page 10-170.

The Fixed-point pane of the Cumulative Product block dialog appears
as follows:

Rounding mode
Select the rounding mode for fixed-point operations.

10-176

Cumulative Product

Overflow mode
Select the overflow mode for fixed-point operations.

Intermediate product
As shown in “Fixed-Point Data Types” on page 10-174, the output
of the multiplier is cast to the intermediate product data type
before the next element of the input is multiplied into it. Use
this parameter to specify how you would like to designate the
intermediate product word and fraction lengths:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the intermediate
product, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the intermediate
product. This block requires power-of-two slope and a bias of
zero.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-174 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

10-177

Cumulative Product

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-174 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the accumulator
data type in this block. Note that the accumulator data type is
only used when both inputs to the multiplier are complex:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the word length and fraction length of
the output of the block:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling

10-178

Cumulative Product

tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

Input
and
Output
Ports Supported Data Types

Data
input
port, In

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

Reset
input
port,
Rst

All built-in Simulink data types:

• Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output
port

Always has same data type as data input

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-179

Cumulative Product

See Also

Cumulative Sum Signal Processing Blockset

Matrix Product Signal Processing Blockset

cumprod MATLAB

10-180

Cumulative Sum

Purpose Compute cumulative sum of channel, column, or row elements

Library Math Functions / Math Operations

Description The Cumulative Sum block computes the cumulative sum of the
elements in each channel, column, or row of the M-by-N input matrix.

The inputs can be sample-based or frame-based vectors and matrices.
The output always has the same dimensions, rate, frame status, data
type, and complexity as the input.

The Cumulative Sum block accepts real and complex fixed-point and
floating-point inputs.

Sections of This Reference Page

• “Input and Output Characteristics” on page 10-181

• “Summing Along Channels” on page 10-182

• “Resetting the Cumulative Sum Along Channels” on page 10-184

• “Summing Along Columns” on page 10-186

• “Summing Along Rows” on page 10-187

• “Dialog Box” on page 10-189

• “Supported Data Types” on page 10-192

• “See Also” on page 10-192

Input and Output Characteristics

Valid Input

The block computes the cumulative sum of both sample- and
frame-based vector and matrix inputs. Inputs can be real or complex.
When summing along channels or columns, 1-D unoriented vectors are
treated as column vectors. When summing along rows, 1-D vectors
are treated as row vectors.

10-181

Cumulative Sum

Valid Reset Signal

The optional reset port, Rst, accepts scalar values, which can be any
built-in Simulink data type including boolean. The rate of the reset
signal must be a positive integer multiple of the rate of the data signal
input.

Output Characteristics

The output always has the same dimensions, rate, frame status, data
type, and complexity as the data signal input.

Summing Along Channels

When the Sum input along parameter is set to Channels (running
sum), the block computes the cumulative sum of the elements in each
input channel. The running sum of the current input takes into account
the running sum of all previous inputs. See the following sections for
more information:

• “Summing Along Channels of Frame-Based Inputs” on page 10-182

• “Summing Along Channels of Sample-Based Inputs” on page 10-183

• “Resetting the Cumulative Sum Along Channels” on page 10-184

Summing Along Channels of Frame-Based Inputs

For frame-based inputs, the block treats each input column as an
independent channel. As the following figure and equation illustrate,
the output has the following characteristics:

• The first row of the first output is the same as the first row of the
first input.

• The first row of each subsequent output is the sum of the first row
of the current input (time t), and the last row of the previous output
(time t - Tf, where Tf is the frame period).

• The output has the same size, dimension, frame status, data type,
and complexity as the input.

10-182

Cumulative Sum

Given an M-by-N frame-based input, u, the output, y, is a frame-based
M-by-N matrix whose first row has elements

Summing Along Channels of Sample-Based Inputs

For sample-based inputs, the block treats each element of the input
matrix as an independent channel. As the following figure and equation
illustrate, the output has the following characteristics:

• The first output is the same as the first input.

• Each subsequent output is the sum of the current input (time t) and
the previous output (time t - Ts, where Ts is the sample period).

• The output has the same size, dimension, frame status, data type,
and complexity as the input.

Given an M-by-N sample-based input, u, the output, y, is a sample-based
M-by-N matrix with the elements

10-183

Cumulative Sum

Resetting the Cumulative Sum Along Channels

When you set the Sum input along parameter to Channels (running
sum), you can set the block to reset the running sum whenever it detects
a reset event at the optional Rst port. The rate of the reset signal must
be a positive integer multiple of the rate of the data signal input. The
input to the Rst port can be of the boolean data type.

When the block is reset for sample-based inputs, the block initializes
the current output to the values of the current input. For frame-based
inputs, the block initializes the first row of the current output to the
values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one
of the following:

• None disables the Rst port.

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-184

Cumulative Sum

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero

10-185

Cumulative Sum

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when the
block detects a reset event, there is a one-sample delay at the reset
port rate before the block applies the reset. For more information on
latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” on page 2-56 and the topic onmodels with
multiple sample rates in the Real-Time Workshop documentation.

Summing Along Columns

When the Sum input along parameter is set to Columns, the block
computes the cumulative sum of each column of the input, where
the current cumulative sum is independent of the cumulative sums
of previous inputs.

y = cumsum(u) % Equivalent MATLAB code

The output has the same size, dimension, frame status, data type, and
complexity as the input. The mth output row is the sum of the first m
input rows.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose
jth column has elements

y u i Mi j k j
k

i

, ,= ≤ ≤
=
∑

1
1

The block treats length-M 1-D vector inputs as M-by-1 column vectors
when summing along columns.

10-186

Cumulative Sum

Summing Along Rows

When the Sum input along parameter is set to Rows, the block
computes the cumulative sum of the row elements, where the current
cumulative sum is independent of the cumulative sums of previous
inputs.

y = cumsum(u,2) % Equivalent MATLAB code

The output has the same size, dimension, frame status, and data type as
the input. The nth output column is the sum of the first n input columns.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose
ith row has elements

The block treats length-N 1-D vector inputs as 1-by-N row vectors when
summing along rows.

10-187

Cumulative Sum

Fixed-Point Data Types

The following diagram shows the data types used within the Cumulative
Sum block for fixed-point signals.

You can set the accumulator and output data types in the block dialog
as discussed in “Dialog Box” on page 10-189.

10-188

Cumulative Sum

Dialog
Box

The Main pane of the Cumulative Sum block dialog appears as follows:

Sum input along
The dimension along which to compute the cumulative
summations. The options allow you to sum along Channels
(running sum), Columns, and Rows. For more information, see
the following sections:

“Summing Along Channels” on page 10-182

“Summing Along Columns” on page 10-186

“Summing Along Rows” on page 10-187

Reset port
Determines the reset event that causes the block to reset the
sum along channels. The rate of the reset signal must be a

10-189

Cumulative Sum

positive integer multiple of the rate of the data signal input. This
parameter is enabled only when you set the Sum input along
parameter to Channels (running sum). For more information,
see “Resetting the Cumulative Sum Along Channels” on page
10-184.

The Fixed-point pane of the Cumulative Sum block dialog appears
as follows:

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Accumulator
Use this parameter to specify how you would like to designate this
accumulator word and fraction lengths:

10-190

Cumulative Sum

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

10-191

Cumulative Sum

Supported
Data
Types Input

and
Output
Ports Supported Data Types

Data
input
port, In

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

Reset
input
port,
Rst

All built-in Simulink data types:

• Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output
port

Always has same data type as data input

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cumulative Product Signal Processing Blockset

Difference Signal Processing Blockset

10-192

Cumulative Sum

Matrix Sum Signal Processing Blockset

cumsum MATLAB

10-193

dB Conversion

Purpose Convert magnitude data to decibels (dB or dBm)

Library Math Functions / Math Operations

Description The dB Conversion block converts a linearly scaled power or amplitude
input to dB or dBm. The Input signal parameter specifies whether
the input is a power signal or a voltage signal, and the Convert to
parameter controls the scaling of the output. When selected, the Add
eps to input to protect against "log(0) = -inf" parameter adds a
value of eps to all power and voltage inputs. When this option is not
enabled, zero-valued inputs produce -inf at the output. The size and
frame status of the output are the same as the input.

Power Inputs

Select Power as the Input signal parameter when the input, u, is a
real, nonnegative, power signal (units of watts). When the Convert to
parameter is set to dB, the block performs the dB conversion

y = 10*log10(u) % Equivalent MATLAB code

When the Convert to parameter is set to dBm, the block performs the
dBm conversion

y = 10*log10(u) + 30

The dBm conversion is equivalent to performing the dB operation after
converting the input to milliwatts.

Voltage Inputs

Select Amplitude as the Input signal parameter when the input, u,
is a real voltage signal (units of volts). The block uses the scale factor
specified in ohms by the Load resistance parameter, R, to convert the
voltage input to units of power (watts) before converting to dB or dBm.
When the Convert to parameter is set to dB, the block performs the
dB conversion

y = 10*log10(abs(u)^2/R)

10-194

dB Conversion

When the Convert to parameter is set to dBm, the block performs the
dBm conversion

y = 10*log10(abs(u)^2/R) + 30

The dBm conversion is equivalent to performing the dB operation after
converting the (abs(u)^2/R) result to milliwatts.

Dialog
Box

Convert to
The logarithmic scaling to which the input is converted, dB or
dBm. Tunable.

Input signal
The type of input signal, Power or Amplitude. Nontunable.

Load resistance
The scale factor used to convert voltage inputs to units of power.
Tunable.

10-195

dB Conversion

Add eps to input to protect against "log(0) = -inf"
When selected, adds eps to all input values (power or voltage).
Tunable.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

dB Gain Signal Processing Blockset

Math Function Simulink

log10 MATLAB

10-196

dB Gain

Purpose Apply decibel gain

Library Math Functions / Math Operations

Description The dB Gain block multiplies the input by the decibel values specified
in the Gain parameter. For an M-by-N input matrix u with elements
uij, the Gain parameter can be a real M-by-N matrix with elements gij
to be multiplied element-wise with the input, or a real scalar.

The value of k is 10 for power signals (select Power as the Input signal
parameter) and 20 for voltage signals (select Amplitude as the Input
signal parameter).

The value of the equivalent linear gain

is displayed in the block icon below the dB gain value. The size and
frame status of the output are the same as the input.

The dB Gain block supports real and complex floating-point and
fixed-point data types.

Fixed-Point Data Types

The following diagram shows the data types used within the dB Gain
subsystem block for fixed-point signals.

The settings for the fixed-point parameters of the Gain block in the
diagram above are as follows:

• Round integer calculations toward: Floor

10-197

dB Gain

• Saturate on integer overflow — unselected

• Parameter data type mode — Inherit via internal rule

• Output data type mode — Inherit via internal rule

Refer to the Gain reference page for more information.

Dialog
Box

Gain
The dB gain to apply to the input, a scalar or a real M-by-N
matrix. Tunable.

Input signal
The type of input signal: Power or Amplitude. Tunable.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-198

dB Gain

See Also

dB Conversion Signal Processing Blockset

Math Function Simulink

log10 MATLAB

10-199

DCT

Purpose Compute discrete cosine transform (DCT) of input

Library Transforms

Description The DCT block computes the unitary discrete cosine transform (DCT) of
each channel in the M-by-N input matrix, u.

y = dct(u) % Equivalent MATLAB code

For both sample-based and frame-based inputs, the block assumes that
each input column is a frame containing M consecutive samples from an
independent channel. The frame size, M, must be a power of two. To
work with other frame sizes, use the Zero Pad block to pad or truncate
the frame size to a power-of-two length.

The output is an M-by-N matrix whose lth column contains the
length-M DCT of the corresponding input column.

where

The output is always sample based, and the output port rate and data
type (real/complex) are the same as those of the input port.

For convenience, length-M 1-D vector inputs and sample-based length-M
row vector inputs are processed as single channels (that is, as M-by-1
column vectors), and the output has the same dimension as the input.

The Sine and cosine computation parameter determines how the
block computes the necessary sine and cosine values. This parameter

10-200

DCT

has two settings, each with its advantages and disadvantages, as
described in the following table.

Sine and
Cosine
Computation
Parameter
Setting

Sine and Cosine Computation
Method Effect on Block Performance

Table lookup The block computes and stores the
trigonometric values before the
simulation starts, and retrieves
them during the simulation.
When you generate code from
the block, the processor running
the generated code stores the
trigonometric values computed
by the block in a speed-optimized
table, and retrieves the values
during code execution.

The block usually runs much more
quickly, but requires extra memory
for storing the precomputed
trigonometric values.

Trigonometric
fcn

The block computes sine and cosine
values during the simulation.
When you generate code from the
block, the processor running the
generated code computes the sine
and cosine values while the code
runs.

The block usually runs more
slowly, but does not need extra
data memory. For code generation,
the block requires a support library
to emulate the trigonometric
functions, increasing the size of
the generated code.

This block supports Simulink virtual buses.

Fixed-Point Data Types

The diagrams below show the data types used within the DCT block for
fixed-point signals. You can set the sine table, accumulator, product
output, and output data types displayed in the diagrams in the DCT
block dialog as discussed in “Dialog Box” on page 10-203.

10-201

DCT

Inputs to the DCT block are first cast to the output data type and
stored in the output buffer. Each butterfly stage processes signals in
the accumulator data type, with the final output of the butterfly being
cast back into the output data type.

10-202

DCT

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, see“Multiplication Data Types” on page 8-16.

Dialog
Box

The Main pane of the DCT block dialog appears as follows:

Sine and cosine computation
Sets the block to compute sines and cosines by either looking up
sine and cosine values in a speed-optimized table (Table lookup),
or by making sine and cosine function calls (Trigonometric fcn).
See the previoustable.

10-203

DCT

The Fixed-point pane of the DCT block dialog appears as follows:

Rounding mode
Select the rounding mode for fixed-point operations. The sine
table values do not obey this parameters; they always round to
Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The sine table
values do not obey this parameters; they always round to Nearest.

Sine table
Choose how you will specify the word length of the values of the
sine table. The fraction length of the sine table values is always
equal to the word length minus one:

10-204

DCT

• When you select Same word length as input, the word length
of the sine table values will match that of the input to the block.

• When you select Specify word length, you are able to enter
the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-201 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

10-205

DCT

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-201 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the accumulator
data type in this block:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Inherit via internal rule, the output
word length and fraction length are automatically set according
to the following equations:

10-206

DCT

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Complex Cepstrum Signal Processing Blockset

FFT Signal Processing Blockset

IDCT Signal Processing Blockset

Real Cepstrum Signal Processing Blockset

dct Signal Processing Toolbox

10-207

Delay

Purpose Delay discrete-time input by specified number of samples or frames

Library Signal Operations

Description The Delay block delays a discrete-time input by the number of samples
or frames specified in the Delay units and Delay parameters. The
Delay value must be an integer value greater than or equal to zero.
Also, when you enter a value of zero for the Delay parameter, any
initial conditions you might have entered have no effect on the output.

The Delay block allows you to set the initial conditions of the signal
that is being delayed. The initial conditions must be numeric. Select
the Show additional parameters check box in order to specify the
initial conditions.

This block reference contains the following topics:

• “Sample-Based Operation” on page 10-208 — Use the Delay block
with a sample-based input signal

• “Frame-Based Operation” on page 10-209 — Use the Delay block
with a frame-based input signal

Sample-Based Operation

When the input is a sample-based M-by-N matrix, where
and ,the block treats each of the M*N matrix elements as an
independent channel.

When the input is a sample-based scalar, the Delay parameter can be a
scalar integer by which to equally delay all channels. When the input is
a sample-based vector, the Delay parameter can be a scalar integer by
which to equally delay all channels, or a vector whose length is equal
to the number of channels. When the input is a sample-based M-by-N
matrix, where M>1 and N>1, then the Delay parameter can be a scalar
integer by which to equally delay all channels or an M-by-N matrix of
nonnegative integers that specify the number of sample intervals to
delay each channel of the input.

10-208

Delay

There are four different choices for initial conditions. The initial
conditions can be the same or different for each channel. They can also
be the same or different along each channel.

Frame-Based Operation

When the input is a frame-based M-by-N matrix, the block treats each
of the N columns as an independent channel, and delays each channel
as specified by the Delay parameter.

When the input is frame based, the Delay parameter can be a scalar
integer by which to equally delay all channels or a vector whose length
is equal to the number of channels.

There are four different choices for initial conditions. The initial
conditions can be the same or different for each channel. They can also
be constant or varying along each channel.

Resetting the Delay

The Delay block resets the delay whenever it detects a reset event at
the optional Rst port. The reset signal rate must be a positive integer
multiple of the rate of the data signal input.

The reset event is specified by the Reset port parameter, and can be
one of the following:

• None disables the Rst port.

• Rising edge triggers a reset operation when the Rst input does one
of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-209

Delay

• Falling edge triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge triggers a reset operation when the Rst input is Rising
edge or Falling edge (as described above).

• Non-zero sample triggers a reset operation at each sample time that
the Rst input is not zero.

10-210

Delay

Note When running simulations in the Simulink MultiTasking mode,
reset signals have a one-sample latency. Therefore, when the block
detects a reset event, there is a one-sample delay at the reset port rate
before the block applies the reset. For more information on latency and
the Simulink tasking modes, see “Excess Algorithmic Delay (Tasking
Latency)” on page 2-56 and “Models with Multiple Sample Rates” in the
Real-Time Workshop User’s Guide documentation.

This block supports Simulink virtual buses.

Dialog
Box

Delay units
Select whether you want to delay your input by a specified number
of Samples or Frames. You can choose to delay your signal by a
certain number of samples or frames regardless of whether your
input is sample or frame based.

10-211

Delay

Delay (samples) or Delay (frames)
See “Sample-Based Operation” on page 10-208 and “Frame-Based
Operation” on page 10-209 for a description of what format to use
for each configuration of the block dialog.

Specify different initial conditions for each channel
Select this check box when you want the initial conditions to vary
across the channels. When you do not select this check box, the
initial conditions are the same across the channels.

Specify different initial conditions within a channel
Select this check box when you want the initial conditions to vary
within the channels. When you do not select this check box, the
initial conditions are the same within the channels.

Initial conditions
Enter a scalar, vector, matrix, or cell array of initial condition
values depending on your choice for the Specify different initial
conditions for each channel and Specify different initial
conditions within a channel check boxes. See “Sample-Based
Operation” on page 10-208 and “Frame-Based Operation” on
page 10-209 for a description of what format to use for each
configuration of the block dialog.

Reset port
Determines the reset event that causes the block to reset the delay.
For more information, see “Resetting the Delay” on page 10-209.

Examples Sample-Based Operation Examples

There are four different choices for initial conditions. The initial
conditions can be the same or different for each channel. They can also
be the same or different along each channel. The next sections describe
the behavior of the block for each of these four cases:

• “Case 1 — Use the Same Initial Conditions for Each Channel and
Within a Channel” on page 10-213

• “Case 2 — Use Different Initial Conditions for Each Channel and the
Same Initial Conditions Within a Channel” on page 10-214

10-212

Delay

• “Case 3 — Use the Same Initial Conditions for Each Channel and
Different Initial Conditions Within a Channel” on page 10-215

• “Case 4 — Use Different Initial Conditions for Each Channel and
Within a Channel” on page 10-216

Case 1 — Use the Same Initial Conditions for Each Channel and
Within a Channel

Enter a scalar value for the initial conditions. This value is used as the
constant initial condition value for each of the channels.

For example, suppose your input is a sample-based matrix.

You want the initial conditions of your four-channel signal to be
identical and zero for the first two samples:

1 For the Delay (samples) parameter, type 2.

2 Clear the Specify different initial conditions for each channel
and Specify different initial conditions within a channel check
boxes.

3 For the Initial conditions parameter, specify a scalar value of 0.

The output of the delay block is

Note how 0, the scalar initial condition value, is used for each
channel and within the channels. It is the output at sample time
zero and sample time one.

10-213

Delay

Case 2 — Use Different Initial Conditions for Each Channel and
the Same Initial Conditions Within a Channel

The initial conditions can be either a matrix for matrix input or a vector
for vector input. These initial condition values are used as the constant
initial condition value for each of the channels.

For example, suppose your input is a sample-based matrix.

You want the initial conditions of your four-channel signal to be

for the first two samples:

1 For the Delay (samples) parameter, type 2.

2 Select the Specify different initial conditions for each channel
check box.

3 Clear the Specify different initial conditions within a channel
check box.

4 For the Initial conditions parameter, type [7 9; 11 13].

The output of the delay block is

Note how the initial condition matrix is the output at sample time
zero and sample time one. Different initial conditions are used
for each channel; the same initial condition value is used within a
channel.

10-214

Delay

Case 3 — Use the Same Initial Conditions for Each Channel and
Different Initial Conditions Within a Channel

In this case, when the input is a sample-based vector, the Delay
parameter can be a scalar integer by which to equally delay all channels
or a vector whose length is equal to the number of channels. All the
values of this vector must be equal.

Enter the initial conditions as a vector, where the vector length is equal
to the delay value. These values are used as the initial condition value
along each of the channels to be delayed.

For example, suppose your input is a sample-based matrix.

You want the initial conditions of your four channel signal to be the
same along each of the channels to be delayed:

1 For the Delay (samples) parameter, type 2.

2 Clear the Specify different initial conditions for each channel
check box.

3 Select the Specify different initial conditions within a channel
check box.

4 For the Initial conditions parameter, type [10 20].

The output of the delay block is

Note how the first element of the initial conditions vector is the
output, for all channels, at sample time zero. The second element of
the initial conditions vector is the output, for all channels, at sample

10-215

Delay

time one. The same initial conditions are used for each channel, but
different initial condition values are used with a channel.

Case 4 — Use Different Initial Conditions for Each Channel and
Within a Channel

Enter a cell array for your initial condition values. Each cell of the
cell array represents the delay values for one channel. The cell array
must have the same size as your input signal. Or, when you have a
nonmatrix input and a scalar delay value, you can enter the initial
conditions as a matrix.

For example, suppose your input is a sample-based vector.

You want the initial conditions of your two channel signal to be different
for each channel and along each channel:

1 For the Delay (samples) parameter, type 2.

2 Select the Specify different initial conditions for each channel
and Specify different initial conditions within a channel check
boxes.

3 For the Initial conditions parameter, type [10 20; 30 40]

The output of the delay block is

Note that the first row of the initial conditions vector is the output at
sample time zero. The second row of the initial conditions vector is
the output at sample time one. Different initial conditions are used
for each channel and within the channels.

In addition, suppose your input is a sample-based matrix.

10-216

Delay

You want the initial conditions of your two-channel signal to be different
for each channel and along each channel.

1 For the Delay (samples) parameter, type 2.

2 Select the Specify different initial conditions for each channel
and the Specify different initial conditions within a channel
check boxes.

3 For the Initial conditions parameter, type {[11 15] [12 16];
[13 17] [14 18]}. Note that the dimensions of the cell array match
the dimensions of the input. Also, each element of the cell array
represents the initial conditions within one channel.

The output of the delay block is

Note how each element of the cell array represents the initial
conditions within a channel. The first element, a vector, represents
the initial conditions within channel 1. The second element, a
vector, represents the initial conditions within channel 2, and so on.
Different initial conditions are used for each channel and within the
channels.

Frame-Based Operation Examples

There are four different choices for initial conditions. The initial
conditions can be the same or different for each channel. They can also
be constant or varying along each channel. The next sections describe
the behavior of the block for each of these four cases:

• “Case 1 — Use the Same Initial Conditions for Each Channel and
Within a Channel” on page 10-218

10-217

Delay

• “Case 2 — Use Different Initial Conditions for Each Channel and the
Same Initial Conditions Within a Channel” on page 10-219

• “Case 3 — Use the Same Initial Conditions for Each Channel and
Different Initial Conditions Within a Channel” on page 10-220

• “Case 4 — Use Different Initial Conditions for Each Channel and
Within a Channel” on page 10-221

Case 1 — Use the Same Initial Conditions for Each Channel and
Within a Channel

Enter a scalar value for the initial conditions. This value is used as the
constant initial condition value for each of the channels.

For example, suppose your input is a frame-based matrix.

You want the initial conditions of your three-channel signal to be
identical and zero for the first frame:

1 For the Delay (frames) parameter, type 1.

2 Clear the Specify different initial conditions for each channel
and the Specify different initial conditions within a channel
check boxes.

3 For the Initial conditions parameter, specify a scalar value of 0.

The output of the delay block is

10-218

Delay

Note how 0, the scalar initial condition value, is used across the
channels and within the channels for the first frame. This frame is
the output at sample time zero.

Case 2 — Use Different Initial Conditions for Each Channel and
the Same Initial Conditions Within a Channel

The initial conditions must be a vector of length N, where . N
is also equal to the number of channels in your signal. These initial
condition values are used as the constant initial condition value for
each of the channels.

For example, suppose your input is a frame-based matrix.

You want the initial conditions of your three-channel signal to be [0
10 20] for the first frame:

1 For the Delay (frames) parameter, type 1.

2 Select the Specify different initial conditions for each channel
check box.

3 Clear the Specify different initial conditions within a channel
check box.

4 For the Initial conditions parameter, type [0 10 20].

The output of the delay block is

10-219

Delay

Note how the initial condition vector is expanded to create the frame
that is output at sample time zero. Different initial conditions are
used for each channel, but the same initial condition value is used
with a channel.

Case 3 — Use the Same Initial Conditions for Each Channel and
Different Initial Conditions Within a Channel

In this case, the Delay parameter can be a scalar integer by which
to equally delay all channels or a vector whose length is equal to the
number of channels. All the values of this vector must be equal.

Enter the initial conditions as a vector. These values are used as the
initial condition value along each of the channels to be delayed. The
initial condition vector must have length equal to the value of the Delay
(frames) parameter multiplied by the frame length. For example, if
you want to delay your signal by two frames with frame length two
and an initial condition value of 3, enter your initial condition vector
as [3 3 3 3].

For example, suppose your input is a frame-based matrix.

You want the initial conditions of your three-channel signal to be the
same along each of the channels to be delayed:

1 For the Delay (frame) parameter, type 1.

2 Clear the Specify different initial conditions for each channel
check box.

3 Select the Specify different initial conditions within a channel
check box.

4 For the Initial conditions parameter, type [10 20 30].

10-220

Delay

The output of the delay block is

Note how the initial condition vector defines the initial condition
values within each of the three channels. The same initial conditions
are used for each channel, but different initial condition values are
used with a channel.

Case 4 — Use Different Initial Conditions for Each Channel and
Within a Channel

Enter a cell array for your initial condition values. Or, when you have a
scalar delay value, you can enter the initial conditions as a matrix.

For example, suppose your input is a frame-based matrix.

You want the initial conditions of your three-channel signal to be
different for each channel and along each channel.

1 For the Delay (frames) parameter, type 1.

2 Select the Specify different initial conditions for each channel
and the Specify different initial conditions within a channel
check boxes.

3 For the Initial conditions parameter, type either [10 20 30; 40
50 60; 70 80 90] or {[10 40 70];[20 50 80];[30 60 90]}. Note
that each cell of the cell array represents the delay along one channel.

Regardless of whether you use a matrix or cell array, the output of
the delay block is

10-221

Delay

Note how the initial condition matrix is the output at sample time
zero. The elements of the initial condition cell array define the
initial condition values within each channel. The first element, a
vector, represents the initial conditions within channel 1. The second
element, a vector, represents the initial conditions within channel
2, and so on. Different initial conditions are used for each channel
and within the channels.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Unit Delay Simulink

Variable Fractional Delay Signal Processing Blockset

Variable Integer Delay Signal Processing Blockset

10-222

Delay Line

Purpose Rebuffer sequence of inputs with one-sample shift

Library Signal Management / Buffers

Description The Delay Line block buffers the input samples into a sequence of
overlapping or underlapping matrix outputs. In the most typical use
(sample-based inputs), each output differs from the preceding output by
only one sample, as illustrated below for scalar input.

Note that the first output of the block in the example above is all zeros;
this is because the Initial Conditions parameter is set to zero. Due to
the latency of the Delay Line block, all outputs are delayed by one frame,
the entries of which are defined by the Initial Conditions parameter.

Sample-Based Operation

In sample-based operation, the Delay Line block buffers a sequence
of sample-based length-N vector inputs (1-D, row, or column) into a
sequence of overlapping frame-based Mo-by-N matrix outputs, where
Mo is specified by the Delay line size parameter (Mo>1). That is, each
input vector becomes a row in the frame-based output matrix.

At each sample time the new input vector is added in the last row of the
output, so each output overlaps the previous output by Mo-1 samples.
Therefore, the output sample period and frame period is the same as
the input sample period (Tso=Tsi, and Tfo=Tsi). When Mo=1, the input is
simply passed through to the output and retains the same dimension,
but becomes frame based. The latency of the block always causes an
initial delay in the output; the value of the first output is specified by
the Initial conditions parameter (see “Initial Conditions” on page
10-226). Sample-based full-dimension matrix inputs are not accepted.

10-223

Delay Line

The Delay Line block’s sample-based operation is similar to that of a
Buffer block with Buffer size equal to Mo and Buffer overlap equal to
Mo-1, except that the Buffer block has a different latency.

In the following model, the block operates on a sample-based input
with a Delay line size of 3.

The input vectors in the example above do not begin appearing at the
output until the second row of the second matrix due to the block’s
latency (see “Initial Conditions” on page 10-226). The first output
matrix (all zeros in this example) reflects the block’s Initial conditions
setting. As for any sample-based input, the output frame rate and
output sample rate are both equal to the input sample rate.

Frame-Based Operation

In frame-based operation, the Delay Line block rebuffers a sequence
of frame-based Mi-by-N matrix inputs into a sequence of frame-based
Mo-by-N matrix outputs, where Mo is the output frame size specified by
the Delay line size parameter. Depending on whether Mo is greater
than, less than, or equal to the input frame size, Mi, the output frames

10-224

Delay Line

can be underlapped or overlapped. Each of the N input channels is
rebuffered independently.

When Mo > Mi, the output frame overlap is the difference between
the output and input frame size, Mo-Mi. When Mo < Mi, the output is
underlapped; the Delay Line block discards the first Mi-Mo samples of
each input frame so that only the last Mo samples are buffered into the
corresponding output frame. When Mo = Mi, the output data is identical
to the input data, but is delayed by the latency of the block. Due to
the block’s latency, the outputs are always delayed by one frame, the
entries of which are specified by the Initial conditions (see “Initial
Conditions” on page 10-226).

The output frame period is equal to the input frame period (Tfo=Tfi). The
output sample period, Tso, is therefore equal to Tfi/Mo, or equivalently,
Tsi(Mi/Mo)

In the following model, the block rebuffers a two-channel frame-based
input with a Delay line size of 3.

The first output frame in the example is a product of the latency of the
Delay Line block; it is all zeros because the Initial conditions is set to
be zero. Since the input frame size, 4, is larger than the output frame
size, 3, only the last three samples in each input frame are propagated
to the corresponding output frame. The frame periods of the input and

10-225

Delay Line

output are the same, and the output sample period is Tsi(Mi/Mo), or 4/3
the input sample period.

Initial Conditions

The Delay Line block’s buffer is initialized to the value specified by
the Initial condition parameter. The block outputs this buffer at the
first simulation step (t=0). When the block’s output is a vector, the
Initial condition can be a vector of the same size, or a scalar value
to be repeated across all elements of the initial output. When the
block’s output is a matrix, the Initial condition can be a matrix of the
same size, a vector (of length equal to the number of matrix rows) to
be repeated across all columns of the initial output, or a scalar to be
repeated across all elements of the initial output.

Dialog
Box

Delay line size
The number of rows in output matrix, Mo.

Initial conditions
The value of the block’s initial output, a scalar, vector, or matrix.

Allow direct feedthrough
When you select this check box, the input data is not delayed by an
extra frame before it is available at the output buffer. Instead, the
input data is available immediately at the output port of the block.

10-226

Delay Line

Supported
Data
Types Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Triggered Delay Line Signal Processing Blockset

10-227

Detrend

Purpose Remove linear trend from vectors

Library Statistics

Description The Detrend block removes a linear trend from the length-M input
vector, u, by subtracting the straight line that best fits the data in the
least squares sense.

The least squares line, û = ax + b, is the line with parameters a and b
that minimizes the quantity

for M evenly-spaced values of x, where ui is the ith element in the input
vector. The output, y = u-û, is an M-by-1 column vector (regardless of
the input vector dimension) with the same frame status as the input.

Dialog
Box

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cumulative Sum Signal Processing Blockset

Difference Signal Processing Blockset

10-228

Detrend

Least Squares Polynomial
Fit

Signal Processing Blockset

Unwrap Signal Processing Blockset

detrend MATLAB

10-229

Difference

Purpose Compute element-to-element difference along rows or columns

Library Math Functions / Math Operations

Description The Difference block computes the difference between adjacent elements
in rows or columns of the M-by-N input matrix u.

Columnwise Differencing

When the Difference along parameter is set to Columns, the block
computes differences between adjacent column elements.

y = diff(u) % Equivalent MATLAB code

For sample-based inputs, the output is a sample-based (M-1)-by-N
matrix whose jth column has elements

For convenience, length-M 1-D vector inputs are treated as M-by-1
column vectors for columnwise differencing, and the output is 1-D.

For example, the following figure shows the block output for
sample-based inputs:

For frame-based inputs, the output is a frame-based M-by-N matrix
whose jth column has elements

The first row of the first output contains the difference between the first
row of the first input and zero. The first row of each subsequent output

10-230

Difference

contains the difference between the first row of the current input (time
t) and the last row of the previous input (time t-Tf).

For example, the following figure shows the block output for
frame-based inputs:

Rowwise Differencing

When the Difference along parameter is set to Rows, the block
computes differences between adjacent row elements. The result is the
same regardless of the frame status of the input signal.

y = diff(u,[],2) % Equivalent MATLAB code

The output is an M-by-(N-1) matrix whose ith row has elements

The frame status of the output is the same as the input. For
convenience, length-N 1-D vector inputs are treated as 1-by-N row
vectors for rowwise differencing, and the output is 1-D.

For example, the following figure shows the block output for
sample-based inputs. The output is the same for frame-based inputs:

10-231

Difference

Fixed-Point Data Types

The following diagram shows the data types used within the Difference
block for fixed-point signals.

You can set the accumulator and output data types in the block dialog
as discussed in “Dialog Box” on page 10-233 .

10-232

Difference

Dialog
Box

The Main pane of the Difference block appears as follows:

Difference along
Specify the dimension along which to compute element-to-element
differences. Columns specifies columnwise differencing, while
Rows specifies rowwise differencing. Nontunable.

10-233

Difference

The Fixed-point pane of the Difference block appears as follows:

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Accumulator

Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths:

10-234

Difference

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameter dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and fraction length of the output, in bits.

10-235

Difference

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cumulative Sum Signal Processing Blockset

diff MATLAB

10-236

Digital Filter

Purpose Filter each channel of input over time using static or time-varying
digital filter implementations

Library Filtering / Filter Designs

Description
Note Use this block to efficiently implement a floating-point or
fixed-point filter for which you know the coefficients, or that is already
defined in a Signal Processing Toolbox dfilt object. The following
Signal Processing Blockset blocks also implement digital filters, but
serve slightly different purposes:

• Digital Filter Design — Use to design, analyze, and then efficiently
implement floating-point filters. This block provides the same filter
implementation as the Digital Filter block for floating-point signals.

• Filter Realization Wizard — Use to implement floating-point or
fixed-point filters built from Sum, Gain, and Unit Delay blocks. You
can either design the filter using block filter design and analysis
parameters, or import the coefficients of a filter that you designed
elsewhere.

The Digital Filter block independently filters each channel of the input
signal with a specified digital IIR or FIR filter. The block can implement
static filters with fixed coefficients, as well as time-varying filters with
coefficients that change over time. You can tune the coefficients of a
static filter during simulation.

This block filters each channel of the input signal independently over
time. The output frame status and dimensions are always the same as
those of the input signal that is filtered. When inputs are frame based,
the block treats each column as an independent channel; the block
filters each column. When inputs are sample based, the block treats
each element of the input as an individual channel.

10-237

Digital Filter

The outputs of this block numerically match the outputs of the Digital
Filter Design block and of the dfilt function in the Signal Processing
Toolbox.

Sections of This Reference Page

• “Filter Source” on page 10-238

• “Supported Filter Structures” on page 10-238

• “Specifying Initial Conditions” on page 10-241

• “State Logging” on page 10-243

• “Fixed-Point Data Types” on page 10-244

• “Dialog Box” on page 10-245

• “Filter Structure Diagrams” on page 10-260

• “Supported Data Types” on page 10-295

• “See Also” on page 10-295

Filter Source

The Digital Filter block can operate in two different modes. Select the
mode in the Filter source group box. If you select Specify filter
characteristics in dialog, you enter information about the filter such
as structure and coefficients in the block mask. If you select Specify
discrete-time filter object (DFILT), you specify the filter using a
dfilt object from the Signal Processing Toolbox.

Supported Filter Structures

When you select Specify discrete-time filter object (DFILT), the
following dfilt structures are supported:

• dfilt.df1

• dfilt.df1t

• dfilt.df2

10-238

Digital Filter

• dfilt.df2t

• dfilt.df1sos

• dfilt.df1tsos

• dfilt.df2sos

• dfilt.df2tsos

• dfilt.dffir

• dfilt.dffirt

• dfilt.dfsymfir

• dfilt.dfasymfir

• dfilt.latticear

• dfilt.latticemamin

When you selectSpecify filter characteristics in dialog, the list of
filter structures offered in the Filter structure parameter depends
on whether you set the Transfer function type to IIR (poles &
zeros), IIR (all poles), or FIR (all zeros), as summarized in
the following table.

Note Each structure listed in the table below supports both fixed-point
and floating-point signals.

The table also shows the vector or matrix of filter coefficients you must
provide for each filter structure. For more information on how to specify
filter coefficients for various filter structures, see “Specifying Static
Filters” on page 3-10 and “Specifying Time-Varying Filters” on page
3-11.

10-239

Digital Filter

Filter Structures and Filter Coefficients

Transfer
Function
Type Supported Filter Structures Filter Coefficient Specification

Direct form I

Direct form I transposed

Direct form II

Direct form II transposed

• Numerator coefficients vector [b0,
b1, b2, ..., bn]

• Denominator coefficients vector [a0,
a1, a2, ..., am]

IIR (poles &
zeros)

Biquadratic direct form I
(SOS)

Biquadratic direct form I
transposed (SOS)

Biquadratic direct form II
(SOS)

Biquadratic direct form II
transposed (SOS)

• M-by-6 second-order section (SOS)
matrix.

• Scale values

See “Specifying the SOS Matrix
(Biquadratic Filter Coefficients)” on
page 3-16.

Direct form

Direct form transposed

Denominator coefficients vector [a0, a1,
a2, ..., am]

IIR (all
poles)

Lattice AR Reflection coefficients vector [k1, k2,
..., kn]

Direct form

Direct form symmetric

Direct form antisymmetric

Direct form transposed

Numerator coefficients vector [b0, b1,
b2, ..., bn]

FIR (all
zeros)

Lattice MA Reflection coefficients vector [k1, k2,
..., kn]

10-240

Digital Filter

Specifying Initial Conditions

In Specify filter characteristics in dialog mode, the block initializes
the internal filter states to zero by default, which is equivalent to
assuming past inputs and outputs are zero. You can optionally use
the Initial conditions parameter to specify nonzero initial conditions
for the filter delays.

To determine the number of initial condition values you must specify,
and how to specify them, refer to the following table on Valid Initial
Conditions and Number of Delay Elements (Filter States) on page
10-243. The Initial conditions parameter can take one of four forms
as described in the following table.

Valid Initial Conditions

Initial
Condition Examples Description

Scalar 5

Each delay element for each
channel is set to 5.

The block initializes all delay elements
in the filter to the scalar value.

Vector
(for applying
the same
delay
elements to
each channel)

For a filter with two delay
elements: [d1 d2]

The delay elements for all
channels are d1 and d2.

Each vector element specifies a unique
initial condition for a corresponding
delay element. The block applies the
same vector of initial conditions to
each channel of the input signal. The
vector length must equal the number of
delay elements in the filter (specified in
the Number of Delay Elements (Filter
States) table).

10-241

Digital Filter

Initial
Condition Examples Description

Vector or
matrix
(for applying
different
delay
elements to
each channel)

For a 3-channel input signal and
a filter with two delay elements:

[d1 d2 D1 D2 d1 d2] or

• The delay elements for
channel 1 are d1 and d2.

• The delay elements for
channel 2 are D1 and D2.

• The delay elements for
channel 3 are d1 and d2.

Each vector or matrix element
specifies a unique initial condition for
a corresponding delay element in a
corresponding channel:

• The vector length must be equal to
the product of the number of input
channels and the number of delay
elements in the filter (specified in the
Number of Delay Elements (Filter
States) on page 10-243 table).

• The matrix must have the same
number of rows as the number of
delay elements in the filter (specified
in the Number of Delay Elements
(Filter States) on page 10-243 table),
and must have one column for each
channel of the input signal.

Empty matrix []
Each delay element for
each channel is set to 0.

The empty matrix, [], is equivalent
to setting the Initial conditions
parameter to the scalar value 0.

The number of delay elements (filter states) per input channel depends
on the filter structure, as indicated in the following table.

10-242

Digital Filter

Number of Delay Elements (Filter States)

Filter Structure
Number of Delay Elements
per Channel

Direct form
Direct form transposed
Direct form symmetric
Direct form antisymmetric

#_of_filter_coeffs-1

Direct form I
Direct form I transposed

• #_of_zeros-1

• #_of_poles-1

Direct form II
Direct form II transposed

max(#_of_zeros,
#_of_poles)-1

Biquadratic direct form I (SOS)
Biquadratic direct form
I transposed (SOS)
Biquadratic direct
form II (SOS)
Biquadratic direct form
II transposed (SOS)

2 * #_of_filter_sections

Lattice AR
Lattice MA

#_of_reflection_coeffs

State Logging

Simulink enables you to log the states in your model to the MATLAB
workspace. The following table indicates which filter structures of
the Digital Filter block support the Simulink state logging feature.
Refer to “States” in the Simulink User’s Guide documentation for more
information.

10-243

Digital Filter

Transfer
Function
Type

Filter Structure State
Logging
Supported

Direct form I No

Direct form I transposed Yes

Direct form II No

Direct form II transposed Yes

Biquadratic direct form I (SOS) Yes

Biquadratic direct form I
transposed (SOS)

Yes

Biquadratic direct form II (SOS) Yes

IIR (poles
& zeros)

Biquadratic direct form II
transposed (SOS)

Yes

Direct form No

Direct form transposed Yes

IIR (all
poles)

Lattice AR Yes

Direct form No

Direct form symmetric No

Direct form antisymmetric No

Direct form transposed Yes

FIR (all
zeros)

Lattice MA Yes

Fixed-Point Data Types

All structures supported by the Digital Filter block support fixed-point
data types. You can specify intermediate fixed-point data types for
quantities such as the coefficients, accumulator, and product output
for each filter structure. Refer to “Filter Structure Diagrams” on page

10-244

Digital Filter

10-260 for diagrams depicting the use of these intermediate fixed-point
data types in each filter structure.

Dialog
Box

Different items appear on the Digital Filter block dialog depending
on whether you select Specify filter characteristics in dialog or
Specify discretetime filter object (DFILT) in the Filter source
group box. Refer to the following sections for details:

• “Specify Filter Characteristics in Dialog” on page 10-245

• “Specify Discrete-Time Filter Object” on page 10-256

Specify Filter Characteristics in Dialog

The Main pane of the Digital Filter block dialog appears as follows
when Specify filter characteristics in dialog is specified in the
Filter source group box:

10-245

Digital Filter

Transfer function type
Select the type of transfer function of the filter; IIR (poles
& zeros), IIR (all poles), or FIR (all zeros). Refer
to “Supported Filter Structures” on page 10-238 for more
information.

10-246

Digital Filter

Filter structure
Select the filter structure. The selection of available structures
varies depending the setting of the Transfer function type
parameter. Refer to “Supported Filter Structures” on page 10-238
for more information.

Coefficient source
Choose how you will specify filter coefficients: via dialog
parameters or through input ports. To specify a static filter,
choose Specify via dialog. To specify a time-varying filter,
choose Input port(s). When you select Input ports(s),
filter coefficients must come in through block ports. For more
information, see “Specifying Static Filters” on page 3-10 and
“Specifying Time-Varying Filters” on page 3-11.

Numerator coefficients
Specify the vector of numerator coefficients of the filter’s transfer
function.

This parameter is only visible when the Coefficient source
parameter is set to Specify via dialog and when the selected
filter structure lends itself to specification with numerator
coefficients. Tunable.

Denominator coefficients
Specify the vector of denominator coefficients of the filter’s
transfer function.

This parameter is only visible when the Coefficient source
parameter is set to Specify via dialog and when the selected
filter structure lends itself to specification with denominator
coefficients. Tunable.

Reflection coefficients
Specify the vector of reflection coefficients of the filter’s transfer
function.

This parameter is only visible when the Coefficient source
parameter is set to Specify via dialog and when the selected

10-247

Digital Filter

filter structure lends itself to specification with reflection
coefficients. Tunable.

SOS matrix (Mx6)
Specify an M-by-6 SOS matrix containing coefficients of a
second-order section (SOS) filter, where M is the number of
sections. You can use the ss2sos and tf2sos functions from the
Signal Processing Toolbox to check whether your SOS matrix
is valid. For more on the requirements of the SOS matrix, see
“Specifying the SOS Matrix (Biquadratic Filter Coefficients)” on
page 3-16.

This parameter is only visible when the selected filter structure
is biquadratic. Tunable.

Scale values
Specify the scale values to be applied before and after each section
of a biquadratic filter.

• If you specify a scalar, that value is applied before the first filter
section. The rest of the scale values are set to 1.

• You can also specify a vector with M + 1 elements, assigning
a different value to each scale. Refer to “Filter Structure
Diagrams” on page 10-260 for diagrams depicting the use of
scale values in biquadratic filter structures.

This parameter is only visible when the selected filter structure
is biquadratic. Tunable.

First denominator coefficient = 1, remove a0 term in the
structure

Select this parameter to reduce the number of computations the
block must make to produce the output by omitting the 1 / a0 term
in the filter structure. The block output is invalid if you select
this parameter when the first denominator filter coefficient is not
always 1 for your time-varying filter.

10-248

Digital Filter

This parameter is only enabled when the Coefficient source
parameter is set to Input port(s) and when the selected filter
structure lends itself to this specification. See “Removing the a0
Term in the Filter Structure” on page 3-15 for a diagram and
details.

Coefficient update rate
Specify how often the block updates time-varying filters; once per
sample or once per frame. This parameter only affects the output
when the input signal is frame based.

This parameter is only enabled when the Coefficient source
parameter is set to Input port(s). For more information, see
“Specifying Time-Varying Filters” on page 3-11.

Initial conditions
Specify the initial conditions of the filter states. To learn how
to specify initial conditions, see “Specifying Initial Conditions”
on page 10-241.

Initial conditions on zeros side
(Not shown in dialog above). Specify the initial conditions for the
filter states on the side of the filter structure with the zeros (b0, b1,
b2, ...); see the diagram below.

This parameter is enabled only when the filter has both poles and
zeros, and when you select a structure such as direct form I, which
has separate filter states corresponding to the poles (ak) and zeros
(bk). To learn how to specify initial conditions, see “Specifying
Initial Conditions” on page 10-241.

Initial conditions on poles side
(Not shown in dialog above). Specify the initial conditions for the
filter states on the side of the filter structure with the poles (a0, a1,
a2, ...); see the diagram below.

This parameter is enabled only when the filter has both poles and
zeros, and when you select a structure such as direct form I, which
has separate filter states corresponding to the poles (ak) and zeros

10-249

Digital Filter

(bk). To learn how to specify initial conditions, see “Specifying
Initial Conditions” on page 10-241.

The Fixed point pane of the Digital Filter block dialog appears as
follows when Specify filter characteristics in dialog is specified
in the Filter source group box:

10-250

Digital Filter

Rounding mode
Select the rounding mode for fixed-point operations. The filter
coefficients do not obey this parameter; they always round to
Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The filter
coefficients do not obey this parameter; they are always saturated.

10-251

Digital Filter

Section I/O
Choose how you will specify the word length and the fraction
length of the fixed-point data type going into and coming out of
each section of a biquadratic filter. Refer to “Filter Structure
Diagrams” on page 10-260 for illustrations depicting the use of the
section I/O data type in this block.

This parameter is only visible when the selected filter structure
is biquadratic:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word and fraction lengths of the section input and output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word lengths, in bits, and the slopes of the section
input and output. This block requires power-of-two slope and
a bias of zero.

Tap sum
Choose how you will specify the word length and the fraction
length of the tap sum data type of a direct form symmetric or
direct form antisymmetric filter. Refer to “Filter Structure
Diagrams” on page 10-260 for illustrations depicting the use of the
tap sum data type in this block.

This parameter is only visible when the selected filter structure is
either Direct form symmetric or Direct form antisymmetric:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to
enter the word length and the fraction length of the tap sum
accumulator, in bits.

10-252

Digital Filter

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the tap sum
accumulator. This block requires power-of-two slope and a bias
of zero.

Multiplicand
Choose how you will specify the word length and the fraction
length of the multiplicand data type of a direct form I transposed
or biquadratic direct form I transposed filter. Refer to “Filter
Structure Diagrams” on page 10-260 for illustrations depicting
the use of the multiplicand data type in this block.

This parameter is only visible when the selected filter structure
is either Direct form I transposed or Biquad direct form I
transposed (SOS):

• When you select Same as output, these characteristics will
match those of the output to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the multiplicand
data type, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the multiplicand
data type. This block requires power-of-two slope and a bias
of zero.

Coefficients
Choose how you will specify the word length and the fraction
length of the filter coefficients (numerator and/or denominator).
Refer to “Filter Structure Diagrams” on page 10-260 for
illustrations depicting the use of the coefficient data types in
this block:

• When you select Same word length as input, the word
length of the filter coefficients will match that of the input to
the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides

10-253

Digital Filter

you with the best precision possible given the value and word
length of the coefficients.

• When you select Specify word length, you are able to enter
the word length of the coefficients, in bits. In this mode, the
fraction length of the coefficients is automatically set to the
binary-point only scaling that provides you with the best
precision possible given the value and word length of the
coefficients.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the coefficients,
in bits. If applicable, you are able to enter separate fraction
lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the coefficients.
If applicable, you are able to enter separate slopes for the
numerator and denominator coefficients. This block requires
power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate
the product output word and fraction lengths. Refer to “Filter
Structure Diagrams” on page 10-260 and “Multiplication Data
Types” on page 8-16 for illustrations depicting the use of the
product output data type in this block:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product

10-254

Digital Filter

output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Filter Structure
Diagrams” on page 10-260 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the accumulator
data type in this block:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

State
Use this parameter to specify how you would like to designate
the state word and fraction lengths. Refer to “Filter Structure
Diagrams” on page 10-260 for illustrations depicting the use of
the state data type in this block.

This parameter is not visible for direct form and direct form I
filter structures.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

10-255

Digital Filter

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Specify Discrete-Time Filter Object

The Main pane of the Digital Filter block dialog appears as follows
when Specify discrete-time filter object (DFILT) is specified in the
Filter source group box:

10-256

Digital Filter

Filter
Specify the discrete-time filter object (dfilt) that you would like
the block to implement. You can do this in one of three ways:

• You can fully specify the dfilt object in the block mask, as
shown in the default value.

10-257

Digital Filter

• You can enter the variable name of a dfilt object that is
defined in the MATLAB or model workspace.

• You can enter a variable name for a dfilt object that is not
yet defined.

For more information on creating dfilt objects, refer to the
dfilt function reference page in the Signal Processing Toolbox
documentation.

View filter response
This button opens the Filter Visualization Tool (fvtool) from
the Signal Processing Toolbox and displays the filter response
of the dfilt object specified in the Filter parameter. For more
information on FVTool, refer to the Signal Processing Toolbox
documentation.

Characteristics of the dfilt object specified in the Filter parameter are
displayed on this pane in the Filter characteristics group box. You
cannot change these characteristics directly on the block mask. Instead,
you must edit the filter object directly. Refer to the dfilt function
reference page in the Signal Processing Toolbox documentation.

The Fixed-point pane of the Digital Filter block dialog appears as
follows when Specify discrete-time filter object (DFILT) is specified
in the Filter source group box:

10-258

Digital Filter

The fixed-point settings of the filter object specified on the Main pane
are displayed on the Fixed-point pane. You cannot change these
settings directly on the block mask. To change the fixed-point settings
you must edit the filter object directly.

For more information on discrete-time filter objects, refer to the dfilt
function reference page in the Signal Processing Toolbox documentation.

10-259

Digital Filter

Filter
Structure
Diagrams

The diagrams in the following sections show the filter structures
supported by the Digital Filter block. They also show the data types
used in the filter structures for fixed-point signals. You can set the
coefficient, output, accumulator, product output, and state data types
shown in these diagrams in the block dialog. This is discussed in
“Dialog Box” on page 10-245.

• “IIR direct form I” on page 10-261

• “IIR direct form I transposed” on page 10-263

• “IIR direct form II” on page 10-266

• “IIR direct form II transposed” on page 10-268

• “IIR biquadratic direct form I” on page 10-271

• “IIR biquadratic direct form I transposed” on page 10-273

• “IIR biquadratic direct form II” on page 10-276

• “IIR biquadratic direct form II transposed” on page 10-278

• “IIR (all poles) direct form” on page 10-281

• “IIR (all poles) direct form transposed” on page 10-283

• “IIR (all poles) direct form lattice AR” on page 10-285

• “FIR (all zeros) direct form” on page 10-286

• “FIR (all zeros) direct form symmetric” on page 10-288

• “FIR (all zeros) direct form antisymmetric” on page 10-290

• “FIR (all zeros) direct form transposed” on page 10-292

• “FIR (all zeros) lattice MA” on page 10-294

10-260

Digital Filter

IIR direct form I

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Numerator and denominator coefficients can be real or complex.

• Numerator and denominator coefficients must be the same
complexity as each other.

- When the numerator and denominator coefficients are specified
via input ports and have different complexities from each other,
you get an error.

- When the numerator and denominator coefficients are specified
in the dialog and have different complexities from each other, the
block does not error, but instead processes the filter as if two sets
of complex coefficients are provided. The coefficient set that is

10-261

Digital Filter

real-valued is treated as if it is a complex vector with zero-valued
imaginary parts.

• Numerator and denominator coefficients must have the same word
length. They can have different fraction lengths.

• The State data type cannot be specified on the block mask for this
structure, because the input and output states have the same data
types as the input and output buffers.

10-262

Digital Filter

IIR direct form I transposed

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Numerator and denominator coefficients can be real or complex.

• Numerator and denominator coefficients must be the same
complexity as each other.

- When the numerator and denominator coefficients are specified
via input ports and have different complexities from each other,
you get an error.

10-263

Digital Filter

- When the numerator and denominator coefficients are specified
in the dialog and have different complexities from each other, the
block does not error, but instead processes the filter as if two sets
of complex coefficients are provided. The coefficient set that is
real-valued is treated as if it is a complex vector with zero-valued
imaginary parts.

• States are complex when either the input or the coefficients are
complex.

• Numerator and denominator coefficients must have the same word
length. They can have different fraction lengths.

10-264

Digital Filter

10-265

Digital Filter

IIR direct form II

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Numerator and denominator coefficients can be real or complex.

• Numerator and denominator coefficients must be the same
complexity as each other.

- When the numerator and denominator coefficients are specified
via input ports and have different complexities from each other,
you get an error.

- When the numerator and denominator coefficients are specified
in the dialog and have different complexities from each other, the
block does not error, but instead processes the filter as if two sets
of complex coefficients are provided. The coefficient set that is

10-266

Digital Filter

real-valued is treated as if it is a complex vector with zero-valued
imaginary parts.

• States are complex when either the inputs or the coefficients are
complex.

• Numerator and denominator coefficients must have the same word
length. They can have different fraction lengths.

10-267

Digital Filter

IIR direct form II transposed

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Numerator and denominator coefficients can be real or complex.

• Numerator and denominator coefficients must be the same
complexity as each other.

- When the numerator and denominator coefficients are specified
via input ports and have different complexities from each other,
you get an error.

10-268

Digital Filter

- When the numerator and denominator coefficients are specified
in the dialog and have different complexities from each other, the
block does not error, but instead processes the filter as if two sets
of complex coefficients are provided. The coefficient set that is
real-valued is treated as if it is a complex vector with zero-valued
imaginary parts.

• States are complex when either the inputs or the coefficients are
complex.

• Numerator and denominator coefficients must have the same word
length. They can have different fraction lengths.

10-269

Digital Filter

10-270

Digital Filter

IIR biquadratic direct form I

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Numerator and denominator coefficients can be real or complex.

• Specify the coefficients by a M-by-6 matrix in the block mask. You
cannot specify coefficients by input ports for this filter structure.

• When the a0 element of any row is not equal to one, that row is
normalized by a0 prior to filtering.

10-271

Digital Filter

• States are complex when either the inputs or the coefficients are
complex.

• You cannot specify the state data type on the block mask for this
structure, because the input and output states have the same data
types as the input.

• Scale values must have the same complexity as the coefficient SOS
matrix.

• The scale value parameter must be a scalar or a vector of length M+1,
where M is the number of sections.

• The Section I/O parameter determines the data type for the section
input and output data types. The section input and stage output
data type must have the same word length but can have different
fraction lengths.

The following diagram shows the data types for one section of the
filter.

10-272

Digital Filter

The following diagram shows the data types between filter sections.

IIR biquadratic direct form I transposed

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Numerator and denominator coefficients can be real or complex.

10-273

Digital Filter

• Specify the coefficients by a M-by-6 matrix in the block mask. You
cannot specify coefficients by input ports for this filter structure.

• When the a0 element of any row is not equal to one, that row is
normalized by a0 prior to filtering.

• States are complex when either the inputs or the coefficients are
complex.

• Scale values must have the same complexity as the coefficient SOS
matrix.

• The scale value parameter must be a scalar or a vector of length M+1,
where M is the number of sections.

• The Section I/O parameter determines the data type for the section
input and output data types. The section input and section output
data type must have the same word length but can have different
fraction lengths.

The following diagram shows the data types for one section of the filter.

10-274

Digital Filter

The following diagram shows the data types between filter sections.

10-275

Digital Filter

IIR biquadratic direct form II

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Numerator and denominator coefficients can be real or complex.

• Specify the coefficients by a M-by-6 matrix in the block mask. You
cannot specify coefficients by input ports for this filter structure.

• When the a0 element of any row is not equal to one, that row is
normalized by a0 prior to filtering.

10-276

Digital Filter

• States are complex when either the inputs or the coefficients are
complex.

• Scale values must have the same complexity as the coefficient SOS
matrix.

• The scale value parameter must be a scalar or a vector of length M+1,
where M is the number of sections.

• The Section I/O parameter determines the data type for the section
input and output data types. The section input and section output
data type must have the same word length but can have different
fraction lengths.

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

10-277

Digital Filter

IIR biquadratic direct form II transposed

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Numerator and denominator coefficients can be real or complex.

• Specify the coefficients by a M-by-6 matrix in the block mask. You
cannot specify coefficients by input ports for this filter structure.

• When the a0 element of any row is not equal to one, that row is
normalized by a0 prior to filtering.

10-278

Digital Filter

• States are complex when either the inputs or the coefficients are
complex.

• Scale values must have the same complexity as the coefficient SOS
matrix.

• The scale value parameter must be a scalar or a vector of length M+1,
where M is the number of sections.

• The Section I/O parameter determines the data type for the section
input and output data types. The section input and section output
data type must have the same word length but can have different
fraction lengths.

The following diagram shows the data types for one section of the filter.

10-279

Digital Filter

The following diagram shows the data types between filter sections.

10-280

Digital Filter

IIR (all poles) direct form

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Denominator coefficients can be real or complex.

• You cannot specify the state data type on the block mask for this
structure, because the input and output states have the same data
types as the input.

10-281

Digital Filter

10-282

Digital Filter

IIR (all poles) direct form transposed

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Denominator coefficients can be real or complex.

10-283

Digital Filter

10-284

Digital Filter

IIR (all poles) direct form lattice AR

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Coefficients can be real or complex.

10-285

Digital Filter

FIR (all zeros) direct form

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Numerator coefficients can be real or complex.

• You cannot specify the state data type on the block mask for this
structure, because the input and output states have the same data
types as the input.

10-286

Digital Filter

10-287

Digital Filter

FIR (all zeros) direct form symmetric

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Numerator coefficients can be real or complex.

• You cannot specify the state data type on the block mask for this
structure, because the input and output states have the same data
types as the input.

• It is assumed that the filter coefficients are symmetric. Only the first
half of the coefficients are used for filtering.

• The Tap Sum parameter determines the data type the filter uses
when it sums the inputs prior to multiplication by the coefficients.

10-288

Digital Filter

10-289

Digital Filter

FIR (all zeros) direct form antisymmetric

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Numerator coefficients can be real or complex.

• You cannot specify the state data type on the block mask for this
structure, because the input and output states have the same data
types as the input.

• It is assumed that the filter coefficients are antisymmetric. Only the
first half of the coefficients are used for filtering.

• The Tap Sum parameter determines the data type the filter uses
when it sums the inputs prior to multiplication by the coefficients.

10-290

Digital Filter

10-291

Digital Filter

FIR (all zeros) direct form transposed

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs can be real or complex.

• Coefficients can be real or complex.

• States are complex when either the inputs or the coefficients are
complex.

10-292

Digital Filter

10-293

Digital Filter

FIR (all zeros) lattice MA

The following constraints are applicable when processing a fixed-point
signal with this filter structure:

• Inputs and coefficients can be real or complex.

• Coefficients can be real or complex.

10-294

Digital Filter

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Digital Filter Design Signal Processing Blockset

Filter Realization Wizard Signal Processing Blockset

dfilt Signal Processing Toolbox

fdatool Signal Processing Toolbox

fvtool Signal Processing Toolbox

sptool Signal Processing Toolbox

10-295

Digital Filter Design

Purpose Design and implement digital FIR and IIR filters

Library Filtering / FilterDesigns

Description
Note Use this block to design, analyze, and then efficiently implement
floating-point filters. The following blocks also implement digital filters,
but serve slightly different purposes:

• Digital Filter — Use to efficiently implement floating-point or
fixed-point filters that you have already designed. This block provides
the same exact filter implementation as the Digital Filter Design
block.

• Filter Realization Wizard — Use to implement floating-point or
fixed-point filters built from Sum, Gain, and Unit Delay blocks. You
can either design the filter within this block, or import the coefficients
of a filter that you designed elsewhere.

The Digital Filter Design block implements a digital FIR or IIR filter
that you design using the Filter Design and Analysis Tool (FDATool)
GUI. This block provides the same exact filter implementation as the
Digital Filter block.

The block applies the specified filter to each channel of a discrete-time
input signal, and outputs the result. The outputs of the block
numerically match the outputs of the Digital Filter block, the filter
function in MATLAB, and the filter function in the Filter Design
Toolbox.

The sampling frequency, Fs, that you specify in the FDATool GUI should
be identical to the sampling frequency of the Digital Filter Design
block’s input block. When the sampling frequencies of these blocks do
not match, the Digital Filter Design block returns a warning message
and inherits the sampling frequency of the input block.

10-296

Digital Filter Design

Valid Inputs and Corresponding Outputs

The block accepts inputs that are sample-based or frame-based vectors
and matrices. The block filters each input channel independently over
time, where

• Each column of a frame-based vector or matrix is an independent
channel.

• Each element of a sample-based vector or matrix is an independent
channel.

The output has the same dimensions and frame status as the input.

Designing the Filter

Double-click the Digital Filter Design block to open FDATool. Use
FDATool to design or import a digital FIR or IIR filter. To learn how to
design filters with this block and FDATool, see the following topics:

• “Digital Filter Design Block” on page 3-18

• Topic on the Filter Design and Analysis Tool (FDATool) in the Signal
Processing Toolbox documentation.

Tuning the Filter During Simulation

You can tune the filter specifications in FDATool during simulations as
long as your changes do not modify the filter length or filter order. The
block’s filter updates as soon as you apply any filter changes in FDATool.

10-297

Digital Filter Design

Dialog
Box

The FDATool GUI Opened from the Digitial Filter Design Block

To get the Transform Filter button and the Set Quantization

Parameters button , install the Filter Design Toolbox. To get the

10-298

Digital Filter Design

Targets menu, install the Embedded Target for the TI TMS320C6000™
DSP Platform.

To learn how to use the FDATool GUI, see “Designing the Filter” on
page 10-297.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Analog Filter Design Signal Processing Blockset

Window Function Signal Processing Blockset

fdatool Signal Processing Toolbox

filter Signal Processing Toolbox

fvtool Signal Processing Toolbox

sptool Signal Processing Toolbox

filter Filter Design Toolbox

To learn how to use this block and FDATool, see the following:

• Chapter 3, “Filters”

• “Digital Filter Design Block” on page 3-18

• Topic on the Filter Design and Analysis Tool (FDATool) in the Signal
Processing Toolbox documentation.

10-299

Digital FIR Filter Design

Purpose Design and implement a variety of FIR filters.

Library Filtering / Filter Designs

Description
Note The Digital FIR Filter Design block is still supported but is likely
to be obsoleted in a future release. We strongly recommend replacing
this block with the Digital Filter block.

The Digital FIR Filter Design block designs a discrete-time (digital) FIR
filter in one of several different band configurations using a window
method. Most of these filters are designed using the fir1 function in the
Signal Processing Toolbox, and are real with linear phase response. The
block applies the filter to a discrete-time input using the Direct-Form
II Transpose Filter block.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

For complete details on the classical FIR filter design algorithm, see the
description of the fir1 and fir2 functions in the Signal Processing
Toolbox documentation.

Band Configurations

The band configuration for the filter is set from the Filter type pop-up
menu. The band configuration parameters below this pop-up menu
adapt appropriately to match the Filter type selection.

• Lowpass and Highpass

In lowpass and highpass configurations, the Filter order and Cutoff
frequency parameters specify the filter design. Frequencies are
normalized to half the sample frequency. The figure below shows the
frequency response of the default order-22 filter with cutoff at 0.4.

10-300

Digital FIR Filter Design

• Bandpass and Bandstop

In bandpass and bandstop configurations, the Filter order, Lower
cutoff frequency, and Upper cutoff frequency parameters
specify the filter design. Frequencies are normalized to half the
sample frequency, and the actual filter order is twice the Filter
order parameter value. The figure below shows the frequency
response of the default order-22 filter with lower cutoff at 0.4, and
upper cutoff at 0.6.

• Multiband

In the multiband configuration, the Filter order, Cutoff frequency
vector, and Gain in the first band parameters specify the filter
design. The Cutoff frequency vector contains frequency points in

10-301

Digital FIR Filter Design

the range 0 to 1, where 1 corresponds to half the sample frequency.
Frequency points must appear in ascending order. The Gain in
the first band parameter specifies the gain in the first band: 0
indicates a stopband, and 1 indicates a passband. Additional bands
alternate between passband and stopband. The figure below shows
the frequency response of the default order-22 filter with five bands,
the first a passband.

• Arbitrary shape

In the arbitrary shape configuration, the Filter order, Frequency
vector, and Gains at these frequencies parameters specify the
filter design. The Frequency vector, fn, contains frequency points
in the range 0 to 1 (inclusive) in ascending order, where 1 corresponds
to half the sample frequency. The Gains at these frequencies
parameter, mn, is a vector containing the desired magnitude response
at the corresponding points in the Frequency vector. (Note that
the specifications for the Arbitrary shape configuration are similar
to those for the Yule-Walker IIR Filter Design block. Arbitrary-shape
filters are designed using the fir2 function in the Signal Processing
Toolbox.)

10-302

Digital FIR Filter Design

The desired magnitude response of the design can be displayed by
typing

plot(fn,mn)

Duplicate frequencies can be used to specify a step in the response
(such as band 2 below). The figure shows an order-100 filter with
five bands.

The Window type parameter allows you to select from a variety of
different windows. See the Window Function block reference for a
complete description of the available options.

10-303

Digital FIR Filter Design

Dialog
Box

The parameters displayed in the dialog box vary for different
design/band combinations. Only some of the parameters listed below
are visible in the dialog box at any one time.

Filter type
The type of filter to design: Lowpass, Highpass, Bandpass,
Bandstop, Multiband, or Arbitrary Shape. Tunable.

Filter order
The order of the filter. The filter length is one more than this
value. For the Bandpass and Bandstop configurations, the
order of the final filter is twice this value.

Cutoff frequency
The normalized cutoff frequency for the Highpass and Lowpass
filter configurations. A value of 1 specifies half the sample
frequency. Tunable.

10-304

Digital FIR Filter Design

Lower cutoff frequency
The lower passband or stopband frequency for the Bandpass
and Bandstop filter configurations. A value of 1 specifies half
the sample frequency. Tunable.

Upper cutoff frequency
The upper passband or stopband frequency for the Bandpass
and Bandstop filter configurations. A value of 1 specifies half
the sample frequency. Tunable.

Cutoff frequency vector
A vector of ascending frequency points defining the cutoff edges
for the Multiband filter. A value of 1 specifies half the sample
frequency. Tunable.

Gain in the first band
The gain in the first band of the Multiband filter: 0 specifies
a stopband, 1 specifies a passband. Additional bands alternate
between passband and stopband. Tunable.

Frequency vector
A vector of ascending frequency points defining the frequency
bands of the Arbitrary shape filter. The frequency range is 0 to
1 including the endpoints, where 1 corresponds to half the sample
frequency. Tunable.

Gains at these frequencies
A vector containing the desired magnitude response for the
Arbitrary shape filter at the corresponding points in the
Frequency vector. Tunable.

Window type
The type of window to apply. See the Window Function block
reference. Tunable.

Stopband ripple
The level (dB) of stopband ripple, Rs, for the Chebyshev window.
Tunable.

10-305

Digital FIR Filter Design

Beta
The Kaiser window β parameter. Increasing Beta widens the
mainlobe and decreases the amplitude of the window sidelobes in
the window’s frequency magnitude response. Tunable.

References Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd
ed. New York, NY: McGraw-Hill, 1993.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-306

Digital FIR Raised Cosine Filter Design

Purpose Design and implement a raised cosine FIR filter.

Library dspobslib

Description
Note The Digital FIR Raised Cosine Filter Design block is still
supported but is likely to be obsoleted in a future release. We strongly
recommend replacing this block with the Digital Filter block.

The Digital FIR Raised Cosine Filter Design block uses the firrcos
function in the Signal Processing Toolbox to design a lowpass,
linear-phase, digital FIR filter with a raised cosine transition band. The
block applies the filter to a discrete-time input using the Direct-Form
II Transpose Filter block.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The frequency response of the raised cosine filter is

where H(f) is the magnitude response at frequency f, fn0 is the
normalized cutoff frequency (-6 dB) specified by the Upper cutoff

10-307

Digital FIR Raised Cosine Filter Design

frequency parameter, and R is a rolloff factor in the range [0,1]
determining the passband-to-stopband transition width.

The Square-root raised cosine filter option designs a filter with
magnitude response . This is useful when the filter is part of
a pair of matched filters.

When the Design method parameter is set to Rolloff factor, the
secondary Rolloff factor parameter is enabled, and R can be directly
specified. When Design method is set to Transition bandwidth,
the secondary Transition bandwidth parameter is enabled, and the
transition region bandwidth, �f, can be specified in place of R. The
transition region is centered on fn0 and must be sufficiently narrow to
satisfy

The Upper cutoff frequency and Transition bandwidth parameter
values are normalized to half the sample frequency.

The Window type parameter allows you to apply a variety of different
windows to the raised cosine filter. See the Window Function block
reference for a complete description of the available options.

Algorithm The filter output is computed by convolving the input with a truncated,
delayed, windowed version of the filter’s impulse response. The impulse
response for the raised cosine filter is

which has limits

10-308

Digital FIR Raised Cosine Filter Design

and

The impulse response for the square-root raised cosine filter is

which has limits

and

10-309

Digital FIR Raised Cosine Filter Design

Dialog
Box

Filter order
The order of the filter. The filter length is one more than this
value.

Upper cutoff frequency
The normalized cutoff frequency, fn0. A value of 1 specifies half
the sample frequency. Tunable.

Square-root raised cosine filter
Selects the square-root filter option, which designs a filter with
magnitude response . Tunable.

Design method
The method used to design the transition region of the filter,
Rolloff factor or Transition bandwidth. Tunable.

10-310

Digital FIR Raised Cosine Filter Design

Rolloff factor
The rolloff factor, R, enabled when Rolloff factor is selected in
the Design method parameter. Tunable.

Transition bandwidth
The transition bandwidth, �f, enabled when Transition
bandwidth is selected in the Design method parameter.
Tunable.

Window type
The type of window to apply. See the Window Function block
reference. Tunable.

Stopband attenuation in dB
The level (dB) of stopband attenuation, Rs, for the Chebyshev
window. Tunable.

Beta
The Kaiser window β parameter. Increasing β widens the
mainlobe and decreases the amplitude of the window sidelobes in
the window’s frequency magnitude response. Tunable.

Initial conditions
The filter’s initial conditions, a scalar, vector, or matrix. See the
Direct-Form II Transpose Filter block reference for complete
syntax information.

References Proakis, J. G. Digital Communications. Third ed. New York, NY:
McGraw-Hill, 1995.

Proakis, J. G. and M. Salehi. Contemporary Communication Systems
Using MATLAB. Boston, MA: PWS Publishing, 1998.

10-311

Digital IIR Filter Design

Purpose Design and implement an IIR filter.

Library dspobslib

Description
Note The Digital IIR Filter Design block is still supported but is likely
to be obsoleted in a future release. We strongly recommend replacing
this block with the Digital Filter block.

The Digital IIR Filter Design block designs a discrete-time (digital) IIR
filter in a lowpass, highpass, bandpass, or bandstop configuration, and
applies it to the input using the Direct-Form II Transpose Filter block.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The Design method parameter allows you to specify Butterworth,
Chebyshev type I, Chebyshev type II, and elliptic filter designs. Note
that for the bandpass and bandstop configurations, the actual filter
length is twice the Filter order parameter value.

Filter Design Description

Butterworth The magnitude response of a Butterworth filter
is maximally flat in the passband and monotonic
overall.

Chebyshev
type I

The magnitude response of a Chebyshev type I
filter is equiripple in the passband and monotonic
in the stopband.

10-312

Digital IIR Filter Design

Filter Design Description

Chebyshev
type II

The magnitude response of a Chebyshev type II
filter is monotonic in the passband and equiripple
in the stopband.

Elliptic The magnitude response of an elliptic filter is
equiripple in both the passband and the stopband.

The design and band configuration of the filter are selected from the
Design method and Filter type pop-up menus in the dialog box.
For each combination of design method and band configuration, an
appropriate set of secondary parameters is displayed.

The table below lists the available parameters for each design/band
combination. For lowpass and highpass band configurations, these
parameters include the passband edge frequency fnp, the stopband edge
frequency fns, the passband ripple Rp, and the stopband attenuation Rs.
For bandpass and bandstop configurations, the parameters include the
lower and upper passband edge frequencies, fnp1 and fnp2, the lower and
upper stopband edge frequencies, fns1 and fns2, the passband ripple Rp,
and the stopband attenuation Rs. Frequency values are normalized to
half the sample frequency, and ripple and attenuation values are in dB.

Lowpass Highpass Bandpass Bandstop

Butterworth Order, fnp Order, fnp Order, fnp1, fnp2 Order, fnp1, fnp2

Chebyshev
Type I

Order, fnp, Rp Order, fnp, Rp Order, fnp1, fnp2,
Rp

Order, fnp1, fnp2,
Rp

Chebyshev
Type II

Order, fns, Rs Order, fns, Rs Order, fns1, fns2,
Rs

Order, fns1, fns2,
Rs

Elliptic Order, fnp, Rp, Rs Order, fnp, Rp, Rs Order, fnp1, fnp2,
Rp, Rs

Order, fnp1, fnp2,
Rp, Rs

The digital filters are designed using the Signal Processing Toolbox’s
filter design commands butter, cheby1, cheby2, and ellip.

10-313

Digital IIR Filter Design

Dialog
Box The parameters displayed in the dialog box vary for different

design/band combinations. Only some of the parameters listed below
are visible in the dialog box at any one time.

Design method
The filter design method: Butterworth, Chebyshev type I,
Chebyshev type II, or Elliptic. Tunable.

Filter type
The type of filter to design: Lowpass, Highpass, Bandpass, or
Bandstop. Tunable.

Filter order
The order of the filter for lowpass and highpass configurations.
For bandpass and bandstop configurations, the length of the final
filter is twice this value.

Passband edge frequency
The normalized passband edge frequency for the highpass and
lowpass configurations of the Butterworth, Chebyshev type I, and
elliptic designs. Tunable.

10-314

Digital IIR Filter Design

Lower passband edge frequency
The normalized lower passband frequency for the bandpass and
bandstop configurations of the Butterworth, Chebyshev type I,
and elliptic designs. Tunable.

Upper passband edge frequency
The normalized upper passband frequency for the bandpass and
bandstop configurations of the Butterworth, Chebyshev type I, or
elliptic designs. Tunable.

Stopband edge frequency
The normalized stopband edge frequency for the highpass and
lowpass band configurations of the Chebyshev type II design.
Tunable.

Lower stopband edge frequency
The normalized lower stopband frequency for the bandpass and
bandstop configurations of the Chebyshev type II design. Tunable.

Upper stopband edge frequency
The normalized upper stopband frequency for the bandpass and
bandstop filter configurations of the Chebyshev type II design.
Tunable.

Passband ripple in dB
The passband ripple, in dB, for the Chebyshev type I and elliptic
designs. Tunable.

Stopband attenuation in dB
The stopband attenuation, in dB, for the Chebyshev type II and
elliptic designs. Tunable.

References Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd
ed. New York, NY: McGraw-Hill, 1993.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-315

Direct-Form II Transpose Filter

Purpose Apply an IIR filter to the input.

Library dspobslib

Description
Note The Direct-Form II Transpose Filter block is still supported but
is likely to be obsoleted in a future release. We strongly recommend
replacing this block with the Digital Filter block.

The Direct-Form II Transpose Filter block applies a transposed
direct-form II IIR filter to the input.

This is a canonical form that has the minimum number of delay
elements. The filter order is max(m,n)-1.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The filter is specified in the parameter dialog box by its transfer
function,

where the Numerator parameter specifies the vector of numerator
coefficients,

10-316

Direct-Form II Transpose Filter

[b(1) b(2) ... b(m)]

and the Denominator parameter specifies the vector of denominator
coefficients,

[a(1) a(2) ... a(n)]

The filter coefficients are normalized by a1.

Initial Conditions

In its default form, the filter initializes the internal filter states to
zero, which is equivalent to assuming past inputs and outputs are
zero. The block also accepts optional nonzero initial conditions for the
filter delays. Note that the number of filter states (delay elements)
per input channel is

max(m,n)-1

The Initial conditions parameter may take one of four forms:

• Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied
to all delay elements in each filter channel.

• Scalar

The scalar value is copied to all delay elements in each filter
channel. Note that a value of zero is equivalent to setting the Initial
conditions parameter to the empty matrix, [].

• Vector

The vector has a length equal to the number of delay elements in each
filter channel, max(m,n)-1, and specifies a unique initial condition
for each delay element in the filter channel. This vector of initial
conditions is applied to each filter channel.

10-317

Direct-Form II Transpose Filter

• Matrix

The matrix specifies a unique initial condition for each delay element,
and can specify different initial conditions for each filter channel.
The matrix must have the same number of rows as the number of
delay elements in the filter, max(m,n)-1, and must have one column
per filter channel.

Dialog
Box

Numerator
The filter numerator vector. Tunable; the numerator coefficients
can be adjusted while the simulation runs, but the vector length
(i.e., the filter order) must remain the same.

Denominator
The filter denominator vector. Tunable; the denominator
coefficients can be adjusted while the simulation runs, but the
vector length (i.e., the filter order) must remain the same.

Initial conditions
The filter’s initial conditions, a scalar, vector, or matrix.

10-318

Direct-Form II Transpose Filter

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-319

Discrete Impulse

Purpose Generate discrete impulse

Library Signal Processing Sources

Description The Discrete Impulse block generates an impulse (the value 1) at output
sample D+1, where D is specified by the Delay parameter (D ≥0). All
output samples preceding and following sample D+1 are zero.

When D is a length-N vector, the block generates an M-by-N matrix
output representing N distinct channels, where frame size M is specified
by the Samples per frame parameter. The impulse for the ith channel
appears at sample D(i)+1. For M=1, the output is sample based;
otherwise, the output is frame based.

The Sample time parameter value, Ts, specifies the output signal
sample period. The resulting frame period is M*Ts.

Examples Construct the model below.

Configure the Discrete Impulse block to generate a frame-based
three-channel output of type double, with impulses at samples 1, 4, and
6 of channels 1, 2, and 3, respectively. Use a sample period of 0.25 and a
frame size of 4. The corresponding settings should be as follows:

• Delay = [0 3 5]

• Sample time = 0.25

• Samples per frame = 4

• Output data type = double

10-320

Discrete Impulse

Run the model and look at the output, yout. The first few samples
of each channel are shown below.

yout(1:10,:)
ans =

1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

The block generates an impulse at sample 1 of channel 1 (first column),
at sample 4 of channel 2 (second column), and at sample 6 of channel 3
(third column).

Dialog
Box

The Main pane of the Discrete Impulse block dialog appears as follows:

10-321

Discrete Impulse

Delay
The number of zero-valued output samples, D, preceding the
impulse. A length-N vector specifies an N-channel output. This
parameter is not tunable.

Sample time
The sample period, Ts, of the output signal. The output frame
period is M*Ts. This parameter is not tunable.

Samples per frame
The number of samples, M, in each output frame. This parameter
is not tunable.

The Data Types pane of the Discrete Impulse block dialog appears
as follows:

Output data type
Specify the output data type in one of the following ways:

• Choose one of the built-in data types from the list.

10-322

Discrete Impulse

• Choose Fixed-point to specify the output data type and scaling
in the Signed, Word length, Set fraction length in output
to, and Fraction length parameters.

• Choose User-defined to specify the output data type and
scaling in the User-defined data type, Set fraction length
in output to, and Fraction length parameters.

• Choose Inherit via back propagation to set the output data
type and scaling to match the next block downstream.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is only visible when you select
Fixed-point for the Output data type parameter.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible when you select Fixed-point
for the Output data type parameter, or when you select

10-323

Discrete Impulse

User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Data Type Conversion Simulink

DSP Constant Signal Processing Blockset

Multiphase Clock Signal Processing Blockset

N-Sample Enable Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

impz Signal Processing Toolbox

10-324

Downsample

Purpose Resample input at lower rate by deleting samples

Library Signal Operations

Description The Downsample block resamples each channel of the Mi-by-N input
at a rate K times lower than the input sample rate by discarding
K-1 consecutive samples following each sample passed through to
the output. The integer K is specified by the Downsample factor
parameter.

The Sample offset parameter delays the output samples by an integer
number of sample periods, D, where 0 ≤D < (K-1), so that any of the
K possible output phases can be selected. For example, when you
downsample the sequence 1, 2, 3, ... by a factor of 4, you can select from
the following four phases.

Input Sequence Sample Offset, D
Output Sequence
(K=4)

1,2,3,... 0 0,1,5,9,13,17,21,25,...

1,2,3,... 1 0,2,6,10,14,18,22,26,...

1,2,3,... 2 0,3,7,11,15,19,23,27,...

1,2,3,... 3 0,4,8,12,16,20,24,28,...

The initial zero in each output sequence above is a result of the default
zero Initial condition parameter setting for this example. See
“Latency” on page 10-328 for more on the Initial condition parameter.

This block supports triggered subsystems if, for Sample-based mode,
you select Force single-rate and, for Frame-based mode, you select
Maintain input frame rate.

Sample-Based Operation

When the input is sample based, the block treats each of the M*N
matrix elements as an independent channel, and downsamples each
channel over time. The input and output sizes are identical.

10-325

Downsample

The Sample-based mode parameter determines how the block
represents the new rate at the output. There are two available options:

• Allow multirate

When you select Allow multirate, the sample period of the
sample-based output is K times longer than the input sample period
(Tso = KTsi). The block is therefore multirate.

• Force single rate

When you select Force single rate, the block forces the output
sample rate to match the input sample rate (Tso = Tsi) by repeating
every Kth input sample K times at the output. The block is therefore
single-rate. (The block’s operation when you select Enforce single
rate is similar to the operation of a Sample and Hold block with a
repeating trigger event of period KTsi.)

The setting of the Frame-based mode pop-up menu does not affect
sample-based inputs.

Frame-Based Inputs

When the input is frame based, the block treats each of the N input
columns as a frame containing Mi sequential time samples from
an independent channel. The block downsamples each channel
independently by discarding K-1 rows of the input matrix following
each row that it passes through to the output.

The Frame-based mode parameter determines how the block adjusts
the rate at the output to accommodate the reduced number of samples.
There are two available options:

• Maintain input frame size

The block generates the output at the slower (downsampled) rate by
using a proportionally longer frame period at the output port than at
the input port. For downsampling by a factor of K, the output frame
period is K times longer than the input frame period (Tfo = KTfi), but
the input and output frame sizes are equal.

10-326

Downsample

The model below shows a single-channel input with a frame period of
1 second being downsampled by a factor of 4 to a frame period of 4
seconds. The input and output frame sizes are identical.

• Maintain input frame rate

The block generates the output at the slower (downsampled) rate
by using a proportionally smaller frame size than the input. For
downsampling by a factor of K, the output frame size is K times
smaller than the input frame size (Mo = Mi/K), but the input and
output frame rates are equal.

The model below shows a single-channel input of frame size 64 being
downsampled by a factor of 4 to a frame size of 16. The input and
output frame rates are identical.

The setting of the Sample-based mode pop-up menu does not affect
frame-based inputs.

10-327

Downsample

Latency

Zero Latency

The Downsample block has zero tasking latency for the special
combinations of input signal sampling and parameter settings shown in
the table below. In all of these cases the block has single-rate operation.

Input Sampling Parameter Settings

Sample-based Downsample factor parameter, K, is 1, or

Enforce single rate is selected (with D=0)

Frame-based Downsample factor parameter, K, is 1, or

Maintain input frame rate is selected

Zero tasking latency means that the block propagates input sample D+1
(received at t=0) as the first output sample, followed by input sample
D+1+K, input sample D+1+2K, and so on. The Initial condition
parameter value is not used.

Nonzero Latency

The Downsample block is multirate for most settings other than those
in the above table. The amount of latency for multirate operation
depends on input signal sampling and the Simulink tasking mode, as
shown in the table below.

Multirate...
Sample-Based
Latency

Frame-Based
Latency

Single-tasking None, for D=0
One sample, for D>0

One frame (Mi
samples)

Multitasking One sample One frame (Mi
samples)

The only case of nonzero single-rate latency occurs in sample-based
mode, when you select Force single rate with D > 0. The latency
in this case is one sample.

10-328

Downsample

In all cases of one-sample latency, the initial condition for each channel
appears as the first output sample. Input sample D+1 appears as
the second output sample for each channel, followed by input sample
D+1+K, input sample D+1+2K, and so on. The Initial condition
parameter can be an Mi-by-N matrix containing one value for each
channel, or a scalar to be applied to all signal channels.

In all cases of one-frame latency, the Mi rows of the initial condition
matrix appear in sequence as the first Mi output rows. Input sample
D+1 (i.e, row D+1 of the input matrix) appears in the output as sample
Mi+1, followed by input sample D+1+K, input sample D+1+2K, and
so on. The Initial condition value can be an Mi-by-N matrix, or a
scalar to be repeated across all elements of the Mi-by-N matrix. See the
following example for an illustration of this case.

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56
and “Models with Multiple Sample Rates” in the Real-Time Workshop
User’s Guide documentation.

Examples Construct the frame-based model shown below.

Adjust the block parameters as follows:

• Configure the Signal From Workspace block to generate a
two-channel signal with frame size of 4 and sample period of 0.25
second. This represents an output frame period of 1 second (0.25*4).

10-329

Downsample

The first channel should contain the positive ramp signal 1, 2, ...,
100, and the second channel should contain the negative ramp signal
-1, -2, ..., -100. The settings are

- Signal = [(1:100)' (-1:-1:-100)']

- Sample time = 0.25

- Samples per frame = 4

• Configure the Downsample block to downsample the two-channel
input by decreasing the output frame rate by a factor of 2 relative to
the input frame rate. Set a sample offset of 1, and a 4-by-2 initial
condition matrix of

- Downsample factor = 2

- Sample offset = 1

- Initial condition = [11 -11;12 -12;13 -13;14 -14]

- Frame-based mode = Maintain input frame size

• Configure the Probe blocks by clearing the Probe width and Probe
complex signal check boxes (if desired).

This model is multirate because there are at least two distinct frame
rates, as shown by the two Probe blocks. To run this model in the
Simulink multitasking mode, open the Configuration Parameters dialog
box. From the list on the left side of the dialog box, click Solver. From
the Type list, select Fixed-step, and from the Solver list, select
discrete (no continuous states). From the Tasking mode for
periodic sample times list, select MultiTasking. Additionally, set
the Stop time parameter to 30.

10-330

Downsample

Run the model and look at the output, yout. The first few samples
of each channel are shown below.

yout =
11 -11
12 -12
13 -13
14 -14
2 -2
4 -4
6 -6
8 -8

10 -10
12 -12
14 -14

Since we ran this frame based multirate model in multitasking mode,
the first row of the initial condition matrix appears as the first output
sample, followed by the other three initial condition rows. The second
row of the first input matrix (that is, row D+1, where D is the Sample
offset) appears in the output as sample 5 (that is sample Mi+1, where
Mi is the input frame size).

10-331

Downsample

Dialog
Box

Downsample factor
The integer factor, K, by which to decrease the input sample rate.

Sample offset
The sample offset, D, which must be an integer in the range [0,
K-1].

Initial condition
The value with which the block is initialized for cases of nonzero
latency; a scalar or matrix.

Sample-based mode
The method by which to implement downsampling for
sample-based inputs: Allow multirate (that is, decrease the
output sample rate), or Force single-rate (that is, force the
output sample rate to match the input sample rate by repeating
every Kth input sample K times at the output).

Frame-based mode
The method by which to implement downsampling for frame-based
inputs: Maintain input frame size (that is, decrease the frame

10-332

Downsample

rate), or Maintain input frame rate (that is, decrease the
frame size).

Supported
Data
Types Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-333

Downsample

See Also

FIR Decimation Signal Processing Blockset

FIR Rate Conversion Signal Processing Blockset

Repeat Signal Processing Blockset

Sample and Hold Signal Processing Blockset

Upsample Signal Processing Blockset

10-334

DSP Constant

Purpose Generate discrete- or continuous-time constant signal

Library Signal Processing Sources

Description The DSP Constant block generates a signal whose value remains
constant throughout the simulation. The Constant value parameter
specifies the constant to output, and can be any valid MATLAB
expression that evaluates to a scalar, vector, or matrix.

When Sample mode is set to Continuous, the output is a
continuous-time signal. When Sample mode is set to Discrete, the
Sample time parameter is visible, and the signal has the discrete
output period specified by the Sample time parameter.

You can set the output signal to Frame-based, Sample-based, or
Sample-based (interpret vectors as 1-D) with the Output
parameter.

Dialog
Box

The Main pane of the DSP Constant block dialog box appears as follows:

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

10-335

DSP Constant

Constant value
Specify the constant to generate. This parameter is tunable;
values entered here can be tuned, but their dimensions must
remain fixed.

When you specify any data type information in this field, it is
overridden by the value of the Output data type parameter
in the Data Types pane, unless you select Inherit from
'Constant value'.

Sample mode
Specify the sample mode of the output, Discrete for a
discrete-time signal or Continuous for a continuous-time signal.

Output
Specify whether the output is Sample-based (interpret
vectors as 1-D), Sample-based, or Frame-based. When you
select Sample-based and the output is a vector, its dimension
is constrained to match the Constant value dimension (row or
column). When you select Sample-based (interpret vectors
as 1-D), however, the output has no specified dimensionality.

Sample time
Specify the discrete sample period for sample-based outputs.
When you select Frame-based for the Output parameter, this
parameter is named Frame period, and is the discrete frame
period for the frame-based output. This parameter is only visible
when you select Discrete for the Sample mode parameter.

10-336

DSP Constant

The Data Types pane of the DSP Constant block dialog box appears
as follows:

Output data type
Specify the output data type in one of the following ways:

• Choose one of the built-in data types from the list.

• Choose Fixed-point to specify the output data type and scaling
in the Signed, Word length, Set fraction length in output
to, and Fraction length parameters.

• Choose User-defined to specify the output data type and
scaling in the User-defined data type, Set fraction length
in output to, and Fraction length parameters.

• Choose Inherit from 'Constant value' to set the output
data type and scaling to match the values of the Constant
value parameter in the Main pane.

• Choose Inherit via back propagation to set the output data
type and scaling to match the following block.

10-337

DSP Constant

The value of this parameter overrides any data type information
specified in the Constant value parameter in the Main pane,
except when you select Inherit from 'Constant value'.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is only visible when you select
Fixed-point for the Output data type parameter.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible when you select Fixed-point
for the Output data type parameter, or when you select
User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is

10-338

DSP Constant

only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Constant Simulink

Signal From Workspace Signal Processing Blockset

10-339

DSP Fixed-Point Attributes

Purpose Set fixed-point attributes of Signal Processing Blockset blocks on the
system or subsystem level

Library dspobslib

Description
Note The DSP Fixed-Point Attributes (DFPA) block is still supported
but is likely to be obsoleted in a future release.

The DSP Fixed-Point Attributes (DFPA) block enables you to set
fixed-point attributes for Signal Processing Blockset blocks in your
model on the system or subsystem level. This allows you to set
fixed-point parameters for groups of blocks in one place, rather than
on a block-by-block basis. The parameters listed below appear on
various fixed-point Signal Processing Blockset block masks, and can be
controlled by DFPA blocks.

On nonsource blocks:

• Output word length

• Output fraction length

• Accumulator word length

• Accumulator fraction length

• Product output word length

• Product output fraction length

• State memory word length

• State memory fraction length

• Round integer calculations toward

• Saturate on integer overflow

10-340

DSP Fixed-Point Attributes

On source blocks:

• Word length

• Set fraction length in output to

• Fraction length

The blocks that have parameters that may be controlled by DFPA
blocks are listed below:

• Autocorrelation

• Constant Diagonal Matrix

• Convolution

• Correlation

• Digital Filter

• Discrete Impulse

• DSP Constant

• DSP Gain

• DSP Product

• DSP Sum

• FFT

• FIR Decimation

• FIR Interpolation

• Identity Matrix

• IFFT

• Matrix Product

• Matrix Scaling

• Matrix Sum

• Sine Wave

• Window Function

Each of these blocks has an Allow overrides from DSP Fixed-Point
Attributes blocks check box that is selected by default. That
means that any such blocks in models you build can automatically be
configured from the top level of your model, without having to configure
each block mask. If you do not want the fixed-point parameters of a
particular block in your model to be controlled by DFPA blocks, clear
the Allow overrides from DSP Fixed-Point Attributes blocks
check box in that block’s mask.

Place a DFPA block in any subsystem in your model that contains
blocks with any of the fixed-point parameters listed above, if you want
to control the blocks at the subsystem level. You can have a DFPA block

10-341

DSP Fixed-Point Attributes

in one, some, or all of the subsystems in your model. DFPA blocks in
lower subsystems overrule the settings of DFPA blocks at higher levels.

Dialog
Box

When you double-click on a DFPA block in any model you have open, the
DSP Fixed-Point Attributes GUI appears. This one instance of the GUI
enables you to see the information for all DFPA blocks in open models.
You can see the hierarchy of DFPA blocks in the left pane of the GUI,
and settings for a particular DFPA block in the right pane of the GUI.

Left Pane

The left pane of the DSP Fixed-Point Attributes GUI displays the DSP
Fixed-Point Attributes Block Hierarchy. This navigation tree displays
the relative hierarchy of all DFPA blocks in models that are currently
open.

10-342

DSP Fixed-Point Attributes

Note The left pane displays the hierarchy of DFPA blocks in all models
that are currently open. It does not display the hierarchy of subsystems
in your models.

The top-level nodes in the hierarchy, designated by the icon,
represent each model that you have open. The branches under each
top-level model node show the DFPA blocks in that model. Settings in
DFPA blocks that are at a lower level in the hierarchy have precedence
over higher-level DFPA blocks for the subsystems that they control.
Therefore, a DFPA block controls fixed-point settings for blocks that are
in the same subsystem or a lower subsystem, unless

• A lower-level DFPA block overrides the settings.

• A particular fixed-point block does not have its Allow overrides
from DSP Attributes blocks check box selected.

You can click on any branch in the hierarchy to select it. The
information for the DFPA block selected in the left pane is displayed in
the right pane.

Right Pane

The following buttons, rows, and columns allow you to specify the
settings for the currently selected DFPA block:

Fixed-point attributes at level:
This button displays the path to the subsystem that contains the
DFPA block currently selected in the DFPA Block Hierarchy. Click
this button to bring the subsystem to the front of your screen.

Block output
This row allows you to set fixed-point block output attributes.

This row can override the Output word length and Output
fraction length parameters on nonsource block masks. However,

10-343

DSP Fixed-Point Attributes

note that the settings in this row are ignored by the DSP Gain,
DSP Product, and DSP Sum blocks.

This row can override the Word length and Fraction length
parameters on source masks, if the Output data type parameter
of the source block is set to Fixed-point.

The block output word length and fraction length may only be set
in this row if the corresponding Set here check box is selected.

Accumulator
This row allows you to set fixed-point accumulator attributes.
This row can override the Accumulator word length and
Accumulator fraction length parameters on block masks.
This row also overrides the Output word length and Output
fraction length parameters for DSP Sum blocks.

The accumulator word length and fraction length may only be set
in this row if the corresponding Set here check box is selected.

Product Output
This row allows you to set fixed-point product output attributes.
This row can override the Product output word length and
Product output fraction length parameters on block masks.
This row also overrides the Output word length and Output
fraction length parameters for DSP Gain and DSP Product
blocks.

The product output word length and fraction length may only be
set in this row if the corresponding Set here check box is selected.

State
This row allows you to set fixed-point state memory attributes.
This row can override the State memory word length and State
memory output fraction length parameters on block masks.

The state word length and fraction length may only be set in this
row if the corresponding Set here check box is selected.

10-344

DSP Fixed-Point Attributes

Rounding Mode
This column allows you to set the fixed-point rounding mode to
Floor or Nearest. This column can override the Round integer
calculations toward parameter on block masks.

The rounding mode may only be set in this column if the
corresponding Set here check box is selected.

Overflow Mode
This column allows you to set the fixed-point overflow mode to
Wrap or Saturate. This column can override the Saturate on
integer overflow parameter on block masks.

The overflow mode may only be set in this column if the
corresponding Set here check box is selected.

Word length
This column allows you to set the word length, in bits, for the
Block output, Accumulator, Product output, and State attributes.
Each word length must be an integer number of bits between 2
and 128.

Fraction length
This column allows you to set the fraction length, in bits, for the
Block output, Accumulator, Product output, and State attributes.
Each fraction length must be an integer number of bits.

Set here
The check boxes in this column allow you to specify whether each
attribute is set by the currently selected DFPA block. If a Set
here check box is not selected, the corresponding attribute is
either set by a higher DFPA block, or is not set at all.

Source of attribute settings
This column indicates the level at which each attribute is set. If
the Set here check box is selected for a certain row, the Source
of attribute settings cell in that row is set to Here. If the Set
here check box is not selected for a certain row, the Source of
attribute settings cell for that row gives the path to the DFPA

10-345

DSP Fixed-Point Attributes

block controlling those attributes for the current subsystem. If the
parameters in a row are not set in any DFPA block, the Source of
attribute settings cell for that row has a dash-.

Supported
Data
Types

This block sets attributes for Signal Processing Blockset blocks that
perform fixed-point calculations. This block has no input or output
ports.

10-346

DSP Gain

Purpose Multiply the input by a constant

Library dspobslib

Description
Note The DSP Gain block is still supported but is likely to be obsoleted
in a future release. We strongly recommend replacing this block with
the Simulink Gain block.

The DSP Gain block is a masked version of the Simulink Gain block. It
multiplies the input by the gain, element-wise.

The input and the gain can each be a scalar, vector, or matrix. Either the
gain must be a scalar, or it must have the same dimensions as the input:

• If the gain is a scalar, then the gain is multiplied to each element of
the input.

• If the gain is a vector or a matrix, each element of the gain is
multiplied to the corresponding element of the input.

The DSP Gain block accepts real and complex floating-point and
fixed-point inputs.

Dialog
Box

10-347

DSP Gain

Gain value
Specify the value by which to multiply the input. The gain may be
scalar, vector, or a matrix. The gain may not be Boolean.

Show additional parameters
If selected, additional parameters specific to implementation of
the block become visible as shown.

Allow overrides from DSP Fixed-Point Attributes blocks
If you select this parameter, fixed-point data types for this block
may be set by DSP Fixed-Point Attributes (DFPA) blocks in your

10-348

DSP Gain

model. If this parameter is unselected, the data types are always
set by the parameters in the block mask.

Note that the data type of the gain is always specified by the value
in the DSP Gain block mask, and not by a DFPA block.

When a DSP Gain block is overridden by a DFPA block, the output
data type of the DSP Gain block is controlled by the Product
output attribute. The Output attribute of the DFPA block is
ignored for DSP Gain blocks.

Fixed-point gain attributes
Choose how you will specify the word length and fraction length of
the gain. If you select Same as input, these characteristics will
match those of the input to the block. If you select User-defined,
the Gain word length and Gain fraction length parameters
become visible.

The Gain does not obey the Round integer calculations
toward and Saturate on integer overflow parameters; it is
always saturated and rounded to Nearest.

Gain word length
Specify the word length, in bits, of the gain. This parameter is
only visible if User-defined is specified for the Fixed-point
gain attributes parameter.

Gain fraction length
Specify the fraction length, in bits, of the gain. This parameter
is only visible if User-defined is specified for the Fixed-point
gain attributes parameter.

Fixed-point output attributes
Choose how you will specify the output word length and fraction
length. If you select Same as input, these characteristics will
match those of the input to the block. If you select User-defined,
the Output word length and Output fraction length
parameters become visible.

10-349

DSP Gain

Output word length
Specify the word length, in bits, of the output. This parameter
is only visible if User-defined is specified for the Fixed-point
output attributes parameter.

Output fraction length
Specify the fraction length, in bits, of the output. This parameter
is only visible if User-defined is specified for the Fixed-point
output attributes parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. The gain
does not obey this parameter; it always rounds to Nearest.

Saturate on integer overflow
If selected, overflows saturate. The gain does not obey this
parameter; it is always saturated.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

DSP Product Signal Processing Blockset

DSP Sum Signal Processing Blockset

Gain Simulink

10-350

DSP Product

Purpose Perform element-wise multiplication of two inputs

Library dspobslib

Description
Note The DSP Product block is still supported but is likely to be
obsoleted in a future release. We strongly recommend replacing this
block with the Simulink Product block.

The DSP Product block is a masked version of the Simulink Product
block. The DSP Product block performs element-wise multiplication of
two inputs.

The inputs to the DSP Product block can be scalar, vector, or matrix.
Either both inputs must have the same dimensions, or at least one of
the inputs must be a scalar:

• If one input is a scalar, it is multiplied to each element of the other
input.

• If both inputs are vectors or a matrices, their corresponding elements
are multiplied together.

The DSP Product block accepts real and complex floating-point and
fixed-point inputs.

10-351

DSP Product

Dialog
Box

Allow overrides from DSP Fixed-Point Attributes blocks
If you select this parameter, fixed-point data types for this block
may be set by DSP Fixed-Point Attributes (DFPA) blocks in your
model. If this parameter is unselected, the data types are always
set by the parameters in the block mask.

When a DSP Product block is overridden by a DFPA block, the
output data type of the DSP Product block is controlled by the
Product output attribute. The Output attribute of the DFPA
block is ignored for DSP Product blocks.

Fixed-point output attributes
Choose how you will specify the output word length and fraction
length. If you select Same as first input, these characteristics
will match those of the first input to the block. If you select
User-defined, the Output word length and Output fraction
length parameters become visible.

10-352

DSP Product

Output word length
Specify the word length, in bits, of the output. This parameter
is only visible if User-defined is specified for the Fixed-point
output attributes parameter.

Output fraction length
Specify the fraction length, in bits, of the output. This parameter
is only visible if User-defined is specified for the Fixed-point
output attributes parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
If selected, overflows saturate.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

DSP Gain Signal Processing Blockset

DSP Sum Signal Processing Blockset

Product Simulink

10-353

DSP Sum

Purpose Add two inputs

Library dspobslib

Description
Note The DSP Sum block is still supported but is likely to be obsoleted
in a future release. We strongly recommend replacing this block with
the Simulink Sum block.

The DSP Sum block is a masked version of the Simulink Sum block.
This block adds two inputs.

The inputs to the DSP Sum block can be scalar, vector, or matrix.
Either both inputs must have the same dimensions, or at least one of
the inputs must be a scalar:

• If one input is a scalar, it is added to each element of the other input.

• If both inputs are vectors or a matrices, their corresponding elements
are added together.

The DSP Sum block accepts real and complex floating-point and
fixed-point inputs.

10-354

DSP Sum

Dialog
Box

Allow overrides from DSP Fixed-Point Attributes blocks
If you select this parameter, fixed-point data types for this block
may be set by DSP Fixed-Point Attributes (DFPA) blocks in your
model. If this parameter is unselected, the data types are always
set by the parameters in the block mask.

When a DSP Sum block is overridden by a DFPA block, the output
data type of the DSP Sum block is controlled by the Accumulator
attribute. The Output attribute of the DFPA block is ignored for
DSP Sum blocks.

Fixed-point output attributes
Choose how you will specify the output word length and fraction
length. If you select Same as first input, these characteristics
will match those of the first input to the block. If you select
User-defined, the Output word length and Output fraction
length parameters become visible.

10-355

DSP Sum

Output word length
Specify the word length, in bits, of the output. This parameter
is only visible if User-defined is specified for the Fixed-point
output attributes parameter.

Output fraction length
Specify the fraction length, in bits, of the output. This parameter
is only visible if User-defined is specified for the Fixed-point
output attributes parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
If selected, overflows saturate.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

DSP Gain Signal Processing Blockset

DSP Product Signal Processing Blockset

Sum Simulink

10-356

DWT

Purpose Compute discrete wavelet transform (DWT) of input

Library Transforms

Description
Note The DWT block is the same as the Dyadic Analysis Filter Bank
block in the Multirate Filters library, but with different default settings.
See the Dyadic Analysis Filter Bank block reference page for more
information on how to use the block.

The DWT block computes the discrete wavelet transform (DWT) of each
column of a frame-based input. By default, the output is a sample-based
vector or matrix with the same dimensions as the input. Each column
of the output is the DWT of the corresponding input column.

You must install the Wavelet Toolbox for the block to automatically
design wavelet-based filters to compute the DWT. Otherwise, you must
specify your own lowpass and highpass FIR filters by setting the Filter
parameter to User defined.

For the same input, the DWT block and the dwt function, in the Wavelet
Toolbox, do not produce the same results. Because the blockset is
designed for real-time implementation and the toolbox is designed for
analysis, the products handle boundary conditions and filter states
differently. To make the output of the DWT block match the output of
the dwt function, complete the following steps:

1 For the dwt function, set the boundary condition to zero-padding by
typing dwtmode('zpd') at the MATLAB command prompt.

2 To match the latency of the DWT block, which is implemented using
FIR filters, add zeros to the input of the dwt function. The number of
zeros you add must be equal to the half the filter length.

For detailed information about how to use this block, see the Dyadic
Analysis Filter Bank block reference page.

10-357

DWT

Examples See “Examples” on page 10-364 in the Dyadic Analysis Filter Bank
block reference page.

See Also

Dyadic Analysis Filter Bank Signal Processing Blockset

IDWT Signal Processing Blockset

dwt Wavelet Toolbox

10-358

Dyadic Analysis Filter Bank

Purpose Decompose signals into subbands with smaller bandwidths and slower
sample rates

Library Filtering / Multirate Filters

Description
Note This block decomposes frame-based signals with frame size
a multiple of 2n into either n+1 or 2n subbands. To decompose
sample-based signals or frame-based signals of different sizes, use the
Two-Channel Analysis Subband Filter block. (You can connect multiple
copies of the Two-Channel Analysis Subband Filter block to create a
multilevel dyadic analysis filter bank.)

The Dyadic Analysis Filter Bank block decomposes a broadband signal
into a collection of subbands with smaller bandwidths and slower
sample rates. The block uses a series of highpass and lowpass FIR filters
to repeatedly divide the input frequency range, as illustrated in the
figure n-Level Asymmetric Dyadic Analysis Filter Bank on page 3-67.

You can specify the filter bank’s highpass and lowpass filters by
providing vectors of filter coefficients. If you install the Wavelet Toolbox,
you can also specify wavelet-based filters by selecting a wavelet from the
Filter parameter. You must set the filter bank structure to asymmetric
or symmetric, and specify the number of levels in the filter bank.

Input Requirements

• Input can be a frame-based vector or frame-based matrix.

• The input frame size must be a multiple of 2n, where n is the number
of filter bank levels. For example, a frame size of 16 would be
appropriate for a three-level tree (16 is a multiple of 23).

• The block always operates along the columns of the inputs.

For an illustration of why the above input requirements exist, see the
figure Outputs of a 3-Level Asymmetric Dyadic Analysis Filter Bank
on page 10-361.

10-359

Dyadic Analysis Filter Bank

Output Characteristics

The output characteristics vary depending on the block’s parameter
settings, as summarized in the following list and figure:

• Number of levels parameter set to n

• Tree structure parameter setting:

- Asymmetric — Block produces n+1 output subbands

- Symmetric — Block produces 2n output subbands

• Output parameter setting can be Multiple ports or Single port.
The following figure illustrates the difference between the two
settings for a 3-level asymmetric dyadic analysis filter bank. For an
explanation of the illustrated output characteristics, see the table
Output Characteristics for an n-Level Dyadic Analysis Filter Bank
on page 10-362.

For more information about the filter bank levels and structures, see
“Dyadic Analysis Filter Banks” on page 3-66.

10-360

Dyadic Analysis Filter Bank

Outputs of a 3-Level Asymmetric Dyadic Analysis Filter Bank

The following table summarizes the different output characteristics of
the block when it is set to output from single or multiple ports.

10-361

Dyadic Analysis Filter Bank

Output Characteristics for an n-Level Dyadic Analysis Filter Bank

Single Output Port Multiple Output Ports

Output
Description

Block concatenates all
the subbands into one
vector or matrix, and
outputs the concatenated
subbands from a
single output port.
Each output column
contains subbands of
the corresponding input
channel.

Block outputs each subband from a separate
output port. The topmost port outputs the
subband with the highest frequencies. Each
output column contains a subband for the
corresponding input channel.

Output Frame
Status

Sample-based Frame-based

Output Frame
Rate

Not applicable Same as input frame rate
(However, the output frame sizes can
vary, so the output sample rates can vary.)

Output
Dimensions
(Frame Size)

Same number of rows
and columns as the input.

The output has the same number of columns
as the input. The number of output rows
is the output frame size. For an input with
frame size Mi output yk has frame size Mo,k:

• Symmetric — All outputs have the frame
size, Mi / 2n.

• Asymmetric — The frame size of each
output (except the last) is half that of
the output from the previous level. The
outputs from the last two output ports
have the same frame size since they
originate from the same level in the filter
bank.

10-362

Dyadic Analysis Filter Bank

Single Output Port Multiple Output Ports

Output
Sample Rate

Same as input sample
rate.

Though the outputs have the same frame
rate as the input, they have different frame
sizes than the input. Thus, the output
sample rates, Fso,k, are different from the
input sample rate, Fsi:

• Symmetric — All outputs have the
sample rate Fsi / 2n

.

• Asymmetric —

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by
setting the Filter parameter to one of the following options:

• User defined — Allows you to explicitly specify the filters with two
vectors of filter coefficients in the Lowpass FIR filter coefficients
and Highpass FIR filter coefficients parameters. The block uses
the same lowpass and highpass filters throughout the filter bank.
The two filters should be halfband filters, where each filter passes
the frequency band that the other filter stops.

• Wavelet such as Biorthogonal or Daubechies — The block uses the
specified wavelet to construct the lowpass and highpass filters using
the Wavelet Toolbox function, wfilters. Depending on the wavelet,
the block might enable either the Wavelet order or Filter order

10-363

Dyadic Analysis Filter Bank

[synthesis / analysis] parameter. (The latter parameter allows you
to specify different wavelet orders for the analysis and synthesis
filter stages.) You must install the Wavelet Toolbox to use wavelets.

Specifying Filters with the Filter Parameter and Related Parameters

Filter
Sample Setting for Related
Filter Specification Parameters

Corresponding Wavelet
Function Syntax

User-defined Filters based on Daubechies
wavelets with wavelet order 3:

- Highpass FIR
filter coefficients =
[-0.3327 0.8069 -0.4599
-0.1350 0.0854 0.0352]

- Lowpass FIR filter
coefficients =
[0.0352 -0.0854 -0.1350
0.4599 0.8069 0.3327]

None

Haar None wfilters('haar')

Daubechies Wavelet order = 4 wfilters('db4')

Symlets Wavelet order = 3 wfilters('sym3')

Coiflets Wavelet order = 1 wfilters('coif1')

Biorthogonal Filter order [synthesis /
analysis] = [3/1]

wfilters('bior3.1')

Reverse Biorthogonal Filter order [synthesis /
analysis] = [3/1]

wfilters('rbio3.1')

Discrete Meyer None wfilters('dmey')

Examples Wavelets

The primary application for dyadic analysis filter banks and dyadic
synthesis filter banks, is coding for data compression using wavelets.

10-364

Dyadic Analysis Filter Bank

At the transmitting end, the output of the dyadic analysis filter bank is
fed to a lossy compression scheme, which typically assigns the number
of bits for each filter bank output in proportion to the relative energy
in that frequency band. This represents the more powerful signal
components by a greater number of bits than the less powerful signal
components.

At the receiving end, the transmission is decoded and fed to a dyadic
synthesis filter bank to reconstruct the original signal. The filter
coefficients of the complementary analysis and synthesis stages are
designed to cancel aliasing introduced by the filtering and resampling.

Demos

See the following Signal Processing Blockset demos, which use the
Dyadic Analysis Filter Bank block:

• Multi-level PR filter bank

• Denoising

• Wavelet transmultiplexer (WTM)

10-365

Dyadic Analysis Filter Bank

Note To see the version of the demos that use the Dyadic Analysis Filter
Bank and Dyadic Synthesis Filter Bank blocks, click the Frame-Based
Demo button in the demos.

Open the demos using one of the following methods:

• Click the above links in the MATLAB Help browser (not in a Web
browser).

• Type demo blockset dsp at the MATLAB command line, and look
in the Wavelets directory.

Dialog
Box

The parameters displayed in the block dialog vary depending on the
setting of the Filter parameter. Only some of the parameters described
below are visible in the dialog box at any one time.

10-366

Dyadic Analysis Filter Bank

Filter
The type of filter used to determine the high- and low-pass FIR
filters in the dyadic analysis filter bank:

Select User defined to explicitly specify the filter coefficients in
the Lowpass FIR filter coefficients and Highpass FIR filter
coefficients parameters.

10-367

Dyadic Analysis Filter Bank

Select a wavelet such as Biorthogonal or Daubechies to specify
a wavelet-based filter. The block uses the Wavelet Toolbox
function, wfilters, to construct the filters. Extra parameters
such as Wavelet order or Filter order [synthesis / analysis]
might become enabled. For a list of the supported wavelets,
see Specifying Filters with the Filter Parameter and Related
Parameters on page 10-364.

Lowpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies
coefficients used by all the lowpass filters in the filter bank. This
parameter is enabled when you set Filter to User defined.
The lowpass filter should be a half-band filter that passes the
frequency band stopped by the filter specified in the Highpass
FIR filter coefficients parameter. The default values of this
parameter specify a filter based on aDaubechies wavelet with
wavelet order 3.

Highpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies
coefficients used by all the highpass filters in the filter bank.
This parameter is enabled when you set Filter to User defined.
The highpass filter should be a half-band filter that passes the
frequency band stopped by the filter specified in the Lowpass
FIR filter coefficients parameter. The default values of this
parameter specify a filter based on a Daubechies wavelet with
wavelet order 3.

Wavelet order
The order of the wavelet selected in the Filter parameter. This
parameter is enabled only when you set Filter to certain types
of wavelets, as shown in the Specifying Filters with the Filter
Parameter and Related Parameters table.

Filter order [synthesis / analysis]
The order of the wavelet for the synthesis and analysis filter
stages. For example, when you set the Filter parameter to
Biorthogonal and set the Filter order [synthesis / analysis]
parameter to [2 / 6], the block calls the wfilters function with

10-368

Dyadic Analysis Filter Bank

input argument 'bior2.6'. This parameter is enabled only when
you set Filter to certain types of wavelets, as shown in Specifying
Filters with the Filter Parameter and Related Parameters on
page 10-364.

Number of levels
The number of filter bank levels. An n-level asymmetric structure
has n+1 outputs, and an n-level symmetric structure has 2n

outputs, as shown in the figures n-Level Asymmetric Dyadic
Analysis Filter Bank on page 3-67 and n-Level Symmetric Dyadic
Analysis Filter Bank on page 3-68. The block’s icon displays the
value of this parameter in the lower-left corner.

Tree structure
The structure of the filter bank: Asymmetric, or Symmetric. See
the figures n-Level Asymmetric Dyadic Analysis Filter Bank on
page 3-67 and n-Level Symmetric Dyadic Analysis Filter Bank
on page 3-68.

Output
Set to Multiple ports to output each output subband on a
separate port (the topmost port outputs the subband with the
highest frequency band). Set to Single port to concatenate the
subbands into one vector or matrix and output the concatenated
subbands on a single port. For more information, see “Output
Characteristics” on page 10-360.

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press, 1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1993.

10-369

Dyadic Analysis Filter Bank

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Dyadic Synthesis Filter
Bank

Signal Processing Blockset

Two-Channel Analysis
Subband Filter

Signal Processing Blockset

10-370

Dyadic Synthesis Filter Bank

Purpose Reconstruct signals from subbands with smaller bandwidths and slower
sample rates

Library Filtering / Multirate Filters

Description
Note This block always outputs frame-based signals, and its inputs
must be of certain sizes. To get sample-based outputs or to use input
subbands that do not fit the criteria of this block, use the Two-Channel
Synthesis Subband Filter block. (You can connect multiple copies of the
Two-Channel Synthesis Subband Filter block to create a multilevel
dyadic synthesis filter bank.)

The Dyadic Synthesis Filter Bank block reconstructs a signal
decomposed by the Dyadic Analysis Filter Bank block. The block takes
in subbands of a signal, and uses them to reconstruct the signal by
using a series of highpass and lowpass FIR filters as illustrated in the
figure n-Level Asymmetric Dyadic Synthesis Filter Bank on page 3-71.
The reconstructed signal has a wider bandwidth and faster sample rate
than the input subbands.

You can specify the filter bank’s highpass and lowpass filters by
providing vectors of filter coefficients. If you install the Wavelet Toolbox,
you can also specify wavelet-based filters by selecting a wavelet from
the Filter parameter.

10-371

Dyadic Synthesis Filter Bank

Note To use a dyadic synthesis filter bank to perfectly reconstruct the
output of a dyadic analysis filter bank, the number of levels and tree
structures of both filter banks must be the same. In addition, the filters
in the synthesis filter bank must be designed to perfectly reconstruct
the outputs of the analysis filter bank. Otherwise, the reconstruction
will not be perfect.

This block automatically computes wavelet-based perfect reconstruction
filters when the wavelet selection in the Filter parameter of this block
is the same as the Filter parameter setting of the corresponding Dyadic
Analysis Filter Bank block. The use of wavelets requires the Wavelet
Toolbox. To learn how to design your own perfect reconstruction filters,
see “References” on page 10-381.

Input Requirements

The inputs to this block are usually the outputs of a Dyadic Analysis
Filter Bank block. Since the Dyadic Analysis Filter Bank block can
output from either a single port or multiple ports, the Dyadic Synthesis
Filter Bank block accepts inputs to either a single port or multiple ports.

The Input parameter sets whether the block accepts inputs from
a single port or multiple ports, and thus determines the input
requirements, as summarized in the following lists and figure.

Note Any output of a Dyadic Analysis Filter Bank block whose
parameter settings match the corresponding settings of this block is
a valid input to this block. For example, the setting of the Dyadic
Analysis Filter Bank block parameter, Output, must be the same as
this block’s Input parameter (Single port or Multiple ports).

10-372

Dyadic Synthesis Filter Bank

Valid Inputs for Input Set to Single Port

• Inputs must be sample-based vectors or sample-based matrices of
concatenated subbands.

• Each input column contains the subbands for an independent signal.

• Upper input rows contain the high-frequency subbands, and the
lower rows contain the low-frequency subbands.

Valid Inputs for Input Set to Multiple Ports

• Inputs must be a frame-based vector or frame-based matrix for each
subband, each of which is input to a separate input port.

• The columns of each input contains a subband for an independent
signal.

• The input to the topmost input port is the subband containing the
highest frequencies, and the input to the bottommost port is the
subband containing the lowest frequencies.

10-373

Dyadic Synthesis Filter Bank

Valid Inputs to a 3-Level Asymmetric Dyadic Synthesis Filter Bank

For general information about the filter banks, see “Dyadic Synthesis
Filter Banks” on page 3-70.

Output Characteristics

The following table summarizes the output characteristics for both
frame-based inputs, and concatenated subband inputs. For an
illustration of why the output characteristics exist, see the figure Valid
Inputs to a 3-Level Asymmetric Dyadic Synthesis Filter Bank on page
10-374.

10-374

Dyadic Synthesis Filter Bank

Frame-Based Inputs
(Input = Multiple ports)

Concatenated Subband Inputs
(Input = Single port)

Output Frame
Status

Outputs are always frame based regardless of the input frame status.
Each output column is an independent channel, reconstructed from the
corresponding channel in the inputs.

Output Frame
Rate

Same as the input frame rate. Same as the input rate (the rate of
the concatenated subband inputs).

Output Frame
Dimensions

• The output has the same
number of columns as the
inputs.

• The number of output rows
depends on the tree structure of
the filter bank:

- Asymmetric — The number
of output rows is twice the
number of rows in the input
to the topmost input port.

- Symmetric — The number
of output rows is the product
of the number of input ports
and the number of rows in an
input to any input port.

The output has the same number
of rows and columns as the input.

For general information about the filter banks, see “Dyadic Synthesis
Filter Banks” on page 3-70.

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by
setting the Filter parameter to one of the following options:

• User defined — Allows you to explicitly specify the filters with two
vectors of filter coefficients in the Lowpass FIR filter coefficients
and Highpass FIR filter coefficients parameters. The block uses

10-375

Dyadic Synthesis Filter Bank

the same lowpass and highpass filters throughout the filter bank.
The two filters should be halfband filters, where each filter passes
the frequency band that the other filter stops. To use this block to
perfectly reconstruct a signal decomposed by a Dyadic Analysis Filter
Bank block, the filters in this block must be designed to perfectly
reconstruct the outputs of the analysis filter bank. To learn how to
design your own perfect reconstruction filters, see “References” on
page 10-381.

• Wavelet such as Biorthogonal or Daubechies — The block uses the
specified wavelet to construct the lowpass and highpass filters using
the Wavelet Toolbox function, wfilters. Depending on the wavelet,
the block might enable either the Wavelet order or Filter order
[synthesis / analysis] parameter. (The latter parameter allows you
to specify different wavelet orders for the analysis and synthesis
filter stages.) To use this block to reconstruct a signal decomposed
by a Dyadic Analysis Filter Bank block, you must set both blocks to
use the same wavelets with the same order. You must install the
Wavelet Toolbox to use wavelets.

Specifying Filters with the Filter Parameter and Related Parameters

Filter
Sample Setting for Related
Filter Specification Parameters

Corresponding
Wavelet Function
Syntax

User-defined Filters based on Daubechies
wavelets with wavelet order 3:

- Lowpass FIR filter
coefficients =
[0.0352 -0.0854 -0.1350
0.4599 0.8069 0.3327]

- Highpass FIR
filter coefficients =
[-0.3327 0.8069 -0.4599
-0.1350 0.0854 0.0352]

None

10-376

Dyadic Synthesis Filter Bank

Filter
Sample Setting for Related
Filter Specification Parameters

Corresponding
Wavelet Function
Syntax

Haar None wfilters('haar')

Daubechies Wavelet order = 4 wfilters('db4')

Symlets Wavelet order = 3 wfilters('sym3')

Coiflets Wavelet order = 1 wfilters('coif1')

Biorthogonal Filter order [synthesis /
analysis] = [3/1]

wfilters('bior3.1')

Reverse Biorthogonal Filter order [synthesis /
analysis] = [3/1]

wfilters('rbio3.1')

Discrete Meyer None wfilters('dmey')

Examples See “Examples” on page 10-364 in the Dyadic Analysis Filter Bank
block reference.

Dialog
Box

The parameters displayed in the block dialog vary depending on the
setting of the Filter parameter. Only some of the parameters described
below are visible in the dialog box at any one time.

10-377

Dyadic Synthesis Filter Bank

Note To use this block to reconstruct a signal decomposed by a Dyadic
Analysis Filter Bank block, all the parameters in this block must
be the same as the corresponding parameters in the Dyadic Analysis
Filter Bank block (except the Lowpass FIR filter coefficients and
Highpass FIR filter coefficients; see the descriptions of these
parameters).

10-378

Dyadic Synthesis Filter Bank

Filter
The type of filter used to determine the high- and low-pass FIR
filters in the dyadic synthesis filter bank:

• Select User defined to explicitly specify the filter coefficients
in the Lowpass FIR filter coefficients and Highpass FIR
filter coefficients parameters.

• Select a wavelet such as Biorthogonal or Daubechies to specify
a wavelet-based filter. The block uses the Wavelet Toolbox
function, wfilters, to construct the filters. Extra parameters
such as Wavelet order or Filter order [synthesis / analysis]
might become enabled. For a list of the supported wavelets,
see the table Specifying Filters with the Filter Parameter and
Related Parameters on page 10-376.

Lowpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies
coefficients used by all the lowpass filters in the filter bank. This
parameter is enabled when you set Filter to User defined.
The lowpass filter should be a half-band filter that passes the
frequency band stopped by the filter specified in the Highpass
FIR filter coefficients parameter. To perfectly reconstruct a
signal decomposed by the Dyadic Analysis Filter Bank, the filters
in this block must be designed to perfectly reconstruct the outputs
of the analysis filter bank. Otherwise, the reconstruction will not
be perfect. The default values of this parameter specify a perfect
reconstruction filter for the default settings of the Dyadic Analysis
Filter Bank (based on a Daubechies wavelet with wavelet order 3).

Highpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies
coefficients used by all the highpass filters in the filter bank.
This parameter is enabled when you set Filter to User defined.
The highpass filter should be a half-band filter that passes the
frequency band stopped by the filter specified in the Lowpass
FIR filter coefficients parameter. To perfectly reconstruct a
signal decomposed by the Dyadic Analysis Filter Bank, the filters
in this block must be designed to perfectly reconstruct the outputs

10-379

Dyadic Synthesis Filter Bank

of the analysis filter bank. Otherwise, the reconstruction will not
be perfect. The default values of this parameter specify a perfect
reconstruction filter for the default settings of the Dyadic Analysis
Filter Bank (based on a Daubechies wavelet with wavelet order 3).

Wavelet order
The order of the wavelet selected in the Filter parameter. This
parameter is enabled only when you set Filter to certain types of
wavelets, as shown in the table Specifying Filters with the Filter
Parameter and Related Parameters on page 10-376.

Filter order [synthesis / analysis]
The order of the wavelet for the synthesis and analysis filter
stages. For example, when you set the Filter parameter to
Biorthogonal and set the Filter order [synthesis / analysis]
parameter to [2 / 6], the block calls the wfilters function with
input argument 'bior2.6'. This parameter is enabled only when
you set Filter to certain types of wavelets, as shown in Specifying
Filters with the Filter Parameter and Related Parameters on
page 10-376.

Number of levels
The number of filter bank levels. An n-level asymmetric structure
has n+1 outputs, and an n-level symmetric structure has 2n

outputs, as shown in n-Level Asymmetric Dyadic Synthesis Filter
Bank on page 3-71 and n-Level Symmetric Dyadic Synthesis
Filter Bank on page 3-72.

Tree structure
The structure of the filter bank: Asymmetric, or Symmetric. See
the figures n-Level Asymmetric Dyadic Synthesis Filter Bank on
page 3-71 and n-Level Symmetric Dyadic Synthesis Filter Bank
on page 3-72.

Input
Set to Multiple ports to accept each input subband at a separate
port (the topmost port accepts the subband with the highest
frequency band). Set to Single port to accept one vector or

10-380

Dyadic Synthesis Filter Bank

matrix of concatenated subbands at a single port. For more
information, see “Input Requirements” on page 10-372.

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press, 1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1993.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Dyadic Analysis Filter Bank Signal Processing Blockset

Two-Channel Synthesis
Subband Filter

Signal Processing Blockset

See “Multirate Filters” on page 3-66 for related information.

10-381

Edge Detector

Purpose Detect transition from zero to a nonzero value

Library Signal Management / Switches and Counters

Description The Edge Detector block generates an impulse (the value 1) in a given
output channel when the corresponding channel of the input transitions
from zero to a nonzero value. Otherwise, the block generates zeros in
each channel.

The output has the same dimension and sample rate as the input.
When the input is frame based, the output is frame based; otherwise,
the output is sample based. For frame-based input, an edge that is split
across two consecutive frames (that is, a zero at the bottom of the first
frame, and a nonzero value at the top of the following frame) is counted
in the frame that contains the nonzero value.

Examples In the model below, the Edge Detector block locates the edges (zero to
nonzero transitions) in a two-channel frame-based input with frame
size 3. The two input channels are horizontally concatenated with the
two output channels to create the four-channel workspace variable
dsp_examples_yout.

Adjust the block parameters as described below. (Use the default
settings for the To Workspace block.)

• Set the Signal From Workspace block parameters as follows:

- Signal = [(-5:5) ; 0 1 0 0 2 0 0 0 3 0 0]'

- Sample time = 1

- Samples per frame = 3

10-382

Edge Detector

• Set the Matrix Concatenation block parameters as follows:

- Number of inputs = 2

- Concatenation method = Horizontal

As shown below, the block finds edges at sample 7 in channel 1, and at
samples 2, 5, and 9 in channel 2.

Dialog
Box

10-383

Edge Detector

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean — The block might output Boolean values depending on the
input data type, and whether Boolean support is enabled or disabled,
as described in “Effects of Enabling and Disabling Boolean Support”
on page 7-17. To learn how to disable Boolean output support, see
“Steps to Disabling Boolean Support” on page 7-18.

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Counter Signal Processing Blockset

Event-Count Comparator Signal Processing Blockset

10-384

Event-Count Comparator

Purpose Detect threshold crossing of accumulated nonzero inputs

Library Signal Management / Switches and Counters

Description The Event-Count Comparator block records the number of nonzero
inputs to the Data port during the period that the block is enabled by a
high signal (the value 1) at the Int port. Both inputs must be scalars;
the input to the Int port can be sample based or frame based. When
the input to the Data port is frame based, the output is frame based;
otherwise, the output is sample based.

When the number of accumulated nonzero inputs first equals the Event
threshold setting, the block waits one additional sample interval, and
then sets the output high (1). The block holds the output high until
recording is restarted by a low-to-high (0-to-1) transition at the Int port.

The Event-Count Comparator block accepts real and complex
floating-point and fixed-point inputs. However, because the block
has discrete state, it does not support constant or continuous sample
times. Therefore, at least one input or output port of the Event-Count
Comparator block must be connected to a block whose Sample time
parameter is discrete. The Event-Count Comparator block inherits this
non-infinite discrete sample time.

Examples In the model below, the Event-Count Comparator block (Event
threshold = 3) detects two threshold crossings in the input to the Data
port, one at sample 4 and one at sample 12.

10-385

Event-Count Comparator

All inputs and outputs are multiplexed into the workspace variable
yout, whose contents are shown in the figure below. The two left
columns in the illustration show the inputs to the Data and Int ports,
the center column shows the state of the block’s internal counter, and
the right column shows the block’s output.

10-386

Event-Count Comparator

Dialog
Box

Event threshold
Specify the value against which to compare the number of nonzero
inputs. Tunable.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Counter Signal Processing Blockset

Edge Detector Signal Processing Blockset

10-387

Extract Diagonal

Purpose Extract main diagonal of input matrix

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Extract Diagonal block populates the 1-D output vector with the
elements on the main diagonal of the M-by-N input matrix A.

D = diag(A) Equivalent MATLAB code

The output vector has length min(M,N), and is always sample based.

Dialog
Box

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean — Block outputs are always Boolean. To learn how to disable
Boolean support, see “Steps to Disabling Boolean Support” on page
7-18.

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-388

Extract Diagonal

See Also

Constant Diagonal Matrix Signal Processing Blockset

Create Diagonal Matrix Signal Processing Blockset

Extract Triangular Matrix Signal Processing Blockset

diag MATLAB

10-389

Extract Triangular Matrix

Purpose Extract lower or upper triangle from input matrices

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Extract Triangular Matrix block creates a triangular matrix output
from the upper or lower triangular elements of an M-by-N input matrix.
A length-M 1-D vector input is treated as an M-by-1 matrix.

The Extract parameter selects between the two components of the
input:

• Upper — Copies the elements on and above the main diagonal of the
input matrix to an output matrix of the same size. The first row of
the output matrix is therefore identical to the first row of the input
matrix. The elements below the main diagonal of the output matrix
are zero.

• Lower — Copies the elements on and below the main diagonal of the
input matrix to an output matrix of the same size. The first column
of the output matrix is therefore identical to the first column of the
input matrix. The elements above the main diagonal of the output
matrix are zero.

The output has the same frame status as the input.

Examples The example below shows the extraction of upper and lower triangles
from a 5-by-3 input matrix.

10-390

Extract Triangular Matrix

Dialog
Box

Extract
The component of the matrix to copy to the output, upper triangle
or lower triangle. Tunable.

10-391

Extract Triangular Matrix

Supported
Data
Types

Port Supported Data Types

A • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

U • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

L • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-392

Extract Triangular Matrix

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Factorization Signal Processing Blockset

Constant Diagonal Matrix Signal Processing Blockset

Extract Diagonal Signal Processing Blockset

Forward Substitution Signal Processing Blockset

LDL Factorization Signal Processing Blockset

LU Factorization Signal Processing Blockset

tril MATLAB

triu MATLAB

10-393

Fast Block LMS Filter

Purpose Compute filtered output, filter error, and filter weights for a given input
and desired signal using the Fast Block LMS adaptive filter algorithm

Library Filtering / Adaptive Filters

Description The Fast Block LMS Filter block implements an adaptive least
mean-square (LMS) filter, where the adaptation of the filter weights
occurs once for every block of data samples. The block estimates the
filter weights, or coefficients, needed to convert the input signal into
the desired signal. Connect the signal you want to filter to the Input
port. This input signal can be a sample-based scalar or a single-channel
frame-based signal. Connect the signal you want to model to the
Desired port. The desired signal must have the same data type, frame
status, complexity, and dimensions as the input signal. The Output port
outputs the filtered input signal, which can be sample or frame based.
The Error port outputs the result of subtracting the output signal from
the desired signal.

The block calculates the filter weights using the Block LMS Filter
equations. For more information, see Block LMS Filter. The Fast Block
LMS Filter block implements the convolution operation involved in the
calculations of the filtered output, , and the weight update function in
the frequency domain using the FFT algorithm used in the Overlap-Save
FFT Filter block. See Overlap-Save FFT Filter for more information.

Use the Filter length parameter to specify the length of the filter
weights vector.

The Block size parameter determines how many samples of the input
signal are acquired before the filter weights are updated. The input
frame length must be a multiple of the Block size parameter.

The Step-size (mu) parameter corresponds to µ in the equations. You
can either specify a step-size using the input port, Step-size, or enter a
value in the Block Parameters: Block LMS Filter dialog box.

10-394

Fast Block LMS Filter

Use the Leakage factor (0 to 1) parameter to specify the leakage
factor, , in the leaky LMS algorithm shown below.

Enter the initial filter weights, , as a vector or a scalar in the
Initial value of filter weights text box. When you enter a scalar, the
block uses the scalar value to create a vector of filter weights. This
vector has length equal to the filter length and all of its values are equal
to the scalar value.

When you select the Adapt port check box, an Adapt port appears on
the block. When the input to this port is nonzero, the block continuously
updates the filter weights. When the input to this port is zero, the filter
weights remain at their current values.

When you want to reset the value of the filter weights to their initial
values, use the Reset input parameter. The block resets the filter
weights whenever a reset event is detected at the Reset port. The reset
signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To
enable the Reset port, select one of the following from the Reset input
list:

• Rising edge — Triggers a reset operation when the Reset input
does one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-395

Fast Block LMS Filter

• Falling edge — Triggers a reset operation when the Reset input
does one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Reset input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Reset input is not zero

10-396

Fast Block LMS Filter

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Select the Output filter weights check box to create a Wts port on the
block. For each iteration, the block outputs the current updated filter
weights from this port.

10-397

Fast Block LMS Filter

Dialog
Box

Filter length
Enter the length of the FIR filter weights vector. The sum of the
block size and the filter length must be a power of 2.

Block size
Enter the number of samples to acquire before the filter weights
are updated. The input frame length must be an integer multiple
of the block size. The sum of the block size and the filter length
must be a power of 2.

10-398

Fast Block LMS Filter

Specify step-size via
Select Dialog to enter a value for mu, or select Input port to
specify mu using the Step-size input port.

Step-size (mu)
Enter the step-size. Tunable.

Leakage factor (0 to 1)
Enter the leakage factor, . Tunable.

Initial value of filter weights
Specify the initial values of the FIR filter weights.

Adapt port
Select this check box to enable the Adapt input port.

Reset input
Select this check box to enable the Reset input port.

Output filter weights
Select this check box to export the filter weights from the Wts port.

References Hayes, M.H. Statistical Digital Signal Processing and Modeling. New
York: John Wiley & Sons, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Kalman Adaptive Filter Signal Processing Blockset

LMS Filter Signal Processing Blockset

RLS Filter Signal Processing Blockset

10-399

Fast Block LMS Filter

Fast Block LMS Filter Signal Processing Blockset

Overlap-Save FFT Filter Signal Processing Blockset

See “Adaptive Filters” on page 3-53 for related information.

10-400

FFT

Purpose Compute fast Fourier transform (FFT) of input

Library Transforms

Description The FFT block computes the fast Fourier transform (FFT) of each
channel of an M-by-N or length-M input, u, where M must be a power of
two. To work with other input sizes, use the Zero Pad block to pad or
truncate the length-M dimension to a power-of-two length.

The output of the FFT block is equivalent to the MATLAB fft function:

y = fft(u) % Equivalent MATLAB code

Thekth entry of the lth output channel, y(k, l), is equal to the kth point of
the M-point discrete Fourier transform (DFT) of the lth input channel:

This block supports real and complex floating-point and fixed-point
inputs.

Input and Output Characteristics

The following table describes valid inputs to the FFT block, their
corresponding outputs, and the dimension along which the block
computes the DFT.

10-401

FFT

Valid Block Inputs
• Real- or complex-valued

• Must be in linear order

• M must be a power of two.

Dimension Along
Which Block Computes
DFT

Corresponding Block
Output Characteristics
Output port rate =
input port rate

Frame-based M-by-N matrix Column • Sample based

• Complex valued

• M-by-N matrix

• Each output column
contains the
M-point DFT of the
corresponding input
channel in linear or
bit-reversed order.

Sample-based M-by-N matrix, Column • Sample based

• Complex valued

• M-by-N matrix

• Each output column
contains the
M-point DFT of the
corresponding input
channel in linear or
bit-reversed order.

10-402

FFT

Valid Block Inputs
• Real- or complex-valued

• Must be in linear order

• M must be a power of two.

Dimension Along
Which Block Computes
DFT

Corresponding Block
Output Characteristics
Output port rate =
input port rate

Sample-based 1-by-M row vector Row • Sample based

• Complex valued

• 1-by-M row vector

• Each output
row contains the
M-point DFT of the
corresponding input
channel in linear or
bit-reversed order.

Unoriented length-M 1-D vector Vector Unoriented, length-M,
complex-valued 1-D
output vector containing
M-point DFT of input
in linear or bit-reversed
order

Selecting the Twiddle Factor Computation Method

The Twiddle factor computation parameter determines how the
block computes the necessary sine and cosine terms to calculate
the term , shown in the first equation of this
block reference page. This parameter has two settings, each with its
advantages and disadvantages, as described in the following table. Note
that only Table lookup mode is supported for fixed-point signals.

10-403

FFT

Twiddle Factor
Computation Parameter
Setting

Sine and Cosine
Computation Method

Effect on Block
Performance

Table lookup The block computes and
stores the trigonometric
values before the simulation
starts, and retrieves them
during the simulation. When
you generate code from the
block, the processor running
the generated code stores
the trigonometric values
computed by the block, and
retrieves the values during
code execution.

The block usually runs
much more quickly, but
requires extra memory for
storing the precomputed
trigonometric values. You
can optimize the table
for memory consumption
or speed, as described in
“Optimizing the Table of
Trigonometric Values” on
page 10-404.

Trigonometric fcn The block computes sine
and cosine values during
the simulation. When you
generate code from the block,
the processor running the
generated code computes the
sine and cosine values while
the code runs.

The block usually runs more
slowly, but does not need
extra data memory. For
code generation, the block
requires a support library to
emulate the trigonometric
functions, increasing the
size of the generated code.

Optimizing the Table of Trigonometric Values

When you set the Twiddle factor computation parameter to Table
lookup, you need to also set the Optimize table for parameter. This
parameter optimizes the table of trigonometric values for speed or
memory by varying the number of table entries as summarized in the
following table.

10-404

FFT

Optimize Table for
Parameter Setting

Number of Table
Entries for N-Point FFT

Memory Required for
Single-Precision 512-Point FFT

Speed 3N/4 — floating point

N — fixed point

Memory N/4 — floating point

Not supported for fixed
point

Ordering Output Column Entries

You can set the Output in bit-reversed order parameter to specify
the ordering of the column elements of the output as either linear or
bit-reversed order. If you select the Output in bit-reversed order
check box, the block’s output is in bit-reversed order. If you clear the
Output in bit-reversed order check box, the block’s output is in
linear order.

Note With the FFT block, linearly ordering the output requires a
butterfly operation. So, it might be better to output in bit-reversed
order in some situations.

For more information ordering of the output, see “Linear and
Bit-Reversed Output Order” on page 4-18.

Algorithms Used for FFT Computation

Depending on whether the block’s input is floating-point or fixed-point,
real- or complex-valued, and whether you want the output in linear
or bit-reversed order, the block uses one or more of the following
algorithms as summarized in the following tables:

• Butterfly operation

• Double-signal algorithm

10-405

FFT

• Half-length algorithm

• Radix-2 decimation-in-time (DIT) algorithm

• Radix-2 decimation-in-frequency (DIF) algorithm

For Floating-Point Signals:

Complexity of
Input

Output
Ordering Algorithms Used for FFT Computation

Complex Linear Butterfly operation and radix-2 DIT

Complex Bit-reversed Radix-2 DIF

Real Linear Butterfly operation and radix-2 DIT in conjunction
with the half-length and double-signal algorithms

Real Bit-reversed Radix-2 DIF in conjunction with the half-length and
double-signal algorithms

For Fixed-Point Signals:

Complexity of Input Output Ordering
Algorithms Used for FFT
Computation

Real or complex Linear Butterfly operation and
radix-2 DIT

Real or complex Bit-reversed Radix-2 DIF

For more information on the double-signal and half-length algorithms,
see Proakis, John G.and Dimitris G. Manolakis. Digital Signal
Processing. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1996.
The section entitled "Efficient Computation of the DFT of Two Real
Sequences" on page 475 describes the double signal algorithm. The
section “Efficient Computation of the DFT of a 2N-Point Real Sequence”
on page 476 describes the half-length algorithm.

10-406

FFT

Fixed-Point Data Types

The diagrams below show the data types used within the FFT block for
fixed-point signals. You can set the sine table, accumulator, product
output, and output data types displayed in the diagrams in the FFT
block dialog as discussed in “Dialog Box” on page 10-408.

Inputs to the FFT block are first cast to the output data type and stored
in the output buffer. Each butterfly stage then processes signals in
the accumulator data type, with the final output of the butterfly being
cast back into the output data type. A twiddle factor is multiplied in
before each butterfly stage in a decimation-in-time FFT, and after each
butterfly stage in a decimation-in-frequency FFT.

10-407

FFT

The output of the multiplier is in the accumulator data type since both
of the inputs to the multiplier are complex. For details on the complex
multiplication performed, refer to “Multiplication Data Types” on page
8-16.

Dialog
Box

The Main pane of the FFT block dialog appears as follows:

Twiddle factor computation
Specify the computation method of the term ,
shown in the first equation of this block reference page. In
Table lookup mode, the block computes and stores the sine and

10-408

FFT

cosine values before the simulation starts. In Trigonometric
fcn mode, the block computes the sine and cosine values during
the simulation. See “Selecting the Twiddle Factor Computation
Method” on page 10-403.

This parameter must be set to Table lookup for fixed-point
signals.

Optimize table for
Select the optimization of the table of sine and cosine values for
Speed or Memory. This parameter is only available when the
Twiddle factor computation parameter is set to Table lookup.
See “Selecting the Twiddle Factor Computation Method” on page
10-403.

This parameter must be set to Speed for fixed-point signals.

Output in bit-reversed order
Designate the order of the output channel elements relative to
the ordering of the input elements. When selected, the output
channel elements are in bit-reversed order relative to the input
ordering. Otherwise, the output column elements are linearly
ordered relative to the input ordering.

Linearly ordering the output requires extra data sorting
manipulation, so in some situations it might be better to output in
bit-reversed order.

The Fixed-point pane of the FFT block dialog appears as follows:

10-409

FFT

Rounding mode
Select the rounding mode for fixed-point operations. The sine table
values do not obey this parameter; they always round to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The sine table
values do not obey this parameter; they are always saturated.

Skip divide-by-two on butterfly outputs for fixed-point signals
When you select this parameter, no scaling occurs. When you do
not select this parameter, the output of each butterfly of the FFT
is divided by two for fixed-point signals.

10-410

FFT

Sine table
Choose how you will specify the word length of the values of the
sine table. The fraction length of the sine table values is always
equal to the word length minus one:

• When you select Same word length as input, the word length
of the sine table values will match that of the input to the block.

• When you select Specify word length, you are able to enter
the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-8 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product

10-411

FFT

output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-8 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the accumulator
data type in this block:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Inherit via internal rule, the output
word length and fraction length are automatically set according
to the following equations:

10-412

FFT

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

References Proakis, John G.and Dimitris G. Manolakis. Digital Signal Processing.
3rd ed. Upper Saddle River, NJ: Prentice Hall, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

DCT Signal Processing Blockset

IFFT Signal Processing Blockset

Pad Signal Processing Blockset

Zero Pad Signal Processing Blockset

bitrevorder Signal Processing Toolbox

10-413

FFT

fft Signal Processing Toolbox

ifft Signal Processing Toolbox

10-414

Filter Realization Wizard

Purpose Construct filter realizations using the Digital Filter block or the Sum,
Gain, and Delay blocks

Library Filtering / Filter Designs

Description
Note Use this block to implement fixed-point or floating-point digital
filters using Sum, Gain, and Delay blocks or the Digital Filter block.
You can either design a filter by using the block’s filter design and
analysis parameters, or import the coefficients of a filter you have
designed elsewhere.

The following blocks also implement digital filters, but serve slightly
different purposes:

• Digital Filter — Use to implement floating-point or fixed-point filters
that you have already designed

• Digital Filter Design — Use to design, analyze, and then implement
floating-point filters.

The Filter Realization Wizard is a tool for automatically implementing
a digital filter. You must specify a filter, its structure, and the data
types for the filter’s inputs, outputs, and computations. The filter can
support double-precision, single-precision, or fixed-point data types.

The Filter Realization Wizard can implement a digital filter in one of
two ways. It can use a Digital Filter block, or it can create a subsystem
block that implements the specified filter using Sum, Gain, and Delay
blocks. If the Filter Realization Wizard creates a Digital Filter block,
double-click the block to open the Block Parameters: Filter dialog box.
If it creates a subsystem, double-click the subsystem block to see the
filter implementation as shown in the figure below.

10-415

Filter Realization Wizard

The subsystem block applies the specified filter to any sample-based
input signal, or any frame-based row vector signal, and outputs
the result. For more information about filter implementation, see
“Specifying the Filter Implementation” on page 10-419.

The parameters of the Filter Realization Wizard are a part of a
larger GUI, the Filter Design and Analysis Tool (FDATool), from the
Signal Processing Toolbox. You can use the tools in FDATool to design
and analyze your filter, and then use the Filter Realization Wizard
parameters to implement the filter in your models.

Sections of This Reference Page

• “Valid Inputs and Corresponding Outputs” on page 10-417

• “Specifying the Filter and Its Data Type Support” on page 10-417

• “Supported Filter Structures” on page 10-419

• “Specifying the Filter Implementation” on page 10-419

• “Corresponding Method for dfilt” on page 10-421

• “Dialog Box” on page 10-422

• “References” on page 10-424

10-416

Filter Realization Wizard

• “Supported Data Types” on page 10-424

• “See Also” on page 10-425

Valid Inputs and Corresponding Outputs

When the Filter Realization Wizard implements the specified filter by
creating a new subsystem block, the block applies the specified filter to
an input signal and outputs the result.

Valid Inputs

The subsystem block accepts inputs that are

• Sample-based vectors and matrices

• Frame-based row vectors (nonrecursive structures only)

Corresponding Outputs

The output of the subsystem block has the same dimensions and frame
status as the input.

What Is Considered an Independent Channel

The subsystem block treats each element of a vector or matrix as an
independent channel.

Specifying the Filter and Its Data Type Support

To specify a purely double-precision filter, you can either design a filter
using the Design Filter panel, or import a filter using the Import
Filter panel. (You can import dfilt filter objects as well as vectors
of filter coefficients designed using functions in the Signal Processing
Toolbox and the Filter Design Toolbox.)

You can also specify a fixed-point filter or a single-precision filter. You
can specify such filters by using the Set Quantization Parameters
panel, which requires the Filter Design Toolbox.

10-417

Filter Realization Wizard

Note Running a model containing implementations of fixed-point
filters requires “Simulink Fixed Point”, but you can still edit models
containing such filter implementations without Simulink Fixed Point.
See the Simulink Fixed Point documentation for more information.

See the following topics to learn how to use the panels to specify your
filter:

• For more information on the Design Filter panel, see “Filter Design
and Analysis Tool (FDATool)” in the Signal Processing Toolbox
documentation.

• For more information on the Import Filter panel, see “Importing a
Filter Design” in the Signal Processing Toolbox documentation.

• For more information on the Set Quantization Parameters panel,
see “Switching FDATool to Quantization Mode” in the Filter Design
Toolbox documentation.

To open a panel, click the appropriate button in the lower-left corner
of FDATool.

10-418

Filter Realization Wizard

Supported Filter Structures

The Filter Realization Wizard supports the following structures:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Second order sections for direct form I and II, and their transposes

• Direct form FIR

• Direct form FIR transposed

• Direct form antisymmetric FIR

• Direct form symmetric FIR

• Lattice ARMA

• Lattice AR

• Lattice MA (same as lattice minimum phase)

• Lattice all-pass

• Lattice maximum phase

• Cascade

• Parallel

Specifying the Filter Implementation

You can determine how the Filter Realization Wizard models the
specified filter using the Build model using basic elements check
box. When you select this check box, the Filter Realization Wizard
creates a subsystem block that implements your filter using Sum, Gain,
and Delay blocks. When you clear this check box, the Filter Realization
Wizard uses a Digital Filter block to implement your filter. The Build

10-419

Filter Realization Wizard

model using basic elements check box is only available when your
filter can be implemented using a Digital Filter block.

If you have the Signal Processing Blockset, the Signal Processing
Toolbox, and the Filter Design Toolbox installed on your system, the
Filter Realization Wizard can generate a subsystem that represents
either a double-precision or fixed-point filter. You must install “Simulink
Fixed Point” to simulate a fixed-point filter. You can still edit the blocks
used to implement the filter without installing Simulink Fixed Point.

10-420

Filter Realization Wizard

Implementations of Double-Precision and Fixed-Point Filters

Corresponding Method for dfilt

The dfilt (digital filter) object in the Signal Processing Toolbox has a
method, realizemdl, that allows you to access the capabilities of the
Filter Realization Wizard from the command line.

For more information about the realizemdl method, see the following:

• The topic on "Methods" in the dfilt reference page in the Signal
Processing Toolbox documentation

• The realizemdl reference page in the Filter Design Toolbox
documentation

10-421

Filter Realization Wizard

Dialog
Box Note The following parameters for the Filter Realization Wizard are

in the Realize Model pane of the Filter Design and Analysis Tool
(FDATool) GUI. To open different panels of FDATool, click the different
buttons at the lower-left corner. For more information about relevant
panels, see “Specifying the Filter and Its Data Type Support” on page
10-417.

10-422

Filter Realization Wizard

Destination
Specify where the new filter block should be created. This can be
in a new model or in the current (most recently selected) model.

Block Name
Enter the name of the new filter block.

Overwrite generated block “Filter” block
When selected, the block overwrites any filter block in the current
model with the name specified in the Block Name parameter.
This parameter is enabled when the Destination parameter is
set to Current.

Build model using basic elements
Select this check box to implement your filter using Sum, Gain,
and Delay blocks. Clear this check box to implement your filter
using the Digital Filter block. This parameter is only available
when your filter can be modeled using the Digital Filter block.

Note that when your filter is implemented using Sum, Gain, and
Delay blocks, inputs to the filter must be sample based.

Optimize for zero gains
When selected, the block removes zero-gain paths from the filter
structure. For an example, see “Optimizing the Filter Structure”
on page 3-49.

Optimize for unity gains
When selected, the block substitutes gains equal to 1 with a
wire (short circuit). For an example, see “Optimizing the Filter
Structure” on page 3-49.

Optimize for negative gains
When selected, the block substitutes gains equal to -1 with
a wire (short circuit), and changes the corresponding sums
to subtractions. For an example, see “Optimizing the Filter
Structure” on page 3-49.

10-423

Filter Realization Wizard

Optimize delay chains
When selected, the block substitutes any delay chains made up
of n unit delays with a single delay by n. For an example, see
“Optimizing the Filter Structure” on page 3-49.

Realize Model
Click to create a subsystem block that implements the specified
filter using Sum, Gain, and Delay blocks. To see the filter
implementation, double-click the subsystem block. The subsystem
block applies the specified filter to any sample-based input signal
or frame-based row vector signal, and outputs the result.

Note For more information about relevant parameters in other
panels of FDATool, see “Specifying the Filter and Its Data Type
Support” on page 10-417.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point — Supported only when you install the
Filter Design Toolbox and “Simulink Fixed Point”

• Fixed point (signed and unsigned) — Supported only when you
install the Filter Design Toolbox, Simulink Fixed Point, and the
Fixed-Point Toolbox

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-424

Filter Realization Wizard

See Also

Digital Filter Signal Processing Blockset

Digital Filter Design Signal Processing Blockset

filter Filter Design Toolbox

realizemdl Filter Design Toolbox

dfilt Signal Processing Toolbox

filter Signal Processing Toolbox

• Chapter 3, “Filters” — Examples of when and how to use Signal
Processing Blockset filtering blocks

• “Choosing Between Filter Design Blocks” on page 3-20

10-425

FIR Decimation

Purpose Filter and downsample input signals

Library Filtering / Multirate Filters

Description The FIR Decimation block resamples the discrete-time input at a rate
K times slower than the input sample rate, where the integer K is
specified by the Decimation factor parameter. This process consists
of two steps:

• The block filters the input data using a direct-form FIR filter.

• The block downsamples the filtered data to a lower rate by discarding
K-1 consecutive samples following every sample retained.

The FIR Decimation block implements the above FIR filtering and
downsampling steps together using a polyphase filter structure, which
is more efficient than straightforward filter-then-decimate algorithms.
See N.J. Fliege, Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets for more information.

The FIR filter coefficients parameter specifies the numerator
coefficients of the FIR filter transfer function H(z).

The length-m coefficient vector, [b(1) b(2) ... b(m)], can be
generated by one of the filter design functions in the Signal Processing
Toolbox, such as the fir1 function used in the example below. The filter
should be lowpass with normalized cutoff frequency no greater than
1/K. All filter states are internally initialized to zero.

The FIR Decimation block supports real and complex floating-point and
fixed-point inputs. This block supports triggered subsystems when you
select Maintain input frame rate for the Framing parameter.

Sample-Based Operation

An M-by-N sample-based matrix input is treated as M*N independent
channels, and the block decimates each channel over time. The output

10-426

FIR Decimation

sample period is K times longer than the input sample period (Tso =
KTsi), and the input and output sizes are identical.

Frame-Based Operation

An Mi-by-N frame-based matrix input is treated as N independent
channels, and the block decimates each channel over time. The
Framing parameter determines how the block adjusts the rate at the
output to accommodate the reduced number of samples. There are two
available options:

• Maintain input frame size

The block generates the output at the decimated rate by using a
proportionally longer frame period at the output port than at the
input port. For decimation by a factor of K, the output frame period is
K times longer than the input frame period (Tfo = KTfi), but the input
and output frame sizes are equal.

The example below shows a single-channel input with a frame period
of 1 second (Sample time = 1/64 and Samples per frame = 64 in
the Signal From Workspace block) being decimated by a factor of 4
to a frame period of 4 seconds. The input and output frame sizes
are identical.

• Maintain input frame rate

The block generates the output at the decimated rate by using a
proportionally smaller frame size than the input. For decimation by a
factor of K, the output frame size is K times smaller than the input
frame size (Mo = Mi/K), but the input and output frame rates are

10-427

FIR Decimation

equal. The input frame size, Mi, must be a multiple of the decimation
factor, K.

The example below shows a single-channel input of frame size 64
being decimated by a factor of 4 to a frame size of 16. The block’s
input and output frame rates are identical.

Latency

Zero Latency

The FIR Decimation block has zero tasking latency for all single-rate
operations. The block is single-rate for the particular combinations of
sampling mode and parameter settings shown in the table below.

Sampling Mode Parameter Settings

Sample based Decimation factor parameter, K, is 1.

Frame based Decimation factor parameter, K, is 1, or

Framing parameter is Maintain input
frame rate.

Note that in sample-based mode, single-rate operation occurs only in
the trivial case of factor-of-1 decimation.

The block also has zero latency for sample-based multirate operations
in the Simulink single-tasking mode. Zero tasking latency means that

10-428

FIR Decimation

the block propagates the first filtered input sample (received at t=0) as
the first output sample, followed by filtered input samples K+1, 2K+1,
and so on.

Nonzero Latency

The FIR Decimation block is multirate for all settings other than those
in the previous table. The amount of latency for multirate operation
depends on the Simulink tasking mode and the block’s sampling mode,
as shown in the following table.

Multirate...
Sample-Based
Latency

Frame-Based
Latency

Single-tasking None One frame (Mi
samples)

Multitasking One sample One frame (Mi
samples)

In cases of one-sample latency, a zero initial condition appears as the
first output sample in each channel. The first filtered input sample
appears as the second output sample, followed by filtered input samples
K+1, 2K+1, and so on.

In cases of one-frame latency, the first Mi output rows contain zeros,
where Mi is the input frame size. The first filtered input sample (first
filtered row of the input matrix) appears in the output as sample Mi+1,
followed by filtered input samples K+1, 2K+1, and so on. See the
following example for an illustration of this case.

When the block exhibits latency, enter a value in the Output buffer
initial conditions text box to specify the value to output at the output
port until the first filtered input sample is available. The default initial
condition value is 0.

10-429

FIR Decimation

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56
and “Models with Multiple Sample Rates” in the Real-Time Workshop
User’s Guide documentation.

Fixed-Point Data Types

The following diagram shows the data types used within the FIR
Decimation block for fixed-point signals.

You can set the coefficient, product output, accumulator, and output
data types in the block dialog as discussed in “Dialog Box” on page
10-434. The diagram shows that input data is stored in the input buffer
in the same data type and scaling as the input. Filtered data is stored
in the output buffer in the output data type and scaling that you set in
the block dialog. Any initial conditions are also stored in the output
buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, see “Multiplication Data Types” on page 8-16.

10-430

FIR Decimation

Examples Example 1

Construct the frame-based model shown below.

Adjust the block parameters as follows:

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents
an output frame period of 1 (0.25*4). The first channel should contain
the positive ramp signal 1, 2, ..., 100, and the second channel should
contain the negative ramp signal -1, -2, ..., -100.

- Signal = [(1:100)' (-1:-1:-100)']

- Sample time = 0.25

- Samples per frame = 4

• Configure the FIR Decimation block to decimate the two-channel
input by decreasing the output frame rate by a factor of 2 relative to
the input frame rate. Use a third-order filter with normalized cutoff
frequency, fn0, of 0.25. (Note that fn0 satisfies fn0≤1/K.)

- FIR filter coefficients = fir1(3,0.25)

- Downsample factor = 2

- Framing = Maintain input frame size

The filter coefficient vector generated by fir1(3,0.25) is

[0.0386 0.4614 0.4614 0.0386]

10-431

FIR Decimation

or, equivalently,

• Configure the Probe blocks by clearing the Probe width, Probe
complex signal, and Probe signal dimensions check boxes (if
desired).

This model is multirate because there are at least two distinct sample
rates, as shown by the two Probe blocks. To run this model in the
Simulink multitasking mode, open the Configuration Parameters dialog
box. From the list on the left side of the dialog box, click Solver. From
the Type list, select Fixed-step, and from the Solver list, select
discrete (no continuous states). From the Tasking mode for
periodic sample times list, select MultiTasking. Also set the Stop
time to 30.

Run the model and look at the output, yout. The first few samples
of each channel are shown below.

yout =
0 0
0 0
0 0
0 0

0.0386 -0.0386
1.5000 -1.5000
3.5000 -3.5000
5.5000 -5.5000
7.5000 -7.5000
9.5000 -9.5000

11.5000 -11.5000

Since this is a frame-based multirate model, the first four (Mi) output
rows are zero. The first filtered input matrix row appears in the output
as sample 5 (that is, sample Mi+1).

10-432

FIR Decimation

Example 2

The Polyphase FIR Decimation demo (polyphaseDec_demo) illustrates
the underlying polyphase implementations of the FIR Decimation
block. Run the demo and view the results on the scope. The output of
the FIR Decimation block is the same as the output of the Polyphase
Decimation Filter block.

Example 3

The dspmrf_menu demo illustrates the use of the FIR Decimation block
in a number of multistage multirate filters.

10-433

FIR Decimation

Dialog
Box

The Main pane of the FIR Decimation block dialog appears as follows:

FIR filter coefficients
Specify the lowpass FIR filter coefficients, in descending powers
of z.

Decimation factor
Specify the integer factor, K, by which to decrease the sample
rate of the input sequence.

10-434

FIR Decimation

Framing
For frame-based operation, specify the method by which to
implement the decimation; reduce the output frame rate, or
reduce the output frame size. This parameter can not be set to
Maintain input frame rate for sample-based signals.

Output buffer initial conditions
When the block exhibits latency, enter a value in the Output
buffer initial conditions text box to specify the value to output
at the output port until the first filtered input sample is available.
The default initial condition value is zero.

The Fixed-point pane of the FIR Decimation block dialog appears
as follows:

10-435

FIR Decimation

Rounding mode
Select the rounding mode for fixed-point operations. The filter
coefficients do not obey this parameter; they always round to
Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The filter
coefficients do not obey this parameter; they are always saturated.

Coefficients
Choose how you will specify the word length and the fraction
length of the filter coefficients:

• When you select Same word length as input, the word
length of the filter coefficients will match that of the input to
the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides
you with the best precision possible given the value and word
length of the coefficients.

• When you select Specify word length, you are able to enter
the word length of the coefficients, in bits. In this mode, the
fraction length of the coefficients is automatically set to the
binary-point only scaling that provides you with the best
precision possible given the value and word length of the
coefficients.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the coefficients, in
bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the coefficients.
This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the
Overflow mode parameters; they are always saturated and
rounded to Nearest.

10-436

FIR Decimation

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-430 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

10-437

FIR Decimation

Accumulator

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and
fraction lengths resulting from a complex-complex multiplication
in the block. Refer to “Multiplication Data Types” on page 8-16 for
more information.

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

where the number of accumulations is given by

10-438

FIR Decimation

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and block inputs and coefficients
are complex. In that case, the output word length will be one
less than the accumulator word length.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

10-439

FIR Decimation

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Downsample Signal Processing Blockset

FIR Interpolation Signal Processing Blockset

FIR Rate Conversion Signal Processing Blockset

decimate Signal Processing Toolbox

fir1 Signal Processing Toolbox

10-440

FIR Decimation

fir2 Signal Processing Toolbox

firls Signal Processing Toolbox

10-441

FIR Interpolation

Purpose Upsample and filter input signals

Library Filtering / Multirate Filters

Description The FIR Interpolation block resamples the discrete-time input at a
rate L times faster than the input sample rate, where the integer L is
specified by the Interpolation factor parameter. This process consists
of two steps:

• The block upsamples the input to a higher rate by inserting L-1 zeros
between samples.

• The block filters the upsampled data with a direct-form FIR filter.

The FIR Interpolation block implements the above upsampling and
FIR filtering steps together using a polyphase filter structure, which is
more efficient than straightforward upsample-then-filter algorithms.
See N.J. Fliege, Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets for more information.

The FIR filter coefficients parameter specifies the numerator
coefficients of the FIR filter transfer function H(z).

The coefficient vector, [b(1) b(2) ... b(m)], can be generated by
one of the filter design functions in the Signal Processing Toolbox (such
as fir1), and should have a length greater than the interpolation factor
(m>L). The filter should be lowpass with normalized cutoff frequency no
greater than 1/L. All filter states are internally initialized to zero.

The FIR Interpolation block supports real and complex floating-point
and fixed-point inputs. This block supports triggered subsystems when
you select Maintain input frame rate for the Framing parameter.

Sample-Based Operation

An M-by-N sample-based matrix input is treated as M*N independent
channels, and the block interpolates each channel over time. The output

10-442

FIR Interpolation

sample period is L times shorter than the input sample period (Tso =
Tsi/L), and the input and output sizes are identical.

Frame-Based Operation

An Mi-by-N frame-based matrix input is treated as N independent
channels, and the block decimates each channel over time. The
Framing parameter determines how the block adjusts the rate at the
output to accommodate the added samples. There are two available
options:

• Maintain input frame size

The block generates the output at the interpolated rate by using a
proportionally shorter frame period at the output port than at the
input port. For interpolation by a factor of L, the output frame period
is L times shorter than the input frame period (Tfo = Tfi/L), but the
input and output frame sizes are equal.

The example below shows a single-channel input with a frame period
of 1 second (Sample time = 1/64 and Samples per frame = 64 in
the Signal From Workspace block) being interpolated by a factor
of 4 to a frame period of 0.25 second. The input and output frame
sizes are identical.

• Maintain input frame rate

The block generates the output at the interpolated rate by using a
proportionally larger frame size than the input. For interpolation
by a factor of L, the output frame size is L times larger than the

10-443

FIR Interpolation

input frame size (Mo = Mi*L), but the input and output frame rates
are equal.

The example below shows a single-channel input of frame size 16
being interpolated by a factor of 4 to a frame size of 64. The block’s
input and output frame rates are identical.

Latency

Zero Latency

The FIR Interpolation block has zero tasking latency for all single-rate
operations. The block is single rate for the particular combinations of
sampling mode and parameter settings shown in the table below.

Sampling Mode Parameter Settings

Sample based Interpolation factor parameter, L, is 1.

Frame based Interpolation factor parameter, L, is 1, or

Framing parameter is Maintain input
frame rate.

Note that in sample-based mode, single-rate operation occurs only in
the trivial case of factor-of-1 interpolation.

The block also has zero latency for sample-based multirate operations
in the Simulink single-tasking mode. Zero tasking latency means that

10-444

FIR Interpolation

the block propagates the first filtered input (received at t=0) as the first
input sample, followed by L-1 interpolated values, the second filtered
input sample, and so on.

Nonzero Latency

The FIR Interpolation block is multirate for all settings other than those
in the previous table. The amount of latency for multirate operation
depends on the Simulink tasking mode and the block’s sampling mode,
as shown in the following table.

Multirate...
Sample-Based
Latency

Frame-Based
Latency

Single-tasking None None

Multitasking L samples L frames (Mi
samples per frame)

When the block exhibits latency, the default initial condition is zero.
Alternatively, you can enter a value in the Output buffer initial
conditions text box. This value is divided by the Interpolation
factor and output at the output port until the first filtered input sample
is available.

In sample-based cases, the scaled initial conditions appear at the start
of each channel, followed immediately by the first filtered input sample,
L-1 interpolated values, and so on.

In frame-based cases, with the default initial condition, the first MiL
output rows contain zeros, where Mi is the input frame size. The first
filtered input sample (first filtered row of the input matrix) appears in
the output as sample MiL+1, followed by L-1 interpolated values, the
second filtered input sample, and so on. See the following example for
an illustration of this case.

10-445

FIR Interpolation

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56
and “Models with Multiple Sample Rates” in the Real-Time Workshop
User’s Guide documentation.

Fixed-Point Data Types

The following diagram shows the data types used within the FIR
Interpolation block for fixed-point signals.

You can set the coefficient, product output, accumulator, and output
data types in the block dialog as discussed in “Dialog Box” on page
10-450. The diagram shows that input data is stored in the input buffer
in the same data type and scaling as the input. Filtered data is stored
in the output buffer in the output data type and scaling that you set in
the block dialog. Any initial conditions are also stored in the output
buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, see “Multiplication Data Types” on page 8-16.

10-446

FIR Interpolation

Examples Example 1

Construct the frame-based model shown below.

Adjust the block parameters as follows:

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents
an output frame period of 1 (0.25*4). The first channel should contain
the positive ramp signal 1, 2, ..., 100, and the second channel should
contain the negative ramp signal -1, -2, ..., -100.

- Signal = [(1:100)' (-1:-1:-100)']

- Sample time = 0.25

- Samples per frame = 4

• Configure the FIR Interpolation block to interpolate the two-channel
input by increasing the output frame rate by a factor of 2 relative to
the input frame rate. Use a third-order filter (m=3) with normalized
cutoff frequency, fn0, of 0.25. (Note that fn0 and m satisfy fn0≤1/L and
m > L.)

- FIR filter coefficients = fir1(3,0.25)

- Interpolation factor = 2

- Framing = Maintain input frame size

The filter coefficient vector generated by fir1(3,0.25) is

[0.0386 0.4614 0.4614 0.0386]

10-447

FIR Interpolation

or, equivalently,

• Configure the Probe blocks by clearing the Probe width, Probe
complex signal, and Probe signal dimensions check boxes (if
desired).

This model is multirate because there are at least two distinct sample
rates, as shown by the two Probe blocks. To run this model in the
Simulink multitasking mode, open the Configuration Parameters
dialog box. In the Select pane, click Solver. From the Type list,
select Fixed-step, and from the Solver list, select discrete (no
continuous states). From the Tasking mode for periodic sample
times list, select MultiTasking. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples
of each channel are shown below.

dsp_examples_yout =
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.0386 -0.0386
0.4614 -0.4614
0.5386 -0.5386
0.9614 -0.9614
1.0386 -1.0386

Since we ran this frame-based multirate model in multitasking mode,
the first eight (MiL) output rows are zero. The first filtered input matrix
row appears in the output as sample 9 (that is, sample MiL+1). Every
other row is an interpolated value.

10-448

FIR Interpolation

Example 2

The Polyphase FIR Interpolation demo (polyphaseInterp_demo)
illustrates the underlying polyphase implementations of the FIR
Interpolation block. Run the demo and view the results on the scope.
The output of the FIR Interpolation block is the same as the output of
the Polyphase Interpolation Filter block.

Example 3

The dspintrp demo provides another simple example, and the
dspmrf_menu demo illustrates the use of the FIR Interpolation block in
a number of multistage multirate filters.

10-449

FIR Interpolation

Dialog
Box

The Main pane of the FIR Interpolation block dialog appears as follows:

FIR filter coefficients
Specify the FIR filter coefficients, in descending powers of z.

Interpolation factor
Specify the integer factor, L, by which to increase the sample rate
of the input sequence.

10-450

FIR Interpolation

Framing
For frame-based operation, specify the method by which to
implement the interpolation: increase the output frame rate, or
increase the output frame size. This parameter can not be set to
Maintain input frame rate for sample-based signals.

Output buffer initial conditions
When the block exhibits latency, enter a value in the Output
buffer initial conditions text box to specify the value to output
at the output port until the first filtered input sample is available.
The default initial condition value is 0.

Output buffer initial conditions are stored in the output data
type and scaling.

The Fixed-point pane of the FIR Interpolation block dialog appears
as follows:

10-451

FIR Interpolation

Rounding mode
Select the rounding mode for fixed-point operations. The filter
coefficients do not obey this parameter; they always round to
Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The filter
coefficients do not obey this parameter; they are always saturated.

10-452

FIR Interpolation

Coefficients
Choose how you will specify the word length and fraction length
of the filter coefficients:

• When you select Same word length as input, the word
length of the filter coefficients will match that of the input to
the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides
you with the best precision possible given the value and word
length of the coefficients.

• When you select Specify word length, you are able to enter
the word length of the coefficients, in bits. In this mode, the
fraction length of the coefficients is automatically set to the
binary-point only scaling that provides you with the best
precision possible given the value and word length of the
coefficients.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the coefficients, in
bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the coefficients.
This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-446 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

10-453

FIR Interpolation

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to

10-454

FIR Interpolation

it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and
fraction lengths resulting from a complex-complex multiplication
in the block. Refer to “Multiplication Data Types” on page 8-16 for
more information:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

where the number of accumulations is given by

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

10-455

FIR Interpolation

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and block inputs and coefficients
are complex. In that case, the output word length will be one
less than the accumulator word length.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

10-456

FIR Interpolation

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

FIR Decimation Signal Processing Blockset

FIR Rate Conversion Signal Processing Blockset

Upsample Signal Processing Blockset

fir1 Signal Processing Toolbox

fir2 Signal Processing Toolbox

firls Signal Processing Toolbox

interp Signal Processing Toolbox

10-457

FIR Rate Conversion

Purpose Upsample, filter, and downsample input signals

Library Filtering / Multirate Filters

Description The FIR Rate Conversion block resamples the discrete-time input
to a period K/L times the input sample period, where the integer K
is specified by the Decimation factor parameter and the integer L
is specified by the Interpolation factor parameter. The resampling
process consists of the following steps:

1 The block upsamples the input to a higher rate by inserting L-1 zeros
between input samples.

2 The upsampled data is passed through a direct-form II transpose
FIR filter.

3 The block downsamples the filtered data to a lower rate by discarding
K-1 consecutive samples following each sample retained.

K and L must be relatively prime integers; that is, the ratio K/L
cannot be reducible to a ratio of smaller integers. The FIR Rate
Conversion block implements the above three steps together using a
polyphase filter structure, which is more efficient than straightforward
upsample-filter-decimate algorithms. See N. J. Fliege [1] for more
information.

The FIR filter coefficients parameter specifies the numerator
coefficients of the FIR filter transfer function H(z).

The coefficient vector, [b(1) b(2) ... b(m)], can be generated by
one of the filter design functions in the Signal Processing Toolbox (such
as fir1), and should have a length greater than the interpolation factor
(m>L). The filter should be lowpass with normalized cutoff frequency
no greater than min(1/L,1/K). All filter states are internally initialized
to zero.

10-458

FIR Rate Conversion

Frame-Based Operation

This block accepts only frame-based inputs. An Mi-by-N frame-based
matrix input is treated as N independent channels, and the block
resamples each channel independently over time.

The Interpolation factor, L, and Decimation factor, K, must satisfy
the relation

for an integer output frame size Mo. The simplest way to satisfy this
requirement is to let the Decimation factor equal the input frame
size, Mi. The output frame size, Mo, is then equal to the Interpolation
factor. This change in the frame size, from Mi to Mo, produces the
desired rate conversion while leaving the output frame period the same
as the input (Tfo = Tfi).

Latency

The FIR Rate Conversion block has no tasking latency. The block
propagates the first filtered input (received at t=0) as the first output
sample.

10-459

FIR Rate Conversion

Fixed-Point Data Types

The following diagram shows the data types used within the FIR Rate
Conversion block for fixed-point signals.

You can set the coefficient, product output, accumulator, and output
data types in the block dialog as discussed in “Dialog Box” on page
10-462. The diagram shows that input data is stored in the input buffer
in the same data type and scaling as the input. Filtered data is stored
in the output buffer in the output data type and scaling that you set in
the block dialog. Any initial conditions are also stored in the output
buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” on page 8-16.

Examples Example 1

The Rate Converter demo (polyphaseUpFirDn_demo) illustrates the
underlying polyphase implementations of the FIR Rate Conversion
block. Run the demo and view the results on the scope. The output of
the FIR Rate Conversion block is the same as the output of the system
comprised of the FIR Decimation block and FIR Interpolation block.
The output of the FIR Rate Conversion block is also the same as the
output of the Polyphase Filter block.

10-460

FIR Rate Conversion

Diagnostics An error is generated when the relation between K and L shown above
is not satisfied.

(Input port width)/(Output port width) must equal the
(Decimation factor)/(Interpolation factor).

A warning is generated when L and K are not relatively prime; that is,
when the ratio L/K can be reduced to a ratio of smaller integers.

Warning: Integer conversion factors are not relatively prime in
block 'modelname/FIR Rate Conversion (Frame)'. Converting ratio
L/M to l/m.

The block scales the ratio to be relatively prime and continues the
simulation.

10-461

FIR Rate Conversion

Dialog
Box

The Main pane of the FIR Rate Conversion block dialog appears as
follows:

Interpolation factor
Specify the integer factor, L, by which to upsample the signal
before filtering.

FIR filter coefficients
Specify the FIR filter coefficients in descending powers of z.

10-462

FIR Rate Conversion

Decimation factor
Specify the integer factor, K, by which to downsample the signal
after filtering.

The Fixed-point pane of the FIR Rate Conversion block dialog appears
as follows:

Rounding mode
Select the rounding mode for fixed-point operations. The filter
coefficients do not obey this parameter; they always round to
Nearest.

10-463

FIR Rate Conversion

Overflow mode
Select the overflow mode for fixed-point operations. The filter
coefficients do not obey this parameter; they are always saturated.

Coefficients
Choose how you will specify the word length and fraction length
of the filter coefficients.

• When you select Same word length as input, the word
length of the filter coefficients will match that of the input to
the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides
you with the best precision possible given the value and word
length of the coefficients.

• When you select Specify word length, you are able to enter
the word length of the coefficients, in bits. In this mode, the
fraction length of the coefficients is automatically set to the
binary-point only scaling that provides you with the best
precision possible given the value and word length of the
coefficients.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the coefficients, in
bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the coefficients.
This block requires power-of-two slope and a bias of zero.

• The coefficients do not obey the Round integer calculations
toward and the Saturate on integer overflow parameters;
they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-430 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block.

10-464

FIR Rate Conversion

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

10-465

FIR Rate Conversion

Accumulator

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and
fraction lengths resulting from a complex-complex multiplication
in the block. Refer to “Multiplication Data Types” on page 8-16 for
more information.

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

where the number of accumulations is given by

10-466

FIR Rate Conversion

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and block inputs and coefficients
are complex. In that case, the output word length will be one
less than the accumulator word length.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

10-467

FIR Rate Conversion

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

References [1] Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Downsample Signal Processing Blockset

FIR Decimation Signal Processing Blockset

FIR Interpolation Signal Processing Blockset

Upsample Signal Processing Blockset

fir1 Signal Processing Toolbox

fir2 Signal Processing Toolbox

10-468

FIR Rate Conversion

firls Signal Processing Toolbox

upfirdn Signal Processing Toolbox

See the following sections for related information:

• “Converting Sample and Frame Rates” on page 2-12

• “Multirate Filters” on page 3-66

10-469

Flip

Purpose Flip the input vertically or horizontally

Library Signal Management / Indexing

Description The Flip block vertically or horizontally reverses the M-by-N input
matrix, u. The output always has the same dimension and frame status
as the input.

When you select Columns from the Flip along menu, the block
vertically flips the input so that the first row of the input is the last
row of the output.

y = flipud(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs are treated as M-by-1
column vectors for vertical flipping.

When you select Rows from the Flip along menu, the block horizontally
flips the input so that the first column of the input is the last column of
the output.

y = fliplr(u) % Equivalent MATLAB code

For convenience, length-N 1-D vector inputs are treated as 1-by-N
row vectors for horizontal flipping. The output always has the same
dimension and frame status as the input.

This block supports Simulink virtual buses.

10-470

Flip

Dialog
Box

Flip along
The dimension along which to flip the input. Columns specifies
vertical flipping, while Rows specifies horizontal flipping.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

10-471

Flip

Port Supported Data Types

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Selector Simulink

Transpose Signal Processing Blockset

Variable Selector Signal Processing Blockset

flipud MATLAB

fliplr MATLAB

10-472

Forward Substitution

Purpose Solve LX=B for X when L is lower triangular matrix

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The Forward Substitution block solves the linear system LX=B by
simple forward substitution of variables, where L is the lower triangular
M-by-M matrix input to the L port, and B is the M-by-N matrix input
to the B port. The output is the solution of the equations, the M-by-N
matrix X, and is always sample based. The block does not check the
rank of the inputs.

The block only uses the elements in the lower triangle of input L;
the upper elements are ignored. When you select Force input to
be unit-lower triangular, the block replaces the elements on the
diagonal of L with 1’s. This is useful when matrix L is the result
of another operation, such as an LDL decomposition, that uses the
diagonal elements to represent the D matrix.

A length-M vector input at port B is treated as an M-by-1 matrix.

Dialog
Box

Force input to be unit-lower triangular
Replaces the elements on the diagonal of L with 1’s when selected.
Tunable.

10-473

Forward Substitution

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Solver Signal Processing Blockset

LDL Solver Signal Processing Blockset

Levinson-Durbin Signal Processing Blockset

LU Solver Signal Processing Blockset

QR Solver Signal Processing Blockset

See “Solving Linear Systems” on page 6-7 for related information.

10-474

Frame Conversion

Purpose Specify frame status of output signal

Library Signal Management / Signal Attributes

Description The Frame Conversion block specifies the frame status of the output
signal. Use the Output signal parameter to specify the frame status
of the output signal. Your choices are Frame based or Sample based.
The block does not rebuffer or resize two-dimensional inputs. When the
input is a length-M 1-D vector and the Output signal parameter is set
to Frame based, the output is a frame-based M-by-1 matrix.

Dialog
Box

Output signal
Specify the frame status of the output signal.

10-475

Frame Conversion

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Check Signal Attributes Signal Processing Blockset

Convert 1-D to 2-D Signal Processing Blockset

Convert 2-D to 1-D Signal Processing Blockset

Inherit Complexity Signal Processing Blockset

10-476

Frame Conversion

Unbuffer Signal Processing Blockset

Probe Simulink

Reshape Simulink

Signal Specification Simulink

10-477

Frame Status Conversion

Purpose Specify the frame status of the output as sample based or frame based

Library dspobslib

Description
Note The Frame Status Conversion block is still supported but is likely
to be obsoleted in a future release. We strongly recommend replacing
this block with the Frame Conversion block.

The Frame Status Conversion block passes the input through to
the output, and sets the output frame status to the Output signal
parameter, which can be either Frame-based or Sample-based. The
output frame status can also be inherited from the signal at the Ref
(reference) input port, which is made visible by selecting the Inherit
output frame status from Ref input port check box.

When the Output signal parameter setting or the inherited signal’s
frame status differs from the input frame status, the block changes the
input frame status accordingly, but does not otherwise alter the signal.
In particular, the block does not rebuffer or resize 2-D inputs. Because
1-D vectors cannot be frame based, when the input is a length-M 1-D
vector, and the Output signal parameter is set to Frame-based, the
output is a frame-based M-by-1 matrix (that is, a single channel).

When the Output signal parameter or the inherited signal’s frame
status matches the input frame status, the block passes the input
through to the output unaltered.

10-478

Frame Status Conversion

Dialog
Box

Inherit output frame status from Ref input port
When selected, enables the Ref input port from which the block
inherits the output frame status.

Output signal
The output frame status, Frame-based or Sample-based.

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

10-479

Frame Status Conversion

Port Supported Data Types

Ref • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Check Signal Attributes Signal Processing Blockset

Convert 1-D to 2-D Signal Processing Blockset

Convert 2-D to 1-D Signal Processing Blockset

Inherit Complexity Signal Processing Blockset

10-480

From Multimedia File

Purpose Read video frames and/or audio samples from compressed multimedia
file

Library Platform-specific I/O / Windows (WIN32)

Description The From Multimedia File block reads video frames and/or audio
samples from a multimedia file and imports them into a Simulink model.
Video processing requires the Video and Image Processing Blockset.

You can view the video frames using a To Video Display block and listen
to the audio using a To Wave Device block.

Note This block supports code generation and is only supported on
32-bit Windows platforms. This block performs best on platforms with
DirectX Version 9.0 or later and Windows Media Version 9.0 or later.

The output ports of the From Multimedia File block change according
the content of the multimedia file. If the file contains video frames,
the R, G, and B ports appear on the block. If the file contains audio
samples, the Audio port appears on the block.

Port Output Supported Data Types

Supports
Complex
Values?

R, G, B Matrix that represents
one plane of the RGB
video stream. Outputs
from the R, G, or B
port must have same
dimensions.

• Double-precision
floating point

• Single-precision
floating point

• 8-, 16-, and 32-bit
signed integers

• 8-, 16-, and 32-bit
unsigned integers

No

10-481

From Multimedia File

Port Output Supported Data Types

Supports
Complex
Values?

I Matrix that represents
the intensity video
stream

• Double-precision
floating point

• Single-precision
floating point

• 8-, 16-, and 32-bit
signed integers

• 8-, 16-, and 32-bit
unsigned integers

No

Audio Vector of audio data • Double-precision
floating point

• Single-precision
floating point

• 16-bit signed integers

• 8-bit unsigned integers

No

For sink blocks to display video data properly, double- and
single-precision floating-point pixel values must be between 0 and 1.
For other data types, the pixel values must be between the minimum
and maximum values supported by their data type.

Use the Input file name parameter to specify the name of the
multimedia file from which to read. If the location of this file is on your
MATLAB path, enter the filename. If the location of this file is not on
your MATLAB path, use the Browse button to specify the full path to
the file as well as the filename. This parameter also supports URLs.

Use the Output parameter to specify whether you want the block to
output video frames and/or audio samples. The parameter choices
depend on the multimedia file and can include Video only, Audio
only, or Video and audio.

10-482

From Multimedia File

If you want the block to output intensity video, select the Output
intensity video check box.

Use the Audio output data type parameter to set the data type of
the audio samples output at the Audio port. You can choose double,
single, int16, or uint8.

Use the Video output data type parameter to set the data type of the
video frames output at the R, G, B or I ports. You can choose double,
single, int8, uint8, int16, uint16, int32, uint32, or Inherit from
file.

Use the Number of times to play file parameter to enter the number
of times to play the file. The number you enter must be a positive
integer or inf.

Use the Output end-of-file indicator parameter to determine when
the last video frame or audio sample in the multimedia file is output
from the block. When you select this check box, a Boolean output port
labeled EOF appears on the block. The output from the EOF port is 1
when the last video frame or audio sample is output from the block.
Otherwise, the output from the EOF port is 0.

Select the Inherit sample time from file check box if you want the
sample time of the block to be the same as the sample time of the
multimedia file. If you clear this check box, use the Desired sample
time parameter to specify the block’s sample time.

10-483

From Multimedia File

Dialog
Box

Input file name
Specify the name of the multimedia file from which to read.

Output
Specify the block output. The choices depend on the multimedia
file and can include Video only, Audio only, or Video and
audio.

Output intensity video
Select this check box if you want the block to output intensity
video. This parameter is only available if the multimedia file
contains video.

Audio output data type
Set the data type of the audio samples output at the Audio port.
This parameter is only available if the multimedia file contains
audio.

10-484

From Multimedia File

Video output data type
Set the data type of the video data output from the block. This
parameter is only available if the multimedia file contains video.

Number of times to play file
Enter a positive integer or inf to represent the number of times
to play the file.

Output end-of-file indicator
Use this check box to determine whether the output is the last
video frame or audio sample in the multimedia file.

Inherit sample time from file
Select this check box if you want the sample time of the block to
be the same as the sample time of the multimedia file.

Desired sample time
Specify the block’s sample time. This parameter is available if you
clear the Inherit sample time from file check box.

Supported
File
Formats

Format Filename Extensions

Apple QuickTime,
Macintosh AIFF
Resource

.qt, .aif, .aifc, .aiff, .mov

Microsoft Windows
Media formats

.avi, .asf, .asx, .rmi, .wav, .wma,

.wax, .wmv

Moving Picture Experts
Group (MPEG)

.mpg, .mpeg, .mlv, .mp2, .mp3,

.mpa, .mpe

UNIX formats .au, .snd

This block supports any multimedia file format supported by Microsoft
Windows Media Player. Additionally, this block supports specialized
file formats that are associated with any codec supported by Microsoft
Windows Media Player.

10-485

From Multimedia File

See Also

To Multimedia File Signal Processing Blockset

From Wave File Signal Processing Blockset

Image From Workspace Video and Image Processing Blockset

To Video Display Video and Image Processing Blockset

Video From Workspace Video and Image Processing Blockset

Video Viewer Video and Image Processing Blockset

10-486

From Wave Device

Purpose Read audio data from standard audio device in real-time (32-bit
Windows operating systems only)

Library Platform-specific I/O / Windows (WIN32)

Description The From Wave Device block reads audio data from a standard Windows
audio device in real-time. It is compatible with most popular Windows
hardware, including Sound Blaster cards. (Models that contain both
this block and the To Wave Device block require a duplex-capable sound
card.)

The Use default audio device parameter allows the block to detect
and use the system’s default audio hardware. This option should be
selected on systems that have a single sound device installed, or when
the default sound device on a multiple-device system is the desired
source. In cases when the default sound device is not the desired input
source, clear Use default audio device, and select the desired device
in the Audio device menu parameter.

When the audio source contains two channels (stereo), the Stereo
check box should be selected. When the audio source contains a single
channel (mono), the Stereo check box should be cleared. For stereo
input, the block’s output is an M-by-2 matrix containing one frame (M
consecutive samples) of audio data from each of the two channels. For
mono input, the block’s output is an M-by-1 matrix containing one
frame (M consecutive samples) of audio data from the mono input. The
frame size, M, is specified by the Samples per frame parameter. For
M=1, the output is sample based; otherwise, the output is frame based.

The audio data is processed in uncompressed pulse code modulation
(PCM) format, and should typically be sampled at one of the standard
Windows audio device rates: 8000, 11025, 22050, or 44100 Hz. You can
select one of these rates from the Sample rate parameter. To specify a
different rate, select the User-defined option and enter a value in the
User-defined sample rate parameter.

The Sample Width (bits) parameter specifies the number of bits used
to represent the signal samples read by the audio device. The following
settings are available:

10-487

From Wave Device

• 8 — allocates 8 bits to each sample, allowing a resolution of 256 levels

• 16 — allocates 16 bits to each sample, allowing a resolution of 65536
levels

• 24 — allocates 24 bits to each sample, allowing a resolution of
16777216 levels (only for use with 24-bit audio devices)

Higher sample width settings require more memory but yield better
fidelity. The output from the block is independent of the Sample width
(bits) setting. The output data type is determined by the Data type
parameter setting.

Buffering

Since the audio device accepts real-time audio input, Simulink must
read a continuous stream of data from the device throughout the
simulation. Delays in reading data from the audio hardware can result
in hardware errors or distortion of the signal. This means that the
From Wave Device block must read data from the audio hardware
as quickly as the hardware itself acquires the signal. However, the
block often cannot match the throughput rate of the audio hardware,
especially when the simulation is running from within Simulink rather
than as generated code. (Simulink operations are generally slower
than comparable hardware operations, and execution speed routinely
varies during the simulation as the host operating system services other
processes.) The block must therefore rely on a buffering strategy to
ensure that signal data can be read on schedule without losing samples.

At the start of the simulation, the audio device begins writing the input
data to a (hardware) buffer with a capacity of Tb seconds. The From
Wave Device block immediately begins pulling the earliest samples off
the buffer (first in, first out) and collecting them in length-M frames for
output. As the audio device continues to append inputs to the bottom
of the buffer, the From Wave Device block continues to pull inputs off
the top of the buffer at the best possible rate.

The following figure shows an audio signal being acquired and output
with a frame size of 8 samples. The buffer of the sound board is
approaching its five-frame capacity at the instant shown, which means

10-488

From Wave Device

that the hardware is adding samples to the buffer more rapidly than
the block is pulling them off. (If the signal sample rate was 8 kHz, this
small buffer could hold approximately 0.005 second of data.

When the simulation throughput rate is higher than the hardware
throughput rate, the buffer remains empty throughout the simulation.
If necessary, the From Wave Device block simply waits for new samples
to become available on the buffer (the block does not interpolate
between samples). More typically, the simulation throughput rate is
lower than the hardware throughput rate, and the buffer tends to fill
over the duration of the simulation.

Troubleshooting

When the buffer size is too small in relation to the simulation
throughput rate, the buffer might fill before the entire length of signal
is processed. This usually results in a device error or undesired device
output. When this problem occurs, you can choose to either increase the
buffer size or the simulation throughput rate:

• Increase the buffer size

The Queue duration parameter specifies the duration of signal, Tb
(in real-time seconds), that can be buffered in hardware during the
simulation. Equivalently, this is the maximum length of time that
the block’s data acquisition can lag the hardware’s data acquisition.
The number of frames buffered is approximately

10-489

From Wave Device

where Fs is the sample rate of the signal and M is the number
of samples per frame. The required buffer size for a given signal
depends on the signal length, the frame size, and the speed of the
simulation. Note that increasing the buffer size might increase
model latency.

• Increase the simulation throughput rate

Two useful methods for improving simulation throughput rates are
increasing the signal frame size and compiling the simulation into
native code:

- Increase frame sizes (and convert sample-based signals to
frame-based signals) throughout the model to reduce the amount
of block-to-block communication overhead. This can drastically
increase throughput rates in many cases. However, larger frame
sizes generally result in greater model latency due to initial
buffering operations.

- Generate executable code with Real Time Workshop. Native
code runs much faster than Simulink, and should provide rates
adequate for real-time audio processing.

More general ways to improve throughput rates include simplifying the
model, and running the simulation on a faster PC processor. See “Delay
and Latency” on page 2-48 and “Improving Simulation Performance
and Accuracy” in the Using Simulink documentation for other ideas on
improving simulation performance.

10-490

From Wave Device

Dialog
Box

Sample rate (Hz)
The sample rate of the audio data to be acquired. Select one of the
standard Windows rates or the User-defined option.

User-defined sample rate (Hz)
The (nonstandard) sample rate of the audio data to be acquired.

Sample width (bits)
The number of bits used to represent each signal sample.

Stereo
Specifies stereo (two-channel) inputs when selected, mono
(one-channel) inputs when cleared. Stereo output is M-by-2; mono
output is M-by-1.

10-491

From Wave Device

Samples per frame
The number of audio samples in each successive output frame, M.

Queue duration (seconds)
The length of signal (in seconds) to buffer to the hardware at the
start of the simulation.

Use default audio device
Reads audio input from the system’s default audio device when
selected. Clear to enable the Audio device ID parameter and
select a device.

Audio device
The name of the audio device from which to read the audio output
(lists the names of the installed audio device drivers). Select Use
default audio device when the system has only a single audio
card installed.

Data type
The data type of the output: double-precision, single-precision,
signed 16-bit integer, or unsigned 8-bit integer.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• 16-bit signed integer

• 8-bit unsigned integer

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

From Wave File Signal Processing Blockset

To Wave Device Signal Processing Blockset

audiorecorder MATLAB

10-492

From Wave File

Purpose Read audio data from Microsoft Wave (.wav) file

Library Platform-specific I/O / Windows (WIN32)

Description The From Wave File block reads audio data from a Microsoft Wave
(.wav) file and generates a signal with one of the data types and
amplitude ranges in the following table.

Output Data Type Output Amplitude Range

double ±1

single ±1

int16 -32768 to 32767 (-215 to 215 - 1)

uint8 0 to 255

Note This block is supported on 32-bit Windows operating systems
only.

The audio data must be in uncompressed pulse code modulation (PCM)
format.

y = wavread('filename') % Equivalent MATLAB code

The block supports 8-, 16-, 24-, and 32-bit Microsoft Wave (.wav) files.

The File name parameter can specify an absolute or relative path to
the file. When the file is on the MATLAB path or in the current directory
(the directory returned by typing pwd at the MATLAB command line),
you need only specify the file’s name. You do not need to specify the.wav
extension.

When the audio file contains two channels (stereo), the block’s output
is an M-by-2 matrix containing one frame (M consecutive samples) of

10-493

From Wave File

audio data from each of the two channels. When the audio file contains a
single channel (mono), the block’s output is an M-by-1 matrix containing
one frame (M consecutive samples) of mono audio data. The frame size,
M, is specified by the Samples per output frame parameter. For
M=1, the output is sample based; otherwise, the output is frame based.

The output frame period, Tfo, is

where Fs is the data sample rate in Hz.

To reduce the required number of file accesses, the block acquires
L consecutive samples from the file during each access, where L is
specified by the Minimum number of samples for each read
from file parameter (L ≥M). For L <M, the block instead acquires M
consecutive samples during each access. Larger values of L result in
fewer file accesses, which reduces run-time overhead.

Use the Data type parameter to specify the data type of the block’s
output. Your choices are double, single, uint8, or int16.

Select the Loop check box if you want to play the file more than once.
Then, enter the number of times to play the file. The number you enter
must be a positive integer or inf.

Use the Number of times to play file parameter to enter the number
of times to play the file. The number you enter must be a positive
integer or inf, to play the file until you stop the simulation.

The Samples restart parameter determines whether the samples from
the audio file repeat immediately or repeat at the beginning of the next
frame output from the output port. When you select immediately
after last sample, the samples repeat immediately. When you select
at beginning of next frame, the frame containing the last sample
value from the audio file is zero padded until the frame is filled. The
block then places the first sample of the audio file in the first position
of the next output frame.

10-494

From Wave File

Use the Output start-of-file indicator parameter to determine when
the first audio sample in the file is output from the block. When you
select this check box, a Boolean output port labeled SOF appears on the
block. The output from the SOF port is 1 when the first audio sample
in the file is output from the block. Otherwise, the output from the
SOF port is 0.

Use the Output end-of-file indicator parameter to determine when
the last audio sample in the file is output from the block. When you
select this check box, a Boolean output port labeled EOF appears on the
block. The output from the EOF port is 1 when the last audio sample
in the file is output from the block. Otherwise, the output from the
EOF port is 0.

The block icon shows the name, sample rate (in Hz), number of channels
(1 or 2), and sample width (in bits) of the data in the specified audio
file. All sample rates are supported; the sample width must be either
8, 16, 24, or 32 bits.

10-495

From Wave File

Dialog
Box

File name
Enter the path and name of the file to read. Paths can be relative
or absolute.

Samples per output frame
Enter the number of samples in each output frame, M.

Minimum number of samples for each read from file
Enter the number of consecutive samples to acquire from the file
with each file access, L.

10-496

From Wave File

Data type
Select the output data type: double, single, uint8, or int16.
The data type setting determines the output’s amplitude range,
as shown in the table above.

Loop
Select this check box if you want to play the file more than once.

Number of times to play file
Enter the number of times you want to play the file.

Samples restart
Select immediately after last sample to repeat the audio
file immediately. Select at beginning of next frame to place
the first sample of the audio file in the first position of the next
output frame.

Output start-of-file indicator
Use this check box to determine whether the output contains the
first audio sample in the file.

Output end-of-file indicator
Use this check box to determine whether the output contains the
last audio sample in the file.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• 16-bit signed integer

• 8-bit unsigned integer

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-497

From Wave File

See Also

From Wave Device Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

To Wave File Signal Processing Blockset

wavread MATLAB

10-498

G711 Codec

Purpose Encode linear, pulse code modulation (PCM) narrowband speech signals
using A-law or mu-law encoders. Decode index values into quantized
output values using A-law or mu-law decoders. Convert between A-law
and mu-law index values.

Library Quantizers

Description The G711 Codec block is a logarithmic scalar quantizer designed for
narrowband speech. Narrowband speech is defined as a voice signal
with an analog bandwidth of 4 kHz and a Nyquist sampling frequency
of 8 kHz. The block quantizes a narrowband speech input signal so that
it can be transmitted using only 8-bits. The G711 Codec block has three
modes of operation: encoding, decoding, and conversion. You can choose
the block’s mode of operation by setting the Mode parameter.

If, for the Mode parameter, you choose Encode PCM to A-law, the
block assumes that the linear PCM input signal has a dynamic range
of 13 bits. Because the block always operates in saturation mode, it
assigns any input value above to and any input value
below to . The block implements an A-law quantizer on the
input signal and outputs A-law index values. When you choose Encode
PCM to mu-law, the block assumes that the linear PCM input signal
has a dynamic range of 14 bits. Because the block always operates in
saturation mode, it assigns any input value above to and
any input value below to . The block implements a mu-law
quantizer on the input signal and outputs mu-law index values.

If, for the Mode parameter, you choose Decode A-law to PCM, the
block decodes the input A-law index values into quantized output values
using an A-law lookup table. When you choose Decode mu-law to PCM,
the block decodes the input mu-law index values into quantized output
values using a mu-law lookup table.

If, for the Mode parameter, you choose Convert A-law to mu-law, the
block converts the input A-law index values to mu-law index values.
When you choose Convert mu-law to A-law, the block converts the
input mu-law index values to A-law index values.

10-499

G711 Codec

Note Set the Mode parameter to Convert A-law to mu-law or
Convert mu-law to A-law only when the input to the block is A-law or
mu-law index values.

If, for the Mode parameter, you choose Encode PCM to A-law or
Encode PCM to mu-law, the Overflow diagnostic parameter appears
on the block parameters dialog box. Use this parameter to determine
the behavior of the block when overflow occurs. The following options
are available:

• Ignore — Proceed with the computation and do not issue a warning
message.

• Warning -— Display a warning message in the MATLAB Command
Window, and continue the simulation.

• Error — Display an error dialog box and terminate the simulation.

Note Like all diagnostic parameters on the Configuration
Parameters dialog box, Overflow diagnostic parameter is set to
Ignore in the Real-Time Workshop code generated for this block.

10-500

G711 Codec

Dialog
Box

Mode

• When you choose Encode PCM to A-law, the block implements
an A-law encoder.

• When you choose Encode PCM to mu-law, the block
implements a mu-law encoder.

• When you choose Decode A-law to PCM, the block decodes
the input index values into quantized output values using an
A-law lookup table.

• When you choose Decode mu-law to PCM, the block decodes
the input index values into quantized output values using a
mu-law lookup table.

• When you choose Convert A-law to mu-law, the block
converts the input A-law index values to mu-law index values.

• When you choose Convert mu-law to A-law, the block
converts the input mu-law index values to A-law index values.

10-501

G711 Codec

Overflow diagnostic
Use this parameter to determine the behavior of the block when
overflow occurs.

• Select Ignore to proceed with the computation without a
warning message.

• Select Warning to display a warning message in the MATLAB
Command Window and continue the simulation.

• Select Error to display an error dialog box and terminate the
simulation.

This parameter is only visible if, for the Mode parameter, you
select Encode PCM to A-law or Encode PCM to mu-law.

References ITU-T Recommendation G.711, "Pulse Code Modulation (PCM) of
Voice Frequencies," General Aspects of Digital Transmission Systems;
Terminal Equipments, International Telecommunication Union (ITU),
1993.

Supported
Data
Types

Port Supported Data Types

PCM • 16-bit signed integers

A • 8-bit unsigned integers

mu • 8-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

10-502

G711 Codec

Scalar Quantizer Design Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Vector Quantizer Decoder Signal Processing Blockset

Vector Quantizer Design Signal Processing Blockset

Vector Quantizer Encoder Signal Processing Blockset

10-503

Histogram

Purpose Generate histogram of input or sequence of inputs

Library Statistics

Description The Histogram block computes the frequency distribution of the
elements in each column of the input, or tracks the frequency
distribution in a sequence of inputs over a period of time. The Running
histogram parameter selects between basic operation and running
operation, described below. The Histogram block accepts real and
complex fixed-point and floating-point inputs.

The block sorts the elements of each column into the number of discrete
bins specified by the Number of bins parameter, n.

y = hist(u,n) % Equivalent MATLAB code

Complex inputs are sorted by magnitude squared.

The histogram value for a given bin represents the frequency of
occurrence of the input values bracketed by that bin. You specify the
upper-boundary of the highest-valued bin in the Maximum value of
input parameter, BM, and the lower-boundary of the lowest-valued
bin in the Minimum value of input parameter, Bm. The bins have
equal width of

and centers located at

Input values that fall on the border between two bins are sorted into
the lower-valued bin; that is, each bin includes its upper boundary.
For example, a bin of width 4 centered on the value 5 contains the
input value 7, but not the input value 3. Input values greater than the
Maximum value of input parameter or less than Minimum value of
input parameter are sorted into the highest-valued or lowest-valued

10-504

Histogram

bin, respectively. The values you enter for the Maximum value of
input and Minimum value of input parameters must be real-valued
scalars.

Basic Operation

When you do not select the Running histogram check box, the block
computes the frequency distribution of each column in the M-by-N input
u independently at each sample time.

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output, y, is a sample-based n-by-N matrix whose jth column is
the histogram for the data in the jth column of u. When you select the
Normalized check box, the block scales each column of the output
so that sum(y(:,j)) is 1.

Running Operation

When you select the Running histogram check box, the block
computes the frequency distributions in a time-sequence of M-by-N
inputs by creating N persistent histograms to which successive inputs
are continuously added. For frame-based inputs, this is equivalent to a
persistent histogram for each independent channel.

As in basic operation, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output is a sample-based n-by-N matrix whose jth column reflects
the current state of the jth histogram. The block resets the running
histogram (by emptying all bins of all histograms) when it detects a
reset event at the optional Rst port, as described next.

Resetting the Running Histogram

The block resets the running histogram whenever a reset event is
detected at the optional Rst port. The reset signal and the input data
signal must be the same rate.

10-505

Histogram

To enable the Rst port, select the Reset port parameter. You specify
the reset event in the Trigger type parameter, and can be one of the
following:

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

10-506

Histogram

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Examples This model illustrates the Histogram block’s basic operation for a
single-channel input, u, where

u = [0 -2 6 -12 2 5 4 3 0 4 3 -2 -3 -2 -9]'

10-507

Histogram

The parameter settings for the Histogram block are

• Minimum value of input = -10

• Maximum value of input = 10

• Number of bins = 5

• Normalized = Clear this check box

• Running histogram = Clear this check box

The resulting bin width is 4, as shown below.

10-508

Histogram

Dialog
Box

The Main pane of the Histogram block dialog box appears as follows:

Minimum value of input
Enter a real-valued scalar for the lower boundary, Bm, of the
lowest-valued bin. Tunable.

Maximum value of input
Enter a real-valued scalar for the upper boundary, BM, of the
highest-valued bin. Tunable.

Number of bins
The number of bins, n, in the histogram.

Normalized
Normalizes the output vector (1-norm) when selected. Enables
running operation when selected. Tunable.

Use of this parameter is not supported for fixed-point signals.

10-509

Histogram

Running histogram
Set to enable the running histogram operation, and clear to
enable basic histogram operation. For more information, see
“Basic Operation” on page 10-505 and “Running Operation” on
page 10-505.

Reset port
Enables the Rst input port when selected. The reset signal and
the input data signal must be the same rate. This parameter is
enabled only when you set the Running histogram parameter.
For more information, see “Running Operation” on page 10-505.

Trigger type
The type of event that resets the running histogram. For more
information, see “Resetting the Running Histogram” on page
10-505. This parameter is enabled only when you set the Reset
port parameter.

The Fixed-point pane of the Histogram block dialog box appears as
follows:

10-510

Histogram

Note The fixed-point parameters listed below are only used for
fixed-point complex inputs, which are sorted by squared magnitude.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths:

• When you select Same as input, these characteristics will
match those of the input to the block.

10-511

Histogram

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block:

• When you select Same as product output, these
characteristics will match those of the product output

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

10-512

Histogram

Port Supported Data Types

Output • Double-precision floating point

• Single-precision floating point

• 32-bit unsigned integers

Rst • Boolean

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Sort Signal Processing Blockset

hist MATLAB

10-513

IDCT

Purpose Compute inverse discrete cosine transform (IDCT) of input

Library Transforms

Description The IDCT block computes the inverse discrete cosine transform (IDCT)
of each channel in the M-by-N input matrix, u.

y = idct(u) % Equivalent MATLAB code

For both sample-based and frame-based inputs, the block assumes that
each input column is a frame containing M consecutive samples from an
independent channel. The frame size, M, must be a power of two. To
work with other frame sizes, use the Zero Pad block to pad or truncate
the frame size to a power of two length.

The output is an M-by-N matrix whose lth column contains the
length-M IDCT of the corresponding input column.

where

The output is always frame based, and the output sample rate and data
type (real/complex) are the same as those of the input.

For convenience, length-M 1-D vector inputs and sample-based length-M
row vector inputs are processed as single channels (that is, as M-by-1
column vectors), and the output has the same dimension as the input.

The Sine and cosine computation parameter determines how the
block computes the necessary sine and cosine values. This parameter

10-514

IDCT

has two settings, each with its advantages and disadvantages, as
described in the following table.

Sine and Cosine
Computation
Parameter Setting

Sine and Cosine Computation
Method

Effect on Block
Performance

Table lookup The block computes and stores the
trigonometric values before the
simulation starts, and retrieves
them during the simulation.
When you generate code from
the block, the processor running
the generated code stores the
trigonometric values computed
by the block in a speed-optimized
table, and retrieves the values
during code execution.

The block usually runs
much more quickly,
but requires extra
memory for storing
the precomputed
trigonometric values.

Trigonometric fcn The block computes sine and cosine
values during the simulation.
When you generate code from the
block, the processor running the
generated code computes the sine
and cosine values while the code
runs.

The block usually runs
more slowly, but does not
need extra data memory.
For code generation, the
block requires a support
library to emulate the
trigonometric functions,
increasing the size of the
generated code.

Fixed-Point Data Types

The diagrams below show the data types used within the IDCT block
for fixed-point signals. You can set the sine table, accumulator, product
output, and output data types displayed in the diagrams in the IDCT
block dialog as discussed in “Dialog Box” on page 10-517.

Inputs to the IDCT block are first cast to the output data type and
stored in the output buffer. Each butterfly stage processes signals in

10-515

IDCT

the accumulator data type, with the final output of the butterfly being
cast back into the output data type.

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the

10-516

IDCT

inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, see “Multiplication Data Types” on page 8-16.

Dialog
Box

The Main pane of the IDCT block dialog appears as follows:

Sine and cosine computation
Sets the block to compute sines and cosines by either looking up
sine and cosine values in a speed-optimized table (Table lookup),
or by making sine and cosine function calls (Trigonometric fcn).
See the table above.

The Fixed-point pane of the IDCT block dialog appears as follows:

10-517

IDCT

Rounding mode
Select the rounding mode for fixed-point operations. The sine
table values do not obey this parameters; they always round to
Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The sine table
values do not obey this parameters; they always round to Nearest.

Sine table
Choose how you will specify the word length of the values of the
sine table. The fraction length of the sine table values is always
equal to the word length minus one:

• When you select Same word length as input, the word length
of the sine table values will match that of the input to the block.

10-518

IDCT

• When you select Specify word length, you are able to enter
the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-515 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-515 and “Multiplication Data Types” on

10-519

IDCT

page 8-16 for illustrations depicting the use of the accumulator
data type in this block:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Inherit via internal rule, the output
word length and fraction length are automatically set according
to the following equations:

• When you select Same as input, these characteristics will
match those of the input to the block.

10-520

IDCT

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

DCT Signal Processing Blockset

IFFT Signal Processing Blockset

idct Signal Processing Toolbox

10-521

Identity Matrix

Purpose Generate matrix with ones on the main diagonal and zeros elsewhere

Library Signal Processing Sources

Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Identity Matrix block generates a rectangular matrix with ones on
the main diagonal and zeros elsewhere.

When you select the Inherit output port attributes from input
port check box, the input port is enabled, and an M-by-N matrix input
generates a sample-based M-by-N matrix output with the same sample
period. The values in the input matrix are ignored.

y = eye([M N]) % Equivalent MATLAB code

When you do not select the Inherit output port attributes from
input port check box, the input port is disabled, and the dimensions
of the output matrix are determined by the Matrix size parameter.
A scalar value, M, specifies an M-by-M identity matrix, while a
two-element vector, [M N], specifies an M-by-N unit-diagonal matrix.
The output is sample based, and has the sample period specified by the
Sample time parameter.

Examples Set Matrix size to [3 6] to generate the 3-by-6 unit-diagonal matrix
below.

10-522

Identity Matrix

Dialog
Box

The Main pane of the Identity Matrix block dialog appears as follows:

Inherit output port attributes from input port
Enables the input port when selected. The output inherits its
dimensions and sample period from the input.

Matrix size
The number of rows and columns in the output matrix: a scalar
M for a square M-by-M output, or a vector [M N] for an M-by-N
output. This parameter is disabled when you select Inherit
input port attributes from input port.

Sample time
The discrete sample period of the output. This parameter is
disabled when you select Inherit input port attributes from
input port.

The Data Types pane of the Identity Matrix block dialog appears as
follows:

10-523

Identity Matrix

Output data type
Specify the output data type in one of the following ways:

• Choose one of the built-in data types from the list.

• Choose Fixed-point to specify the output data type and scaling
in the Signed, Word length, Set fraction length in output
to, and Fraction length parameters.

• Choose User-defined to specify the output data type and
scaling in the User-defined data type, Set fraction length
in output to, and Fraction length parameters.

• Choose Inherit via back propagation to set the output data
type and scaling to match the following block

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is visible only when you select
Fixed-point for the Output data type parameter.

10-524

Identity Matrix

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is visible only when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is visible only when you select User-defined for the Output
data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is visible only when you select Fixed-point
for the Output data type parameter, or when you select
User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
visible only when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

10-525

Identity Matrix

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Constant Diagonal Matrix Signal Processing Blockset

DSP Constant Signal Processing Blockset

eye MATLAB

10-526

IDWT

Purpose Compute inverse discrete wavelet transform (IDWT) of input

Library Transforms

Description
Note The IDWT block is the same as the Dyadic Synthesis Filter Bank
block in the Multirate Filters library, but with different default settings.
See the Dyadic Synthesis Filter Bank for more information on how
to use the block.

The IDWT block computes the inverse discrete wavelet transform
(IDWT) of the input subbands. By default, the block accepts a single
sample-based vector or matrix of concatenated subbands. The output is
frame based, and has the same dimensions as the input. Each column
of the output is the IDWT of the corresponding input column.

You must install the Wavelet Toolbox for the block to automatically
design wavelet-based filters to compute the IDWT. Otherwise, you must
specify your own lowpass and highpass FIR filters by setting the Filter
parameter to User defined.

For detailed information about how to use this block, see Dyadic
Synthesis Filter Bank.

Examples See the examples in the Dyadic Synthesis Filter Bank block reference.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-527

IDWT

See Also

Dyadic Synthesis Filter
Bank

Signal Processing Blockset

DWT Signal Processing Blockset

10-528

IFFT

Purpose Compute inverse fast Fourier transform (IFFT) of input

Library Transforms

Description The IFFT block computes the inverse fast Fourier transform (IFFT) of
each channel of an M-by-N or length-M input, u, where M must be a
power of two. To work with other input sizes, use the Zero Pad block to
pad or truncate the length-M dimension to a power-of-two length.

The output of the IFFT block is equivalent to the MATLAB ifft
function.

y = ifft(u) % Equivalent MATLAB code

The kth entry of the lth output channel, y(k, l), is equal to the kth point
of the M-point inverse discrete Fourier transform (IDFT) of the lth
input channel.

This block supports real and complex floating-point and fixed-point
inputs.

Input and Output Characteristics

The following table describes valid inputs to the IFFT block, their
corresponding outputs, and the dimension along which the block
computes the IDFT.

10-529

IFFT

Valid Block Inputs

• Real- or
complex-valued

• M must be a
power of two

• In linear or
bit-reversed order

Dimension Along
Which Block Computes
IDFT

Corresponding Block
Output Characteristics
Output port rate = input port
rate

Frame-based
M-by-N matrix

Column

Sample-based
M-by-N matrix

Column

Sample-based
1-by-M row vector

Row

1-D length-M vector Vector

The following output characteristics
apply to all valid block inputs:

• Frame based

• Complex valued. If your input is
conjugate symmetric and you select
the Input is conjugate symmetric
check box, then the output is real
valued. This check box cannot be
used for fixed-point signals.

• Same dimension as input (for 1-D
inputs, output is a length-M column)

• Each output column (each row
for sample-based row inputs)
contains the M-point IDFT of the
corresponding input channel in linear
order. If you select the Skip scaling
check box, the block computes a
scaled version of the IDFT that does
not include the multiplication factor
of 1/M.

10-530

IFFT

Selecting the Twiddle Factor Computation Method

The Twiddle factor computation parameter determines how the
block computes the necessary sine and cosine terms to calculate the
term , shown in the first equation of this block
reference page. This parameter has two settings, each with its
advantages and disadvantages, as described in the following table. Note
that only Table lookup mode is supported for fixed-point signals.

Twiddle Factor
Computation
Parameter
Setting

Sine and Cosine Computation
Method Effect on Block Performance

Table lookup The block computes and stores the
trigonometric values before the
simulation starts, and retrieves
them during the simulation.
When you generate code from
the block, the processor running
the generated code stores the
trigonometric values computed by
the block, and retrieves the values
during code execution.

The block usually runs much more
quickly, but requires extra memory
for storing the precomputed
trigonometric values. You can
optimize the table for memory
consumption or speed, as described
in “Optimizing the Table of
Trigonometric Values” on page
10-531.

Trigonometric
fcn

The block computes sine and cosine
values during the simulation.
When you generate code from the
block, the processor running the
generated code computes the sine
and cosine values while the code
runs.

The block usually runs more
slowly, but does not need extra
data memory. For code generation,
the block requires a support library
to emulate the trigonometric
functions, increasing the size of the
generated code.

Optimizing the Table of Trigonometric Values

When you set the Twiddle factor computation parameter to Table
lookup, you need to also set the Optimize table for parameter. This
parameter optimizes the table of trigonometric values for speed or

10-531

IFFT

memory by varying the number of table entries as summarized in the
following table.

Optimize Table for
Parameter Setting

Number of Table
Entries for N-Point IFFT

Memory Required for
Single-Precision 512-Point IFFT

Speed 3N/4 — floating point

N — fixed point

Memory N/4 — floating point

Not supported for fixed
point

Input Order

You must select the Input is in bit-reversed order check box to
designate whether the ordering of the column elements of the input is
linear or bit-reversed order. If you select the Input is in bit-reversed
order check box, the block assumes the input is in bit-reversed order. If
you clear the Input is in bit-reversed order check box, block assumes
the input is in linear order. For more information ordering of the
output, see “Linear and Bit-Reversed Output Order” on page 4-18.

Conjugate Symmetric Input

The FFT block yields conjugate symmetric output when its input is
real valued. Taking the IFFT of a conjugate symmetric input matrix
produces real-valued output. Therefore, if the input to the block is
both floating point and conjugate symmetric and you select the Input
is conjugate symmetric check box, the block produces real-valued
outputs. Selecting this check box optimizes the block’s computation
method.

If the IFFT block input is conjugate symmetric and you do not select the
Input is conjugate symmetric check box, the IFFT block outputs a
complex-valued signal with small imaginary parts. The block output
is invalid if you select this check box and the input is not conjugate
symmetric.

10-532

IFFT

Note The Input is conjugate symmetric parameter cannot be used
for fixed-point signals.

Scaled Output

If you select the Skip scaling check box, the block’s output is not
scaled. If you clear the Skip scaling check box and your signal is a
floating point signal, the block computes a scaled version of the IDFT,

, which is defined by the following equation.

If you clear the Skip scaling check box and your signal is a fixed-point
signal, the output of each butterfly of the IFFT is divided by two.

Algorithms Used for IFFT Computation

Depending on whether the block input is floating point or fixed point,
real or complex valued, and conjugate symmetric, the block uses one or
more of the following algorithms as summarized in the following tables:

• Butterfly operation

• Double-signal algorithm

• Half-length algorithm

• Radix-2 decimation-in-time (DIT) algorithm

10-533

IFFT

For floating-point signals:

Input Complexity
Other Parameter
Settings

Algorithms
Used for IFFT
Computation

Real or complex Butterfly operation
and radix-2 DIT

Real or complex Radix-2 DIF

Real or complex Butterfly operation
and radix-2 DIT in
conjunction with
the half-length
and double-signal
algorithms

Real or complex Radix-2 DIF in
conjunction with
the half-length
and double-signal
algorithms

For fixed-point signals:

Input Complexity
Other Parameter
Settings

Algorithms
Used for IFFT
Computation

Real or complex Butterfly operation
and radix-2 DIT

Real or complex Radix-2 DIF

10-534

IFFT

Note that the Input is conjugate symmetric parameter cannot be
used for fixed-point signals.

Fixed-Point Data Types

The diagrams below show the data types used within the IFFT block
for fixed-point signals. You can set the sine table, accumulator, product
output, and output data types displayed in the diagrams in the IFFT
block dialog as discussed in “Dialog Box” on page 10-537.

Inputs to the IFFT block are first cast to the output data type and stored
in the output buffer. Each butterfly stage then processes signals in
the accumulator data type, with the final output of the butterfly being
cast back into the output data type. A twiddle factor is multiplied in
before each butterfly stage in a decimation-in-time IFFT, and after each
butterfly stage in a decimation-in-frequency IFFT.

10-535

IFFT

The output of the multiplier is in the accumulator data type since both
of the inputs to the multiplier are complex. For details on the complex
multiplication performed, refer to “Multiplication Data Types” on page
8-16.

10-536

IFFT

Dialog
Box

The Main pane of the IFFT block dialog appears as follows:

Twiddle factor computation
Specify the computation method of the term
shown in the first equation of this block reference page. In
Table lookup mode, the block computes and stores the sine and
cosine values before the simulation starts. In Trigonometric
fcn mode, the block computes the sine and cosine values during
the simulation. See “Selecting the Twiddle Factor Computation
Method” on page 10-531.

10-537

IFFT

This parameter must be set to Table lookup for fixed-point
signals.

Optimize table for
Select the optimization of the table of sine and cosine values
for Speed or Memory. This parameter is only available when
the Twiddle factor computation parameter is set to Table
lookup. See “Optimizing the Table of Trigonometric Values” on
page 10-531.

This parameter must be set to Speed for fixed-point signals.

Input is in bit-reversed order
Designate the order of the input channel elements. Select when
the input is in bit-reversed order, and clear when the input is in
linear order. The block yields invalid outputs when you do not set
this parameter correctly. See “Input Order” on page 10-532.

Input is conjugate symmetric
Select when the input to the block is both floating point and
conjugate symmetric, and you want real-valued outputs. The
block output is invalid when you set this parameter when the
input is not conjugate symmetric. This parameter cannot be used
for fixed-point signals.

Skip scaling
When you select this check box, no scaling occurs. When this
parameter is unselected, scaling does occur:

For floating-point signals, rather than computing the IDFT, the
block computes a scaled version of the IDFT. This scaled version
of the IDFT does not include the multiplication factor of 1/M.

For fixed-point signals, the output of each butterfly of the IFFT
is divided by two.

The Fixed-point pane of the IFFT block dialog appears as follows:

10-538

IFFT

Rounding mode
Select the rounding mode for fixed-point operations. The sine table
values do not obey this parameter; they always round to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The sine table
values do not obey this parameter; they are always saturated.

Sine table
Choose how you will specify the word length of the values of the
sine table. The fraction length of the sine table values is always
equal to the word length minus one:

10-539

IFFT

• When you select Same word length as input, the word length
of the sine table values will match that of the input to the block.

• When you select Specify word length, you are able to enter
the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-535 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

10-540

IFFT

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-535 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the accumulator
data type in this block:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Inherit via internal rule, the output
word length and fraction length are automatically set according
to the following equations:

10-541

IFFT

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

FFT Signal Processing Blockset

IDCT Signal Processing Blockset

Pad Signal Processing Blockset

Zero Pad Signal Processing Blockset

bitrevorder Signal Processing Toolbox

10-542

IFFT

fft Signal Processing Toolbox

ifft Signal Processing Toolbox

10-543

Inherit Complexity

Purpose Change complexity of input to match a reference signal

Library Signal Management / Signal Attributes

Description The Inherit Complexity block alters the input data at the Data port to
match the complexity of the reference input at the Ref port. When the
Data input is real, and the Ref input is complex, the block appends a
zero-valued imaginary component, 0i, to each element of the Data input.

When the Data input is complex, and the Ref input is real, the block
outputs the real component of the Data input.

When both the Data input and Ref input are real, or when both the
Data input and Ref input are complex, the block propagates the Data
input with no change.

10-544

Inherit Complexity

Dialog
Box

Supported
Data
Types

Port Supported Data Types

Data • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Ref • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

10-545

Inherit Complexity

Port Supported Data Types

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Check Signal Attributes Signal Processing Blockset

Complex to
Magnitude-Angle

Simulink

Complex to Real-Imag Simulink

Magnitude-Angle to
Complex

Simulink

Real-Imag to Complex Simulink

10-546

Integer Delay

Purpose Delay an input by an integer number of sample periods

Library dspobslib

Description
Note The Integer Delay block is still supported but is likely to be
obsoleted in a future release. We recommend replacing this block with
the Delay block.

The Integer Delay block delays a discrete-time input by the number of
sample intervals specified in the Delay parameter. Noninteger delay
values are rounded to the nearest integer, and negative delays are
clipped at 0.

Sample-Based Operation

When the input is a sample-based M-by-N matrix, the block treats each
of the M*N matrix elements as an independent channel. The Delay
parameter, v, can be an M-by-N matrix of positive integers that specifies
the number of sample intervals to delay each channel of the input, or a
scalar integer by which to equally delay all channels.

For example, when the input is M-by-1 and v is the matrix [v(1) v(2)
... v(M)]', the first channel is delayed by v(1) sample intervals,
the second channel is delayed by v(2) sample intervals, and so on.
Note that when a channel is delayed for sample-time units, the
output sample at time is the input sample at time . When
is negative, then the output is the corresponding value specified by
the Initial conditions parameter.

A 1-D vector of length M is treated as an M-by-1 matrix, and the output
is 1-D.

The Initial conditions parameter specifies the output of the block
during the initial delay in each channel. The initial delay for a
particular channel is the time elapsed from the start of the simulation
until the first input in that channel is propagated to the output. Both

10-547

Integer Delay

fixed and time-varying initial conditions can be specified in a variety of
ways to suit the dimensions of the input.

Fixed Initial Conditions

A fixed initial condition in sample-based mode can be specified as one
of the following:

• Scalar value to be repeated at each sample time of the initial delay
(for every channel). For a 2-by-2 input with the parameter settings
below,

the block generates the following sequence of matrices at the start of
the simulation,

where is the i,jth element of the kth matrix in the input sequence.

• Array of size M-by-N-by-d. In this case, you can set different fixed
initial conditions for each element of a sample-based input. This
setting is explained further in the Array bullet in “Time-Varying
Initial Conditions” on page 10-548.

Initial conditions cannot be specified by full matrices.

Time-Varying Initial Conditions

A time-varying initial condition in sample-based mode can be specified
in one of the following ways:

10-548

Integer Delay

• Vector of length d, where d is the maximum value specified for any
channel in the Delay parameter. The vector can be a L-by-d, 1-by-d,
or 1-by-1-by-d. The d elements of the vector are output in sequence,
one at each sample time of the initial delay.

For a scalar input and the parameters shown below,

the block outputs the sequence -1, -1, -1, 0, 1,... at the start
of the simulation.

• Array of dimension M-by-N-by-d, where d is the value specified
for the Delay parameter (the maximum value when the Delay
is a vector) and M and N are the number of rows and columns,
respectively, in the input matrix. The d pages of the array are output
in sequence, one at each sample time of the initial delay. For a 2-by-3
input, and the parameters below,

the block outputs the matrix sequence

at the start of the simulation. Note that setting Initial conditions
to an array with the same matrix for each entry implements constant
initial conditions; a different constant initial condition for each input
matrix element (channel).

Initial conditions cannot be specified by full matrices.

10-549

Integer Delay

Frame-Based Operation

When the input is a frame-based M-by-N matrix, the block treats each
of the N columns as an independent channel, and delays each channel
as specified by the Delay parameter.

For frame-based inputs, the Delay parameter can be a scalar integer
by which to equally delay all channels. It can also be a 1-by-N row
vector, each element of which serves as the delay for the corresponding
channel of the N-channel input. Likewise, it can also be an M-by-1
column vector, each element of which serves as the delay for one of
the corresponding M samples for each channel. The Delay parameter
can be an M-by-N matrix of positive integers as well; in this case, each
element of each channel is delayed by the corresponding element in the
delay matrix. For instance, if the fifth element of the third column of
the delay matrix was 3, then the fifth element of the third channel of
the input matrix is always delayed by three sample-time units.

When a channel is delayed for sample-time units, the output sample
at time is the input sample at time . When is negative,
then the output is the corresponding value specified in the Initial
conditions parameter.

The Initial conditions parameter specifies the output during the
initial delay. Both fixed and time-varying initial conditions can be
specified. The initial delay for a particular channel is the time elapsed
from the start of the simulation until the first input in that channel is
propagated to the output.

Fixed Initial Conditions

The settings shown below specify fixed initial conditions. The value
entered in the Initial conditions parameter is repeated at the output
for each sample time of the initial delay. A fixed initial condition in
frame-based mode can be one of the following:

• Scalar value to be repeated for all channels of the output at each
sample time of the initial delay. For a general M-by-N input with the
parameter settings below,

10-550

Integer Delay

the first five samples in each of the N channels are zero. Notice that
when the frame size is larger than the delay, all of these zeros are all
included in the first output from the block.

• Array of size 1-by-N-by-D. In this case, you can also specify different
fixed initial conditions for each channel. See the Array bullet in
“Time-Varying Initial Conditions” on page 10-551 for details.

Initial conditions cannot be specified by full matrices.

Time-Varying Initial Conditions

The following settings specify time-varying initial conditions. For
time-varying initial conditions, the values specified in the Initial
conditions parameter are output in sequence during the initial delay.
A time-varying initial condition in frame-based mode can be specified in
the following ways:

• Vector of length D, where each of the N channels have the same initial
conditions sequence specified in the vector. D is defined as follows:

- When an element of the delay entry is less than the frame size,

D = d + 1

where d is the maximum delay.

- When the all elements of the delay entry are greater than the
input frame size,

D = d + input frame size - 1

Only the first d entries of the initial condition vector will be used;
the rest of the values are ignored, but you must include them
nonetheless. For a two-channel ramp input [1:100; 1:100]' with a
frame size of 4 and the parameter settings below,

10-551

Integer Delay

the block outputs the following sequence of frames at the start of
the simulation.

Note that since one of the delays, 2, is less than the frame size of the
input, 4, the length of the Initial conditions vector is the sum of the
maximum delay and 1 (5+1), which is 6. The first five entries of the
initial conditions vector are used by the channel with the maximum
delay, and the rest of the entries are ignored. Since the first channel
is delayed for less than the maximum delay (2 sample time units), it
only makes use of two of the initial condition entries.

• Array of size 1-by-N-by-D, where D is defined in the Vector bullet
above in “Time-Varying Initial Conditions” on page 10-551. In this
case, the kth entry of each 1-by-N entry in the array corresponds
to an initial condition for the kth channel of the input matrix.
Thus, a 1-by-N-by-D initial conditions input allows you to specify
different initial conditions for each channel. For instance, for a
two-channel ramp input [1:100; 1:100]' with a frame size of 4
and the parameter settings below,

the block outputs the following sequence of frames at the start of
the simulation.

10-552

Integer Delay

Note that the channels have distinct time varying initial conditions;
the initial conditions for channel 1 correspond to the first entry of
each length-2 row vector in the initial conditions array, and the initial
conditions for channel 2 correspond to the second entry of each row
vector in the initial conditions array. Only the first five entries in the
initial conditions array are used; the rest are ignored.

The 1-by-N-by-D array entry can also specify different fixed initial
conditions for every channel; in this case, every 1-by-N entry in
the array would be identical, so that the initial conditions for each
column are fixed over time.

Initial conditions cannot be specified by full matrices.

Resetting the Delay

The block resets the delay whenever it detects a reset event at the
optional Rst port. The reset signal rate must be a positive integer
multiple of the rate of the data signal input.

You specify the reset event in the Reset port parameter:

• None disables the Rst port.

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-553

Integer Delay

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above).

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero.

10-554

Integer Delay

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Examples The dspafxr demo illustrates an audio reverberation system built
around the Integer Delay block.

Dialog
Box

Delay
The number of sample periods to delay the input signal.

Initial conditions
The value of the block’s output during the initial delay.

Reset port
Determines the reset event that causes the block to reset the delay.
For more information, see “Resetting the Delay” on page 10-553.

10-555

Integer Delay

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean — The block accepts Boolean inputs to the Rst port, which is
enabled by the Reset port parameter.

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Unit Delay Simulink

Variable Fractional Delay Signal Processing Blockset

Variable Integer Delay Signal Processing Blockset

10-556

Interpolation

Purpose Interpolate values of real input samples

Library Signal Operations

Description The Interpolation block interpolates each channel of discrete, real,
inputs using linear or FIR interpolation. The input can be a sample or
frame based vector or matrix. The output is a vector or matrix of the
interpolated values, and has the same frame status and frame rate
as the input.

You must specify the interpolation points (times at which to interpolate
values) in an interpolation vector, In. An entry of 1 in In refers to the
first sample of the input, an entry of 2.5 refers to the sample half-way
between the second and third input sample, and so on. In must have the
same frame status and frame rate as the input, and can be a length-P
row or column vector, where P is usually any positive integer.

Usually, the block applies the vector In to each column of an input
matrix, or to each input vector. You can set the block to either apply
the same interpolation vector for all input vectors or matrices (static
interpolation points), or use a different interpolation vector for each
input vector or matrix (time-varying interpolation points).

For more information, see other sections of this reference page.

Sections of This Reference Page

• “Specifying Static Interpolation Points” on page 10-558

• “Specifying Time-Varying Interpolation Points” on page 10-558

• “How the Block Applies Interpolation Vectors to Inputs” on page
10-558

• “Handling Out-of-Range Interpolation Points” on page 10-561

• “Linear Interpolation Mode” on page 10-562

• “FIR Interpolation Mode” on page 10-563

• “Dialog Box” on page 10-564

10-557

Interpolation

• “Supported Data Types” on page 10-566

Specifying Static Interpolation Points

To supply the block with a static interpolation vector (an interpolation
vector applied to every input vector or matrix), do the following:

• Set the Source of interpolation points parameter to Specify via
dialog.

• Enter the interpolation vector in the Interpolation points
parameter. To learn about interpolation vectors, see “How the Block
Applies Interpolation Vectors to Inputs” on page 10-558.

Specifying Time-Varying Interpolation Points

To supply the block with time-varying interpolation vectors (where
the block uses a different interpolation vector for each input vector or
matrix), do the following:

1 Set the Source of interpolation points parameter to Input port,
the Pts port appears on the block.

2 Generate a signal of interpolation vectors with the same frame status
and same frame rate as the input signal, and supply it to the Pts
port. The block uses the input to this port as the interpolation points.
To learn about interpolation vectors, see “How the Block Applies
Interpolation Vectors to Inputs” on page 10-558.

How the Block Applies Interpolation Vectors to Inputs

The interpolation vector In represents the points in time at which to
interpolate values of the input signal. An entry of 1 in In refers to the
first sample of the input, an entry of 2.5 refers to the sample half-way
between the second and third input sample, and so on. In most cases,
the vector In can be of any length.

Depending on the dimension and frame status of the input and the
dimension of In, the block usually applies In to the input in one of the
following ways:

10-558

Interpolation

• Applies the vector In to each channel of a matrix input, resulting
in a matrix output.

• Applies the vector In to each input vector (as if the input vector
were a single channel), resulting in a vector output with the same
orientation as the input (row or column).

The following tables summarize how the block applies the vector In to
all the possible types of sample- and frame-based inputs, and show
the resulting output dimensions. (The block applies both static and
time-varying interpolation vectors to the input signal in the same way.)

How Block Applies Interpolation Vectors to Frame-Based Inputs

Frame-Based
Input Dimensions

Dimensions of
Interpolation
Vector In (P is a
positive integer)

How Block Applies
In to Input

Frame-Based
Output
Dimensions

P-by-1 column Applies In to each
input column

P-by-N matrixM-by-N matrix

1-by-N row Applies each
column of In (each
element of In) to
the corresponding
columns of the input

1-by-N row

P-by-1 column Applies In to the
input column

P-by-1 columnM-by-1 column

1-by-P row

(block treats as a
column)

Applies In to the
input column

P-by-1 column

10-559

Interpolation

Frame-Based
Input Dimensions

Dimensions of
Interpolation
Vector In (P is a
positive integer)

How Block Applies
In to Input

Frame-Based
Output
Dimensions

P-by-1 column not applicable P-by-N matrix where
each row is a copy of
the input vector

1-by-N row

(not recommended)

1-by-P row not applicable 1-by-N row, a copy of
the input vector

How Block Applies Interpolation Vectors to Sample-Based Inputs

Sample-Based
Input Dimensions

Dimensions of
Interpolation
Vector In(P is any
positive integer)

How Block Applies
In to Input

Sample-Based
Output
Dimensions

P-by-1 column Applies In to each
input column

P-by-N matrixM-by-N matrix

1-by-P row

(block treats as a
column)

Applies In to each
input column

P-by-N matrix

P-by-1 column Applies In to the
input column

P-by-1 columnM-by-1 column

1-by-P row

(block treats as a
column)

Applies In to the
input column

P-by-1 column

P-by-1 column

(block treats as a
row)

Applies In to the
input row

1-by-P row1-by-N row

1-by-P row Applies In to the
input row

1-by-P row

10-560

Interpolation

Handling Out-of-Range Interpolation Points

The valid range of the values in the interpolation vector In is from 1
to the number of samples in each channel of the input. For instance,
given a length-5 input vector D, all entries of In must range from 1 to
5. In cannot contain entries such as 7 or -9, since there is no 7th or
-9th entry in D.

The Out of range interpolation points parameter sets how the block
handles interpolation points that are not within the valid range, and
has the following settings:

• Clip — The block replaces any out-of-range values in In with the
closest value in the valid range (from 1 to the number of input
samples), and then proceeds with computations using the clipped
version of In.

• Clip and warn — In addition to Clip, the block issues a warning at
the MATLAB command line every time clipping occurs.

• Error — When the block encounters an out-of-range value in In,
the simulation stops and the block issues an error at the MATLAB
command line.

Example of Clipping

Suppose the block is set to clip out-of-range interpolation points, and
gets the following input vector and interpolation points:

• D = [11, 22, 33, 44]'

• In = [10, 2.6, -3]'

Since D has four samples, valid interpolation points range from 1 to 4.
The block clips the interpolation point 10 to 4 and the point -3 to 1,
resulting in the clipped interpolation vector Inclipped = [4, 2.6, 1]'.

10-561

Interpolation

Linear Interpolation Mode

When Interpolation Mode is set to Linear, the block interpolates
data values by assuming that the data varies linearly between samples
taken at adjacent sample times.

For instance, if the input signal D = [1, 2, 1.5, 3, 0.25]’, the following
left-hand plot shows the samples in D, and the right-hand plot shows
the linearly interpolated values between the samples in D.

As illustrated below, if the block is in linear interpolation mode and is
set to clip out-of-range interpolation points, where

• D = [1, 2, 1.5, 3, 0.25]'

• In = [-4, 2.7, 4.3, 10]'

then the block clips the invalid interpolation points, and outputs the
linearly interpolated values in a vector, [1, 1.65, 2.175, 0.25]'.

10-562

Interpolation

FIR Interpolation Mode

When Interpolation Mode is set to FIR, the block interpolates data
values using an FIR interpolation filter, specified by various block
parameters. See “FIR Interpolation Mode” on page 10-1132 in the
Variable Fractional Delay block reference for more information.

10-563

Interpolation

Dialog
Box

Source of interpolation points
Choose how you want to specify the interpolation points. If
you select Specify via dialog, the Interpolation points
parameter become available. Use this option for static
interpolation points. If you select Input port, the Pts port
appears on the block. The block uses the input to this port
as the interpolation points. Use this option for time-varying
interpolation points. For more information, see “Specifying
Static Interpolation Points” on page 10-558 and “Specifying
Time-Varying Interpolation Points” on page 10-558. Nontunable.

10-564

Interpolation

Interpolation points
The vector In of points in time at which to interpolate the input
signal. An entry of 1 in In refers to the first sample of the input,
an entry of 2.5 refers to the sample half-way between the second
and third input sample, and so on. See “How the Block Applies
Interpolation Vectors to Inputs” on page 10-558. Tunable.

Interpolation mode
Sets the block to interpolate by either linear or FIR interpolation.
For more information, see “Linear Interpolation Mode” on page
10-562 and “FIR Interpolation Mode” on page 10-563. Nontunable.

Interpolator filter half-length
Half the length of the FIR interpolation filter. For more
information, see “FIR Interpolation Mode” on page 10-563.
Nontunable.

Interpolation points per input sample
The number Q, where the FIR interpolation filter uses the nearest
2*Q points in the signal to interpolate the value at an interpolation
point. When there are less than 2*Q neighboring points, the block
uses linear interpolation in place of FIR interpolation. For more
information, see “FIR Interpolation Mode” on page 10-563. and
“Linear Interpolation Mode” on page 10-562. Nontunable.

Normalized input bandwidth (0 to 1)
The bandwidth of the input divided by Fs/2 (half the input sample
frequency). For more information, see “FIR Interpolation Mode”
on page 10-563. Nontunable.

Out of range interpolation points
When an interpolation point is out of range, this parameter sets
the block to either clip the interpolation point, clip the value
and issue a warning at the MATLAB command line, or stop the
simulation and issue an error at the MATLAB command line.
For more information, see “Handling Out-of-Range Interpolation
Points” on page 10-561. Nontunable.

10-565

Interpolation

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

Pts • Double-precision floating point

• Single-precision floating point

Out • Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-566

Inverse Short-Time FFT

Purpose Recover time-domain signals by performing an inverse short-time, fast
Fourier transform (FFT)

Library Transforms

Description The Inverse Short-Time FFT block reconstructs the time-domain signal
from the frequency-domain output of the Short-Time FFT block using a
two-step process. First, the block performs the overlap add algorithm
shown below.

Then, the block rebuffers the signal in order to reconstruct the
frame-based time-domain signal. Depending on the analysis window
used by the Short-Time FFT block, the Inverse Short-Time FFT block
might or might not achieve perfect reconstruction of the time domain
signal.

Connect your complex-valued, sample-based, single-channel or
multichannel input signal to the X(n,k) port. The block uses the
Overlap between consecutive STFFT frames (in samples)
and Samples per output frame parameters as well as the Input
is conjugate symmetric check box to reconstruct the original
time-domain signal. The real or complex-valued, frame-based,
single-channel or multichannel inverse short-time FFT is output at
port x(n).

Connect your complex-valued, sample-based or frame-based,
single-channel analysis window to the w(n) port. When you select
the Assert if analysis window does not support perfect signal
reconstruction check box, the block displays an error when the input
signal cannot be perfectly reconstructed. The block uses the values
you enter for the Analysis window length (W) and Reconstruction
error tolerance, or maximum amount of allowable error in the
reconstruction process, to determine if the signal can be perfectly
reconstructed.

10-567

Inverse Short-Time FFT

Examples The dspstsa demo illustrates how to use the Short-Time FFT and
Inverse Short-Time FFT blocks to remove the background noise from
a speech signal.

Dialog
Box

Overlap between consecutive STFFT frames (in samples)
Enter the number of samples of overlap for each frame of the
Short-Time FFT block’s input signal. This value should be the
same as the Overlap between consecutive windows (in
samples) parameter in the Short-Time FFT block parameters
dialog box.

Samples per output frame
Enter the desired frame length of the frame-based output signal.

10-568

Inverse Short-Time FFT

Input is conjugate symmetric
Select this check box when the input to the block is both floating
point and conjugate symmetric, and you want real-valued outputs.
When you select this check box when the input is not conjugate
symmetric, the output of the block is invalid. This parameter
cannot be used for fixed-point signals.

Assert if analysis window does not support perfect signal
reconstruction

Select this check box to display an error when the analysis window
used by the Short-Time FFT block does not support perfect signal
reconstruction.

Analysis window length
Enter the length of the analysis window. This parameter is
visible when you select the Assert if analysis window does not
support perfect signal reconstruction check box.

Reconstruction error tolerance
Enter the amount of acceptable error in the reconstruction of the
original signal. This parameter is visible when you select the
Assert if analysis window does not support perfect signal
reconstruction check box.

References Quatieri, Thomas E. Discrete-Time Speech Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 2001.

Supported
Data
Types

Port Supported Data Types

X(n,k) • Double-precision floating point

• Single-precision floating point

w(n) • Double-precision floating point

• Single-precision floating point

x(n) • Double-precision floating point

• Single-precision floating point

10-569

Inverse Short-Time FFT

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Burg Method Signal Processing Blockset

Magnitude FFT Signal Processing Blockset

Periodogram Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Spectrum Scope Signal Processing Blockset

Window Function Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

pwelch Signal Processing Toolbox

10-570

Kalman Adaptive Filter

Purpose Compute filter estimates for inputs using Kalman adaptive filter
algorithm

Library Filtering / Adaptive Filters

Description The Kalman Adaptive Filter block computes the optimal linear
minimum mean-square estimate (MMSE) of the FIR filter coefficients
using a one-step predictor algorithm. This Kalman filter algorithm is
based on the following physical realization of a dynamic system.

The Kalman filter assumes that there are no deterministic changes to
the filter taps over time (that is, the transition matrix is identity), and
that the only observable output from the system is the filter output
with additive noise. The corresponding Kalman filter is expressed in
matrix form as

The variables are as follows

10-571

Kalman Adaptive Filter

Variable Description

n The current algorithm iteration

u(n) The buffered input samples at step n

K(n) The correlation matrix of the state estimation error

g(n) The vector of Kalman gains at step n

The vector of filter-tap estimates at step n

y(n) The filtered output at step n

e(n) The estimation error at step n

d(n) The desired response at step n

QM The correlation matrix of the measurement noise

QP The correlation matrix of the process noise

The correlation matrices, QM and QP, are specified in the parameter
dialog box by scalar variance terms to be placed along the matrix
diagonals, thus ensuring that these matrices are symmetric. The filter
algorithm based on this constraint is also known as the random-walk
Kalman filter.

The implementation of the algorithm in the block is optimized by
exploiting the symmetry of the input covariance matrix K(n). This
decreases the total number of computations by a factor of two.

The block icon has port labels corresponding to the inputs and outputs
of the Kalman algorithm. Note that inputs to the In and Err ports must
be sample-based scalars with the same complexity. The signal at the
Out port is a scalar, while the signal at the Taps port is a sample-based
vector.

10-572

Kalman Adaptive Filter

Block
Ports Corresponding Variables

In u, the scalar input, which is internally buffered into
the vector u(n)

Out y(n), the filtered scalar output

Err e(n), the scalar estimation error

Taps , the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt
port check box in the dialog box. When this port is enabled, the block
continuously adapts the filter coefficients while the Adapt input is
nonzero. A zero-valued input to the Adapt port causes the block to stop
adapting, and to hold the filter coefficients at their current values until
the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that
the Kalman algorithm estimates. The Measurement noise variance
and the Process noise variance parameters specify the correlation
matrices of the measurement and process noise, respectively. The
Measurement noise variance must be a scalar, while the Process
noise variance can be a vector of values to be placed along the
diagonal, or a scalar to be repeated for the diagonal elements.

The Initial value of filter taps specifies the initial value as a
vector, or as a scalar to be repeated for all vector elements. The Initial
error correlation matrix specifies the initial value K(0), and can be a
diagonal matrix, a vector of values to be placed along the diagonal, or a
scalar to be repeated for the diagonal elements.

10-573

Kalman Adaptive Filter

Dialog
Box

FIR filter length
The length of the FIR filter.

Measurement noise variance
The value to appear along the diagonal of the measurement noise
correlation matrix. Tunable.

Process noise variance
The value to appear along the diagonal of the process noise
correlation matrix. Tunable.

Initial value of filter taps
The initial FIR filter coefficients.

10-574

Kalman Adaptive Filter

Initial error correlation matrix
The initial value of the error correlation matrix.

Adapt port
Enables the Adapt port.

References Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

LMS Adaptive Filter Signal Processing Blockset

RLS Adaptive Filter Signal Processing Blockset

See “Adaptive Filters” on page 3-53 for related information.

10-575

LDL Factorization

Purpose Factor square Hermitian positive definite matrices into lower, upper,
and diagonal components

Library Math Functions / Matrices and Linear Algebra / Matrix Factorizations

Description The LDL Factorization block uniquely factors the square Hermitian
positive definite input matrix S as

where L is a lower triangular square matrix with unity diagonal
elements, D is a diagonal matrix, and L* is the Hermitian (complex
conjugate) transpose of L. Only the diagonal and lower triangle of the
input matrix are used, and any imaginary component of the diagonal
entries is disregarded.

The block’s output is a composite matrix with lower triangle elements
lij from L, diagonal elements dij from D, and upper triangle elements
uij from L*. It is always sample based. The output format is shown
below for a 5-by-5 matrix.

LDL factorization requires half the computation of Gaussian elimination
(LU decomposition), and is always stable. It is more efficient that
Cholesky factorization because it avoids computing the square roots
of the diagonal elements.

The algorithm requires that the input be square and Hermitian positive
definite. When the input is not positive definite, the block reacts with
the behavior specified by the Non-positive definite input parameter.

10-576

LDL Factorization

The following options are available:

• Ignore — Proceed with the computation and do not issue an alert.
The output is not a valid factorization. A partial factorization will be
present in the upper left corner of the output.

• Warning — Display a warning message in the MATLAB Command
Window, and continue the simulation. The output is not a valid
factorization. A partial factorization will be present in the upper
left corner of the output.

• Error — Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic
parameter. Like all diagnostic parameters on the Configuration
Parameters dialog box, it is set to Ignore in the Real-Time Workshop
code generated for this block.

Examples LDL decomposition of a 3-by-3 Hermitian positive definite matrix:

10-577

LDL Factorization

Dialog
Box

Non-positive definite input
Response to nonpositive definite matrix inputs.

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Factorization Signal Processing Blockset

LDL Inverse Signal Processing Blockset

LDL Solver Signal Processing Blockset

LU Factorization Signal Processing Blockset

QR Factorization Signal Processing Blockset

See “Factoring Matrices” on page 6-9 for related information.

10-578

LDL Inverse

Purpose Compute inverse of Hermitian positive definite matrix using LDL
factorization

Library Math Functions / Matrices and Linear Algebra / Matrix Inverses

Description The LDL Inverse block computes the inverse of the Hermitian positive
definite input matrix S by performing an LDL factorization.

L is a lower triangular square matrix with unity diagonal elements,
D is a diagonal matrix, and L* is the Hermitian (complex conjugate)
transpose of L. Only the diagonal and lower triangle of the input matrix
are used, and any imaginary component of the diagonal entries is
disregarded. The output is always sample based.

LDL factorization requires half the computation of Gaussian elimination
(LU decomposition), and is always stable. It is more efficient than
Cholesky factorization because it avoids computing the square roots
of the diagonal elements.

The algorithm requires that the input be Hermitian positive definite.
When the input is not positive definite, the block reacts with the
behavior specified by the Non-positive definite input parameter.
The following options are available:

• Ignore — Proceed with the computation and do not issue an alert.
The output is not a valid inverse.

• Warning — Display a warning message in the MATLAB command
window, and continue the simulation. The output is not a valid
inverse.

• Error — Display an error dialog box and terminate the simulation.

10-579

LDL Inverse

Note The Non-positive definite input parameter is a diagnostic
parameter. Like all diagnostic parameters on the Configuration
Parameters dialog box, it is set to Ignore in the Real-Time Workshop
code generated for this block.

Dialog
Box

Non-positive definite input
Response to nonpositive definite matrix inputs.

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Inverse Signal Processing Blockset

LDL Factorization Signal Processing Blockset

LDL Solver Signal Processing Blockset

10-580

LDL Inverse

LU Inverse Signal Processing Blockset

Pseudoinverse Signal Processing Blockset

inv MATLAB

See “Inverting Matrices” on page 6-10 for related information.

10-581

LDL Solver

Purpose Solve SX=B for X when S is square Hermitian positive definite matrix

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The LDL Solver block solves the linear system SX=B by applying LDL
factorization to the matrix at the S port, which must be square (M-by-M)
and Hermitian positive definite. Only the diagonal and lower triangle
of the matrix are used, and any imaginary component of the diagonal
entries is disregarded. The input to the B port is the right side M-by-N
matrix, B. The output is the unique solution of the equations, M-by-N
matrix X, and is always sample based.

A length-M 1-D vector input for right side B is treated as an M-by-1
matrix.

When the input is not positive definite, the block reacts with the
behavior specified by the Non-positive definite input parameter.
The following options are available:

• Ignore — Proceed with the computation and do not issue an alert.
The output is not a valid solution.

• Warning — Proceed with the computation and display a warning
message in the MATLAB Command Window. The output is not a
valid solution.

• Error — Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic
parameter. Like all diagnostic parameters on the Configuration
Parameters dialog box, it is set to Ignore in the Real-Time Workshop
code generated for this block.

Algorithm The LDL algorithm uniquely factors the Hermitian positive definite
input matrix S as

10-582

LDL Solver

where L is a lower triangular square matrix with unity diagonal
elements, D is a diagonal matrix, and L* is the Hermitian (complex
conjugate) transpose of L.

The equation

is solved for X by the following steps:

1 Substitute

2 Substitute

3 Solve one diagonal and two triangular systems.

Dialog
Box

10-583

LDL Solver

Non-positive definite input
Response to nonpositive definite matrix inputs.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Solver Signal Processing Blockset

LDL Factorization Signal Processing Blockset

LDL Inverse Signal Processing Blockset

Levinson-Durbin Signal Processing Blockset

LU Solver Signal Processing Blockset

QR Solver Signal Processing Blockset

See “Solving Linear Systems” on page 6-7 for related information.

10-584

Least Squares FIR Filter Design

Purpose Design and implement a least-squares FIR filter.

Library dspobslib

Description

Note The Least Squares FIR Filter Design block is still supported but
is likely to be obsoleted in a future release. We strongly recommend
replacing this block with the Digital Filter block.

The Least Squares FIR Filter Design block designs an FIR filter and
applies it to a discrete-time input using the Direct Form II Transpose
Filter block. The filter design uses the firls function in the Signal
Processing Toolbox to minimize the integral of the squared error
between the desired frequency response and the actual frequency
response.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The Filter type parameter allows you to specify one of the following
filters:

• Multiband — The Multiband filter designs a linear-phase filter with
an arbitrary magnitude response.

• Differentiator — The Differentiator filter approximates the
ideal differentiator. Differentiators are antisymmetric FIR filters
with approximately linear magnitude responses. To obtain the

10-585

Least Squares FIR Filter Design

correct derivative, scale the Gains at these frequencies vector by π
Fs rad/s, where Fs is the sample frequency in Hertz.

• Hilbert Transformer — The Hilbert Transformer filter
approximates the ideal Hilbert transformer. Hilbert transformers are
antisymmetric FIR filters with approximately constant magnitude.

The Band-edge frequency vector parameter is a vector of frequency
points in the range 0 to 1, where 1 corresponds to half the sample
frequency. This vector must have even length, and intermediate points
must appear in ascending order. The Gains at these frequencies
parameter is a vector containing the desired magnitude response at the
corresponding points in the Band-edge frequency vector.

Each odd-indexed frequency-amplitude pair defines the left endpoint
of a line segment representing the desired magnitude response in that
frequency band. The corresponding even-indexed frequency-amplitude
pair defines the right endpoint. Between the frequency bands specified
by these end-points, there may be undefined sections of the specified
frequency response. These are called "don’t care" or "transition"
regions, and the magnitude response in these areas is a result of the
optimization in the other (specified) frequency ranges.

10-586

Least Squares FIR Filter Design

The Weights parameter is a vector that specifies the emphasis to be
placed on minimizing the error in certain frequency bands relative
to others. This vector specifies one weight per band, so it is half the
length of the Band-edge frequency vector and Gains at these
frequencies vectors.

In most cases, differentiators and Hilbert transformers have only a
single band, so the weight is a scalar value that does not affect the
final filter. However, the Weights parameter is useful when using the
block to design an antisymmetric multiband filter, such as a Hilbert
transformer with stopbands.

For more information on the Band-edge frequency vector, Gains
at these frequencies, and Weights parameters, see “Filter Designs
and Implementation” in the Signal Processing Toolbox documentation.
For more on the FIR filter algorithm, see the description of the firls
function in the Signal Processing Toolbox documentation.

10-587

Least Squares FIR Filter Design

Examples Example 1: Multiband

Consider a lowpass filter with a transition band in the normalized
frequency range 0.4 to 0.5, and 10 times more error minimization in the
stopband than the passband. In this case,

• Filter type = Multiband

• Band-edge frequency vector = [0 0.4 0.5 1]

• Gains at these frequencies = [1 1 0 0]

• Weights = [1 10]

Example 2: Differentiator

Assume the specifications for a differentiator filter require it to have
order 21. The "ramp" response extends over the entire frequency range.
In this case, specify:

• Filter type = Differentiator

• Filter order = 21

• Band-edge frequency vector = [0 1]

• Gains at these frequencies = [0 pi*Fs]

For a type III (even order) filter, the differentiation band should stop
short of half the sample frequency. For example, if the filter order is 20,
you could specify the block parameters as follows:

• Filter type = Differentiator

• Filter order = 20

• Band-edge frequency vector = [0 0.9]

• Gains at these frequencies = [0 0.9*pi*Fs]

10-588

Least Squares FIR Filter Design

Example 3: Hilbert Transformer

Assume the specifications for a Hilbert transformer filter require it to
have order 21. The passband extends over approximately the entire
frequency range. In this case, specify:

• Filter type = Hilbert Transform

• Filter order = 21

• Band-edge frequency vector = [0.1 1]

• Gains at these frequencies = [1 1]

Dialog
Box

Filter type
The filter type. Tunable.

Filter order
The filter order.

10-589

Least Squares FIR Filter Design

Band-edge frequency vector
A vector of frequency points, in ascending order, in the range 0
to 1. The value 1 corresponds to half the sample frequency. This
vector must have even length. Tunable.

Gains at these frequencies
A vector of frequency-response amplitudes corresponding to the
points in the Band-edge frequency vector. This vector must be
the same length as the Band-edge frequency vector. Tunable.

Weights
A vector containing one weight for each frequency band. This
vector must be half the length of the Band-edge frequency
vector and Gains at these frequencies vectors. Tunable.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-590

Least Squares Polynomial Fit

Purpose Compute polynomial coefficients that best fit input data in least squares
sense

Library Math Functions / Polynomial Functions

Description The Least Squares Polynomial Fit block computes the coefficients of the
nth order polynomial that best fits the input data in the least squares
sense, where you specify n in the Polynomial order parameter. A
distinct set of n+1 coefficients is computed for each column of the
M-by-N input, u.

For a given input column, the block computes the set of coefficients, c1,
c2, ..., cn+1, that minimizes the quantity

where ui is the ith element in the input column, and

The values of the independent variable, x1, x2, ..., xM, are specified as
a length-M vector by the Control points parameter. The same M
control points are used for all N polynomial fits, and can be equally or
unequally spaced. The equivalent MATLAB code is shown below.

c = polyfit(x,u,n) % Equivalent MATLAB code

Inputs can be frame based or sample based. For convenience, a
length-M 1-D vector input is treated as an M-by-1 matrix.

Each column of the (n+1)-by-N output matrix, c, represents a set of n+1
coefficients describing the best-fit polynomial for the corresponding
column of the input. The coefficients in each column are arranged in
order of descending exponents, c1, c2, ..., cn+1. The output is always
sample based.

10-591

Least Squares Polynomial Fit

Examples In the model below, the Polynomial Evaluation block uses the
second-order polynomial

to generate four values of dependent variable y from four values of
independent variable u, received at the top port. The polynomial
coefficients are supplied in the vector [-2 0 3] at the bottom port. Note
that the coefficient of the first-order term is zero.

The Control points parameter of the Least Squares Polynomial Fit
block is configured with the same four values of independent variable u
that are used as input to the Polynomial Evaluation block, [1 2 3 4].
The Least Squares Polynomial Fit block uses these values together with
the input values of dependent variable y to reconstruct the original
polynomial coefficients.

Dialog
Box

10-592

Least Squares Polynomial Fit

Control points
The values of the independent variable to which the data in each
input column correspond. For an M-by-N input, this parameter
must be a length-M vector. Tunable.

Polynomial order
The order, n, of the polynomial to be used in constructing the best
fit. The number of coefficients is n+1. Nontunable.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Detrend Signal Processing Blockset

Polynomial Evaluation Signal Processing Blockset

Polynomial Stability Test Signal Processing Blockset

polyfit MATLAB

10-593

Levinson-Durbin

Purpose Solve linear system of equations using Levinson-Durbin recursion

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The Levinson-Durbin block solves the nth-order system of linear
equations

for the particular case where R is a Hermitian, positive-definite,
Toeplitz matrix and b is identical to the first column of R shifted by one
element and with the opposite sign.

The input to the block, r = [r(1) r(2) ... r(n+1)], can be a 1-D
or 2-D vector (row or column). It contains lags 0 through n of an
autocorrelation sequence, which appear in the matrix R.

The block can output the polynomial coefficients, A, the reflection
coefficients, K, and the prediction error power, P, in various
combinations. The Output(s) parameter allows you to enable the A and
K outputs by selecting one of the following settings:

• A — Port A outputs A=[1 a(2) a(3) ... a(n+1)], the solution
to the Levinson-Durbin equation. A has the same dimension as
the input. The elements of the output can also be viewed as the
coefficients of an nth-order autoregressive (AR) process (see below).

• K — Port K outputs K=[k(1) k(2) ... k(n)], which contains n
reflection coefficients, and has the same dimension as the input, less
one element. (A scalar input causes an error when you select K.)
Reflection coefficients are useful for realizing a lattice representation
of the AR process described below.

10-594

Levinson-Durbin

• A and K — The block outputs both representations at their respective
ports. (A scalar input causes an error when you select A and K.)

Both A and K are always 1-D vectors.

The prediction error power, P, (a scalar), is output when you select
the Output prediction error power (P) check box. P represents
the power of the output of an FIR filter with taps A and input
autocorrelation described by r, where A represents a prediction error
filter and r is the input to the block. (In this case, A is a whitening filter.)

When you select the If the value of lag 0 is zero, A=[1 zeros],
K=[zeros], P=0 check box (default), an input whose r(1) element
is zero generates a zero-valued output. When you do not select this
check box, an input with r(1) = 0 generates NaNs in the output. In
general, an input with r(1) = 0 is invalid because it does not construct a
positive-definite matrix R; however, it is common for blocks to receive
zero-valued inputs at the start of a simulation. The check box allows
you to avoid propagating NaNs during this period.

Applications

One application of the Levinson-Durbin formulation above is in the
Yule-Walker AR problem, which concerns modeling an unknown system
as an autoregressive process. Such a process would be modeled as the
output of an all-pole IIR filter with white Gaussian noise input. In the
Yule-Walker problem, the use of the signal’s autocorrelation sequence to
obtain an optimal estimate leads to an Ra = b equation of the type shown
above, which is most efficiently solved by Levinson-Durbin recursion.
In this case, the input to the block represents the autocorrelation
sequence, with r(1) being the zero-lag value. The output at the block’s
A port then contains the coefficients of the autoregressive process that
optimally models the system. The coefficients are ordered in descending
powers of z, and the AR process is minimum phase. The prediction
error, G, defines the gain for the unknown system, where .

10-595

Levinson-Durbin

The output at the block’s K port contains the corresponding reflection
coefficients, [k(1) k(2) ... k(n)], for the lattice realization of
this IIR filter. The Yule-Walker AR Estimator block implements this
autocorrelation-based method for AR model estimation, while the
Yule-Walker Method block extends the method to spectral estimation.

Another common application of the Levinson-Durbin algorithm is in
linear predictive coding, which is concerned with finding the coefficients
of a moving average (MA) process (or FIR filter) that predicts the next
value of a signal from the current signal sample and a finite number of
past samples. In this case, the input to the block represents the signal’s
autocorrelation sequence, with r(1) being the zero-lag value, and the
output at the block’s A port contains the coefficients of the predictive
MA process (in descending powers of z).

These coefficients solve the optimization problem below.

Again, the output at the block’s K port contains the corresponding
reflection coefficients, [k(1) k(2) ... k(n)], for the lattice
realization of this FIR filter. The Autocorrelation LPC block in the
Linear Prediction library implements this autocorrelation-based
prediction method.

Fixed-Point Data Types

The diagrams in this section show the data types used within the
Levinson-Durbin block for fixed-point signals.

After initialization, n updates are performed. At the (j+1) update,

10-596

Levinson-Durbin

The diagram below displays the fixed-point data types used in this
calculation:

The reflection coefficients K are then updated according to

The prediction error power P is then updated according to

The diagram below displays the fixed-point data types used in this
calculation:

10-597

Levinson-Durbin

The polynomial coefficients A are then updated according to

The diagram below displays the fixed-point data types used in this
calculation:

Algorithm The algorithm requires O(n2) operations, and is thus much more
efficient for large n than standard Gaussian elimination, which requires
O(n3) operations.

10-598

Levinson-Durbin

Dialog
Box

The Main pane of the Levinson-Durbin block dialog appears as follows:

Output(s)
Specify the solution representation of Ra = b to output: model
coefficients (A), reflection coefficients (K), or both (A and K). For
scalar inputs, this parameter must be set to A.

Output prediction error power (P)
Select to output the prediction error at port P.

If the value of lag 0 is zero, A=[1 zeros], K=[zeros], P=0
Set to output a zero-vector for inputs having r(1) = 0. Otherwise,
the block outputs NaNs for these inputs.

10-599

Levinson-Durbin

The Fixed-point pane of the Levinson-Durbin block dialog appears
as follows:

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

A
Use this parameter to designate how you would like to specify
the word and fraction lengths of the polynomial coefficients (A).
Refer to “Fixed-Point Data Types” on page 10-596 for illustrations
depicting the use of the polynomial coefficients data type in this
block.

• When you select Binary point scaling, you are able to enter
the word length and fraction length of A, in bits.

10-600

Levinson-Durbin

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of A. This block
requires power-of-two slope and a bias of zero.

K
Use this parameter to designate how you would like to specify
the word and fraction lengths of the reflection coefficients (K).
Refer to “Fixed-Point Data Types” on page 10-596 for illustrations
depicting the use of the reflection coefficients data type in this
block.

• When you select Binary point scaling, you are able to enter
the word length and fraction length of K, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of K. This block
requires power-of-two slope and a bias of zero.

P
Use this parameter to designate how you would like to specify
the word and fraction lengths of the prediction error power (P).
Refer to “Fixed-Point Data Types” on page 10-596 for illustrations
depicting the use of the prediction error power data type in this
block.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and fraction length of P, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of P. This block
requires power-of-two slope and a bias of zero.

Product output
Use this parameter to designate how you would like to specify the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-596 for illustrations depicting the use of
the product output data type in this block.

10-601

Levinson-Durbin

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to designate how you would like to specify the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-596 for illustrations depicting the use of
the accumulator data type in this block.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

References Golub, G. H., and C. F. Van Loan. Sect. 4.7 in Matrix Computations.
3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Ljung, L. System Identification: Theory for the User. Englewood Cliffs,
NJ: Prentice Hall, 1987. Pgs. 278-280.

Kay, Steven M., Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice Hall, 1988.

10-602

Levinson-Durbin

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Solver Signal Processing Blockset

LDL Solver Signal Processing Blockset

Autocorrelation LPC Signal Processing Blockset

LU Solver Signal Processing Blockset

QR Solver Signal Processing Blockset

Yule-Walker AR Estimator Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

levinson Signal Processing Toolbox

See “Solving Linear Systems” on page 6-7 for related information.

10-603

LMS Adaptive Filter

Purpose Compute filter estimates for an input using the LMS adaptive filter
algorithm

Library Filtering / Adaptive Filters

Description
Note The LMS Adaptive Filter block is still supported but is likely to
be obsoleted in a future release. We recommend replacing this block
with the LMS Filter block.

The LMS Adaptive Filter block implements an adaptive FIR filter
using the stochastic gradient algorithm known as the normalized least
mean-square (LMS) algorithm.

The variables are as follows.

Variable Description

n The current algorithm iteration

u(n) The buffered input samples at step n

The vector of filter-tap estimates at step n

y(n) The filtered output at step n

e(n) The estimation error at step n

d(n) The desired response at step n

µ The adaptation step size

10-604

LMS Adaptive Filter

To overcome potential numerical instability in the tap-weight update, a
small positive constant (a = 1e-10) has been added in the denominator.

To turn off normalization, clear the Use normalization check box
in the parameter dialog box. The block then computes the filter-tap
estimate as

The block icon has port labels corresponding to the inputs and outputs
of the LMS algorithm. Note that inputs to the In and Err ports must be
sample-based scalars. The signal at the Out port is a scalar, while the
signal at the Taps port is a sample-based vector.

Block Ports Corresponding Variables

In u, the scalar input, which is internally buffered
into the vector u(n)

Out y(n), the filtered scalar output

Err e(n), the scalar estimation error

Taps , the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt
input check box in the dialog box. When this port is enabled, the block
continuously adapts the filter coefficients while the Adapt input is
nonzero. A zero-valued input to the Adapt port causes the block to stop
adapting, and to hold the filter coefficients at their current values until
the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that
the LMS algorithm estimates. The Step size parameter corresponds
to µ in the equations. Typically, for convergence in the mean square,
µ must be greater than 0 and less than 2. The Initial value of filter
taps specifies the initial value as a vector, or as a scalar to be
repeated for all vector elements. The Leakage factor specifies the

10-605

LMS Adaptive Filter

value of the leakage factor, , in the leaky LMS algorithm below.
This parameter must be between 0 and 1.

Examples See the lmsadeq, lmsadlp, and lmsadtde demos.

Dialog
Box

FIR filter length
The length of the FIR filter.

Step-size
The step-size, usually in the range (0, 2). Tunable.

Initial value of filter taps
The initial FIR filter coefficients.

10-606

LMS Adaptive Filter

Leakage factor
The leakage factor, in the range [0, 1]. Tunable.

Use normalization
Select this check box to compute the filter-tap estimate using the
normalized equations.

Adapt input
Enables the Adapt port when selected.

References Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Kalman Adaptive Filter Signal Processing Blockset

RLS Adaptive Filter Signal Processing Blockset

See “Adaptive Filters” on page 3-53 for related information.

10-607

LMS Filter

Purpose Compute filtered output, filter error, and filter weights for a given input
and desired signal using LMS adaptive filter algorithm

Library Filtering / Adaptive Filters

Description The LMS Filter block can implement an adaptive FIR filter using
five different algorithms. The block estimates the filter weights, or
coefficients, needed to minimize the error, e(n), between the output
signal, y(n), and the desired signal, d(n). Connect the signal you want to
filter to the Input port. This input signal can be a sample-based scalar
or a single-channel frame-based signal. Connect the desired signal to
the Desired port. The desired signal must have the same data type,
frame status, complexity, and dimensions as the input signal. The
Output port outputs the filtered input signal, which is the estimate
of the desired signal. The output of the Output port has the same
frame status as the input signal. The Error port outputs the result of
subtracting the output signal from the desired signal.

When you select LMS for the Algorithm parameter, the block calculates
the filter weights using the least mean-square (LMS) algorithm. This
algorithm is defined by the following equations.

The weight update function, for the LMS adaptive filter algorithm,
is defined as

The variables are as follows.

Variable Description

n The current time index

u(n) The vector of buffered input samples at step n

10-608

LMS Filter

Variable Description

u*(n) The complex conjugate of the vector of buffered
input samples at step n

w(n) The vector of filter weight estimates at step n

y(n) The filtered output at step n

e(n) The estimation error at step n

d(n) The desired response at step n

µ The adaptation step size

When you select Normalized LMS for the Algorithm parameter, the
block calculates the filter weights using the normalized LMS algorithm.
The weight update function, for the normalized LMS algorithm, is
defined as

To overcome potential numerical instability in the update of the
weights, a small positive constant, epsilon, has been added in the
denominator. For double-precision floating point input, epsilon is
2.2204460492503131e-016. For single-precision floating point input,
epsilon is 1.192092896e-07.

When you select Sign-Error LMS for the Algorithm parameter, the
block calculates the filter weights using the LMS algorithm equations.
However, each time the block updates the weights, it replaces the error
term, , with +1 when the error term is positive or -1 when the error
term is negative.

When you select Sign-Data LMS for the Algorithm parameter, the
block calculates the filter weights using the LMS algorithm equations.
However, each time the block updates the weights, it replaces each
sample of the input vector, , with +1 when the input sample is
positive or -1 is the input sample is negative.

10-609

LMS Filter

When you select Sign-Sign LMS for the Algorithm parameter, the
block calculates the filter weights using the LMS algorithm equations.
However, each time the block updates the weights, it replaces the error
term, , with +1 when the error term is positive or -1 is the error
term is negative. It also replaces each sample of the input vector, ,
with +1 when the input sample is positive or -1 is the input sample
is negative.

Use the Filter length parameter to specify the length of the filter
weights vector.

The Step size (mu) parameter corresponds to µ in the equations. For
convergence of the normalized LMS equations, 0<µ<2. You can either
specify a step size using the input port, Step-size, or by entering a value
in the Block Parameters: LMS Filter dialog box.

Use the Leakage factor (0 to 1) parameter to specify the leakage
factor, , where , in the leaky LMS algorithm shown
below.

When you select LMS from the Algorithm list, the weight update
function in the above equation is the LMS weight update function.
When you select Normalized LMS from the Algorithm list, the weight
update function in the above equation is the normalized LMS weight
update function.

Enter the initial filter weights, w(0), as a vector or a scalar in the
Initial value of filter weights text box. When you enter a scalar, the
block uses the scalar value to create a vector of filter weights. This
vector has length equal to the filter length and all of its values are equal
to the scalar value.

When you select the Adapt port check box, an Adapt port appears on
the block. When the input to this port is greater than zero, the block
continuously updates the filter weights. When the input to this port is
less than or equal to zero, the filter weights remain at their current
values.

10-610

LMS Filter

When you want to reset the value of the filter weights to their initial
values, use the Reset port parameter. The block resets the filter
weights whenever a reset event is detected at the Reset port. The reset
signal rate must be the same rate as the data signal input.

From the Reset port list, select None to disable the Reset port. To
enable the Reset port, select one of the following from the Reset port
list:

• Rising edge — Triggers a reset operation when the Reset input
does one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

• Falling edge — Triggers a reset operation when the Reset input
does one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

10-611

LMS Filter

• Either edge — Triggers a reset operation when the Reset input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Reset input is not zero

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Select the Output filter weights check box to create a Wts port on the
block. For each iteration, the block outputs the current updated filter
weights from this port.

Fixed-Point Data Types

The following diagrams show the data types used within the LMS Filter
block for fixed-point signals; the table summarizes the definitions of
variables used in the diagrams:

10-612

LMS Filter

Variable Definition

X (u in the LMS Filter
equations)

Input vector

W Vector of filter weights

mu Step size

e Error

Q Quotient,

Product X’X Product data type in Energy calculation
diagram

Accumulator X’X Accumulator data type in Energy
calculation diagram

Product W’X Product data type in Convolution
diagram

Accumulator W’X Accumulator data type in Convolution
diagram

Product mu*e Product data type in Product of step size
and error diagram

Product Q*X Product and accumulator data type in
Weight update diagram. a

a. The accumulator data type for this quantity is automatically set
to be the same as the product data type. The minimum, maximum,
and overflow information for this accumulator is logged as part of the
product information. Autoscaling treats this product and accumulator
as one data type.

10-613

LMS Filter

10-614

LMS Filter

You can set the data type of the parameters, weights, products, quotient,
and accumulators in the block mask.

Fixed-point inputs, outputs, and mask parameters of this block must
have the following characteristics:

• The input signal and the desired signal must have the same word
length, but their fraction lengths can differ.

• The step size and leakage factor must have the same word length,
but their fraction lengths can differ.

• The output signal and the error signal have the same word length
and the same fraction length as the desired signal.

• The quotient and the product output of the X’X, W’X, mu*e, and
Q*X operations must have the same word length, but their fraction
lengths can differ.

10-615

LMS Filter

• The accumulator data type of the X’X and W’X operations must have
the same word length, but their fraction lengths can differ.

The output of the multiplier is in the product output data type if at
least one of the inputs to the multiplier is real. If both of the inputs
to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” on page 8-16.

Dialog
Box

The Main pane of the LMS Filter block dialog appears as follows:

10-616

LMS Filter

Algorithm
Choose the algorithm used to calculate the filter weights.

Filter length
Enter the length of the FIR filter weights vector.

Specify step size via
Select Dialog to enter a value for step size in the Block
parameters: LMS Filter dialog box. Select Input port to specify
step size using the Step-size input port.

Step size (mu)
Enter the step size. Tunable.

Leakage factor (0 to 1)

Enter the leakage factor, 0 1 1< − ≤µα . Tunable.

Initial value of filter weights
Specify the initial values of the FIR filter weights.

Adapt port
Select this check box to enable the Adapt input port.

Reset port
Select this check box to enable the Reset input port.

Output filter weights
Select this check box to export the filter weights from the Wts port.

The Fixed-point pane of the LMS Filter block dialog appears as follows:

10-617

LMS Filter

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Parameters
This parameter is visible if, for the Specify step size via
parameter, you choose Dialog. Choose how you will specify the
word length and the fraction length of the leakage factor and step
size:

10-618

LMS Filter

• When you select Same word length as first input, the
word length of the leakage factor and step size will match
that of the first input to the block. In this mode, the fraction
length of the leakage factor and step size is automatically set
to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
coefficients.

• When you select Specify word length, you are able to enter
the word length of the leakage factor and step size, in bits. In
this mode, the fraction length of the leakage factor and step
size is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value
and word length of the coefficients.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the leakage factor
and step size, in bits. The leakage factor and the step size must
have the same word length, but the fraction lengths can differ.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the leakage
factor and step size. The leakage factor and the step size must
have the same word length, but the slopes can differ. This block
requires a power-of-two slope and a bias of zero.

If, for the Specify step size via parameter, you choose Input
port, the word length of the leakage factor is the same as the word
length of the step size input at the Step size port. The fraction
length of the leakage factor is automatically set to the best
precision possible based on the word length of the leakage factor.

Weights
Choose how you will specify the word length and fraction length of
the filter weights of the block:

• When you select Same as first input, the word length and
fraction length of the filter weights will match those of the first
input to the block.

10-619

LMS Filter

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the filter weights,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the filter weights.
This block requires a power-of-two slope and a bias of zero.

Products & quotient
Choose how you will specify the word length and fraction length of
X’X, W’X, mu*e, Q*X, and the quotient, Q. Here, X is the input
vector, which is u in the LMS filter equations. W is the vector
of filter weights, mu is the step size, e is the error, and Q is the
quotient, which is defined as

• When you select Same as first input, the word length and
fraction length of these quantities will match those of the first
input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of these quantities, in
bits. The word length of the quantities must be the same, but
the fraction lengths can differ.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of these quantities.
The word length of the quantities must be the same, but the
slopes can differ. This block requires a power-of-two slope and
a bias of zero.

Accumulators
Use this parameter to specify how you would like to designate
the word and fraction lengths of the accumulators for the X’X
and W’X operations.

10-620

LMS Filter

Note This parameter is not used to designate the word and
fraction lengths of the accumulator for the Q*X operation. The
accumulator data type for this quantity is automatically set to be
the same as the product data type. The minimum, maximum,
and overflow information for this accumulator is logged as part
of the product information. Autoscaling treats this product and
accumulator as one data type.

Refer to “Fixed-Point Data Types” on page 10-612 and
“Multiplication Data Types” on page 8-16 for illustrations
depicting the use of the accumulator data type in this block:

• When you select Same as first input, these characteristics
will match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulators,
in bits. The word length of both the accumulators must be the
same, but the fraction lengths can differ.

• When you select Slope and bias scaling, you are able
to enter the word length, in bits, and the slope of the
accumulators. The word length of both the accumulators must
be the same, but the slopes can differ. This block requires a
power-of-two slope and a bias of zero.

References Hayes, M.H. Statistical Digital Signal Processing and Modeling. New
York: John Wiley & Sons, 1996.

10-621

LMS Filter

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point

Desired • Double-precision floating point

• Single-precision floating point

• Fixed point

Step-size • Double-precision floating point

• Single-precision floating point

• Fixed point

Adapt • Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Reset • Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point

10-622

LMS Filter

Port Supported Data Types

Error • Double-precision floating point

• Single-precision floating point

• Fixed point

Wts • Double-precision floating point

• Single-precision floating point

• Fixed point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Kalman Adaptive Filter Signal Processing Blockset

RLS Filter Signal Processing Blockset

Block LMS Filter Signal Processing Blockset

Fast Block LMS Filter Signal Processing Blockset

See “Adaptive Filters” on page 3-53 for related information.

10-623

LPC to LSF/LSP Conversion

Purpose Convert linear prediction coefficients (LPCs) to line spectral pairs
(LSPs) or line spectral frequencies (LSFs)

Library Estimation / Linear Prediction

Description The LPC to LSF/LSP Conversion block takes a vector of linear
prediction coefficients (LPCs) and converts it to a vector of line spectral
pairs (LSPs) or line spectral frequencies (LSFs). When converting LPCs
to LSFs, the block outputs match those of the poly2lsf function.

The input LPCs, 1 1 2, , , ...a a am , must be the denominator of the
transfer function of a stable all-pole filter with the form given in the
first equation of “Requirements for Valid Outputs” on page 10-624. A
length-M+1 input yields a length-M output. Inputs can be sample- or
frame-based vectors, but outputs are always sample-based vectors.

See other sections of this reference page to learn about how to ensure
that you get valid outputs, how to detect invalid outputs, how the block
computes the LSF/LSP values, and more.

Requirements for Valid Outputs

To get valid outputs, your inputs and the Root finding coarse grid
points parameter value must meet these requirements:

• The input LPCs, 1 1 2, , , ...a a am , must come from the
denominator of the following transfer function, H(z), of a stable
all-pole filter (all roots of H(z) must be inside the unit circle). Note
that the first term in H(z)’s denominator must be 1. When the input
LPCs do not come from a transfer function of the following form, the
block outputs are invalid.

• The Root finding coarse grid points parameter value must be
large enough so that the block can find all the LSP or LSF values.

10-624

LPC to LSF/LSP Conversion

(The output LSFs and LSPs are roots of polynomials related to the
input LPC polynomial; the block looks for these roots to produce
the output. For details, see “LSF and LSP Computation Method:
Chebyshev Polynomial Method for Root Finding” on page 10-634.)
When you do not set Root finding coarse grid points to a high
enough value relative to the number of LPCs, the block might not find
all the LSPs or LSFs and yield invalid outputs as described in “Root
Finding Method Limitations: Failure to Find Roots” on page 10-636.

To learn about recognizing invalid inputs and outputs and parameters
for dealing with them, see “Handling and Recognizing Invalid Inputs
and Outputs” on page 10-628.

Setting Outputs to LSFs or LSPs

Set the Output parameter to one of the following settings to determine
whether the block outputs LSFs or LSPs:

• LSF in radians (0 pi) — Block outputs the LSF values between
0 and radians in increasing order. The block does not output the
guaranteed LSF values, 0 and .

• LSF normalized in range (0 0.5) — Block outputs normalized
LSF values in increasing order, computed by dividing the LSF values
between 0 and radians by . The block does not output the
guaranteed normalized LSF values, 0 and 0.5.

• LSP in range (-1 1) — Block outputs LSP values in decreasing
order, equal to the cosine of the LSF values between 0 and radians.
The block does not output the guaranteed LSP values, -1 and 1.

Adjusting Output Computation Time and Accuracy with Root
Finding Parameters

The values and determine the block’s output computation time and
accuracy, where

• is the value of the Root finding coarse grid points parameter
(choose this value with care; see the note below)

10-625

LPC to LSF/LSP Conversion

• is the value of the Root finding bisection refinement parameter.

• Decreasing the values of and decreases the output computation
time, but also decreases output accuracy:

- The upper bound of block’s computation time is proportional to
.

- Each LSP output is within of the actual LSP value.

- Each LSF output is within of the actual LSF value, ,
where

Note When the value of the Root finding coarse grid points
parameter is too small relative to the number of LPCs, the block
might output invalid data as described in “Requirements for Valid
Outputs” on page 10-624. Also see “Handling and Recognizing
Invalid Inputs and Outputs” on page 10-628.

Valid Inputs and Corresponding Outputs

The following list and table summarize characteristics of valid inputs
and the corresponding outputs.

Notable Input and Output Properties

• To get valid outputs, your input LPCs and the value of the Root
finding coarse grid points parameter must meet the requirements
described in “Requirements for Valid Outputs” on page 10-624.

• Block treats each column of an input matrix as a set of LPCs

• Length-L+1 input yields length-L output

• Output is always sample based

10-626

LPC to LSF/LSP Conversion

• Output parameter determines the output type (see “Setting Outputs
to LSFs or LSPs” on page 10-625):

- LSFs — frequencies, , where and

- Normalized LSFs —

- LSPs —

Input and Output Dimensions, Sizes, and Frame Statuses

Valid LPC Input LSF and LSP Outputs(Always Sample-Based)

Sample-based
length-M+1 row vector,

Frame-based row vectors
are not valid inputs.

Sample-based length-M row vector

Sample- or frame-based
length-M+1 column
vector,

Sample-based length-M column vector

1-D length-M+1
unoriented vector,

1-D length-M unoriented vector

10-627

LPC to LSF/LSP Conversion

Handling and Recognizing Invalid Inputs and Outputs

The block outputs invalid data when your input LPCs and the value
of the Root finding coarse grid points parameter do not meet the
requirements described in “Requirements for Valid Outputs” on page
10-624. The following topics describe what invalid outputs look like,
and how to set the block parameters provided for handling invalid
inputs and outputs:

• “What Invalid Outputs Look Like” on page 10-628

• “Parameters for Handling Invalid Inputs and Outputs” on page
10-629

What Invalid Outputs Look Like

Invalid outputs have the same dimensions, sizes, and frame statuses as
valid outputs, which you can look up in Input and Output Dimensions,
Sizes, and Frame Statuses on page 10-627. However, invalid outputs do
not contain all the LSP or LSF values. Instead, invalid outputs contain
none or some of the LSP and LSF values and the rest of the output
vector or matrix is filled with place holder values (-1, 0.5, or depending
on the Output parameter setting).

In short, all invalid outputs end in one of the place holder values (-1,
0.5, or) as illustrated in the following table. To learn how to use the
block’s parameters for handling invalid inputs and outputs, see the
next section.

Output Parameter Setting Place Holder Sample Invalid Outputs

LSF in radians (0 pi)

10-628

LPC to LSF/LSP Conversion

Output Parameter Setting Place Holder Sample Invalid Outputs

LSF normalized in range
(0 0.5)

0.5

LSP in range (-1 1) -1

Parameters for Handling Invalid Inputs and Outputs

You must set how the block handles invalid inputs and outputs by
setting these parameters:

• Show output validity status (1=valid, 0=invalid) — Setting
this parameter activates a second block output port that outputs a
1 when the output is valid, and a 0 when they are invalid. The LSF
and LSP outputs are invalid when the block fails to find all the LSF
or LSP values or when the input LPCs are unstable (for details, see
“Requirements for Valid Outputs” on page 10-624). See the previous
section to learn how to recognize invalid outputs.

• If current output is invalid, overwrite with previous output —
Selecting this check box causes the block to overwrite invalid outputs
with the previous output. When you set this parameter you also need
to consider these parameters:

- When first output is invalid, overwrite with user-defined
values — When the first input is unstable, you can choose to
either overwrite the invalid first output with the default values
(by clearing this parameter) or with values you specify (by
selecting this check box and specifying the values in the parameter

10-629

LPC to LSF/LSP Conversion

described next). The default initial overwrite values are the LSF
or LSP representations of an all-pass filter.

- User-defined LSP/LSF values for overwriting invalid first
output — In this parameter you specify the values for overwriting
an invalid first output if you selected the When first output is
invalid, overwrite with user-defined values. The vector of
LSP/LSF values you specify should have the same dimension, size,
and frame status as the other outputs, which you can look up in
Input and Output Dimensions, Sizes, and Frame Statuses on page
10-627.

• If first input value is not 1 — The block output is invalid when the
first coefficient in an LPC vector is not 1; this parameter determines
what the block does when given such inputs:

- Ignore — Proceed with computations as if the first coefficient is 1.

- Normalize — Divide the input LPCs by the value of the first
coefficient before computing the output.

- Normalize and warn — In addition to Normalize, display a
warning message at the MATLAB command line.

- Error — Stop the simulation and display an error message at the
MATLAB command line.

10-630

LPC to LSF/LSP Conversion

Dialog
Box

Output
Specifies whether to convert the input linear prediction polynomial
coefficients (LPCs) to LSP in range (-1 1), LSF in radians
(0 pi), or LSF normalized in range (0 0.5). See “Setting
Outputs to LSFs or LSPs” on page 10-625 for descriptions of the
three settings.

Root finding coarse grid points
The value , where the block divides the interval (-1, 1) into
subintervals of equal length, and looks for roots (LSP values)
in each subinterval. You must pick large enough or the block
output might be invalid as described in “Requirements for Valid
Outputs” on page 10-624. To learn how the block uses this
parameter to compute the output, see “LSF and LSP Computation
Method: Chebyshev Polynomial Method for Root Finding” on

10-631

LPC to LSF/LSP Conversion

page 10-634. Also see “Adjusting Output Computation Time and
Accuracy with Root Finding Parameters” on page 10-625. Tunable.

Root finding bisection refinement

The value , where each LSP output is within of the
actual LSP value, where is the value of the Root finding
coarse grid points parameter. To learn how the block uses this
parameter to compute the output, see “LSF and LSP Computation
Method: Chebyshev Polynomial Method for Root Finding” on
page 10-634. Also see “Adjusting Output Computation Time and
Accuracy with Root Finding Parameters” on page 10-625. Tunable.

Show output validity status
Selecting this check box activates a second block output port that
outputs a 1 when the output is valid, and a 0 when they are
invalid. For more information, see “Handling and Recognizing
Invalid Inputs and Outputs” on page 10-628.

If current output is invalid, overwrite with previous output
Selecting this check box causes the block to overwrite invalid
outputs with the previous output. Setting this parameter
activates other parameters for taking care of initial overwrite
values (when the very first output of the block is invalid). For
more information, see “Parameters for Handling Invalid Inputs
and Outputs” on page 10-629.

When first output is invalid, overwrite with user-defined values
When the first input is unstable, you can choose to either
overwrite the invalid first output with the default values (by
clearing this check box) or with values you specify (by setting this
check box). The default initial overwrite values are the LSF or
LSP representations of an all-pass filter. For more information,
see “Parameters for Handling Invalid Inputs and Outputs” on
page 10-629.

User-defined LSP/LSF values for overwriting invalid first output
In this parameter you specify the values for overwriting an invalid
first output when you select When first output is invalid,
overwrite with user-defined values. The vector or matrix of

10-632

LPC to LSF/LSP Conversion

LSP/LSF values you specify should have the same dimension,
size, and frame status as the other outputs, which you can look
up in the table Input and Output Dimensions, Sizes, and Frame
Statuses on page 10-627.

If first input value is not 1
Determines what the block does when the first coefficient of an
input is not 1. The block can either proceed with computations
as when the first coefficient is 1 (Ignore); divide the input
LPCs by the value of the first coefficient before computing the
output (Normalize); in addition to Normalize, display a warning
message at the MATLAB command line (Normalize and warn);
stop the simulation and display an error message at the MATLAB
command line (Error). For more information, see “Parameters for
Handling Invalid Inputs and Outputs” on page 10-629.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Boolean — Supported only by the optional output port that appears
when you set the parameter, Show output validity status
(1=valid, 0=invalid)

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

References Kabal, P. and Ramachandran, R. “The Computation of Line Spectral
Frequencies Using Chebyshev Polynomials.“IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol. ASSP-34 No. 6,
December 1986. pp. 1419-1426.

10-633

LPC to LSF/LSP Conversion

Theory LSF and LSP Computation Method: Chebyshev Polynomial
Method for Root Finding

Note To learn the principles on which the block’s LSP and LSF
computation method is based, see the reference listed in “References”
on page 10-633.

To compute LSP outputs, the block relies on the fact that LSP values
are the roots of two particular polynomials related to the input LPC
polynomial; the block finds these roots using the Chebyshev polynomial
root finding method, described next. To compute LSF outputs, the block
computes the arc cosine of the LSPs, outputting values ranging from
0 to radians.

Root Finding Method

LSPs, which are the roots of two particular polynomials, always lie
in the range (-1, 1). (The guaranteed roots at 1 and -1 are factored
out.) The block finds the LSPs by looking for a sign change of the two
polynomials’ values between points in the range (-1, 1). The block
searches a maximum of points, where

• is the value of the Root finding coarse grid points parameter

• is the value of the Root finding bisection refinement parameter

The block’s method for choosing which points to check consists of the
following two steps:

1 Coarse Root Finding —- The block divides the interval [-1, 1]
into intervals, each of length , and checks the signs of both
polynomials’ values at the endpoints of the intervals. The block starts
checking signs at 1, and continues checking signs at , ,
and so on at steps of length , outputting any point if it is a root.
The block stops searching in these situations:

10-634

LPC to LSF/LSP Conversion

a The block finds a sign change of a polynomial’s values between
two adjacent points. An interval containing a sign change is
guaranteed to contain a root, so the block further searches the
interval as described in Step 2, Root Finding Refinement.

b The block finds and outputs all M roots (given a length-M+1 LPC
input).

c The block fails to find all M roots and yields invalid outputs
as described in “Handling and Recognizing Invalid Inputs and
Outputs” on page 10-628.

2 Root Finding Refinement — When the block finds a sign change
in an interval, , it searches for the root guaranteed to lie in the
interval by following these steps:

a Check if Midpoint Is a Root — The block checks the sign of the
midpoint of the interval . The block outputs the midpoint if it
is a root, and continues Step 1, Coarse Root Finding, at the next
point, . Otherwise, the block selects the half-interval with
endpoints of opposite sign (either or)
and executes Step 2b, Stop or Continue Root Finding Refinement.

b Stop or Continue Root Finding Refinement — When the block
has repeated Step 2a times (is the value of the Root finding
bisection refinement parameter), the block linearly interpolates
the root by using the half-interval’s endpoints, outputs the result
as an LSP value, and returns to Step 1, Coarse Root Finding.
Otherwise, the block repeats Step 2a using the half-interval.

10-635

LPC to LSF/LSP Conversion

Coarse Root Finding and Root Finding Refinement

Root Finding Method Limitations: Failure to Find Roots

The block root finding method described above can fail, causing the block
to produce invalid outputs (for details on invalid outputs, see “Handling
and Recognizing Invalid Inputs and Outputs” on page 10-628).

In particular, the block can fail to find some roots if the value of the
Root finding coarse grid points parameter, , is too small. If
the polynomials oscillate quickly and have roots that are very close

10-636

LPC to LSF/LSP Conversion

together, the root finding might be too coarse to identify roots that are
very close to each other, as illustrated in Fixing a Failed Root Finding
on page 10-638.

For higher-order input LPC polynomials, you should increase the Root
finding coarse grid points value to ensure the block finds all the
roots and produces valid outputs.

10-637

LPC to LSF/LSP Conversion

Fixing a Failed Root Finding

See Also

LSF/LSP to LPC Conversion Signal Processing Blockset

LPC to/from RC Signal Processing Blockset

LPC/RC to Autocorrelation Signal Processing Blockset

poly2lsf Signal Processing Toolbox

10-638

LSF/LSP to LPC Conversion

Purpose Convert line spectral frequencies (LSFs) or line spectral pairs (LSPs) to
linear prediction coefficients (LPCs)

Library Estimation / Linear Prediction

Description The LSF/LSP to LPC Conversion block takes a vector or matrix of line
spectral pairs (LSPs) or line spectral frequencies (LSFs) and converts it
to a vector or matrix of linear prediction polynomial coefficients (LPCs).
When converting LSFs to LPCs, the block outputs match those of the
lsf2poly function.

The inputs to the block can be in one of three formats that you must
indicate in the Input parameter, which has the following settings:

• LSF in range (0 pi) — Vector of LSF values between 0 and
radians in increasing order. Do not include the guaranteed LSF
values, 0 and .

• LSF normalized in range (0 0.5) — Vector of normalized LSF
values in increasing order, (compute by dividing the LSF values
between 0 and radians by). Do not include the guaranteed
normalized LSF values, 0 and 0.5.

• LSP in range (-1 1) — Vector of LSP values in decreasing order,
equal to the cosine of the LSF values between 0 and radians. Do
not include the guaranteed LSP values, -1 and 1.

Dialog
Box

10-639

LSF/LSP to LPC Conversion

Input
Specifies whether to convert LSP in range (-1 1), LSF in
range (0 pi), or LSF normalized in range (0 0.5) to linear
prediction coefficients (LPCs).

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

References Kabal, P. and Ramachandran, R. “The Computation of Line Spectral
Frequencies Using Chebyshev Polynomials.” IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol. ASSP-34 No. 6,
December 1986. pp. 1419-1426.

See Also

LPC to LSF/LSP Conversion Signal Processing Blockset

LPC to/from RC Signal Processing Blockset

LPC/RC to Autocorrelation Signal Processing Blockset

lsf2poly Signal Processing Toolbox

10-640

LPC to/from Cepstral Coefficients

Purpose Convert linear prediction coefficients (LPCs) to cepstral coefficients
(CCs) or cepstral coefficients to linear prediction coefficients

Library Estimation / Linear Prediction

Description The LPC to/from Cepstral Coefficients block either converts linear
prediction coefficients (LPCs) to cepstral coefficients (CCs) or
cepstral coefficients to linear prediction coefficients. Set the Type
of conversion parameter to LPCs to cepstral coefficients or
Cepstral coefficients to LPCs to select the domain into which you
want to convert your coefficients. The LPC port corresponds to LPCs,
and the CC port corresponds to the CCs. For more information, see
“Algorithm” on page 10-642.

Consider a signal as the input to an FIR analysis filter represented
by LPCs. The output of this analysis filter, , is known as the
prediction error signal. The power of this error signal is denoted by P,
the prediction error power.

When you select LPCs to cepstral coefficients from the Type of
conversion list, you can specify the prediction error power in two
ways. From the Specify P list, choose via input port to input the
prediction error power using input port P. Select assume P equals 1 to
set the prediction error power equal to 1.

When you select LPCs to cepstral coefficients from the Type
of conversion list, the Output size same as input size check box
appears in the Block Parameters: LPC to/from Cepstral coefficients
dialog box. When you select this check box, the length of the input
vector of LPCs is equal to the output vector of CCs. When you do not
select this check box, enter the length of the output vector of CCs in
the Length of output cepstral coefficients box. This value must
be greater than zero.

When you select LPCs to cepstral coefficients from the Type
of conversion list, you can use the If first input value is not 1
parameter to specify the behavior of the block when the first coefficient
of the LPC vector is not 1. The following options are available:

10-641

LPC to/from Cepstral Coefficients

• Replace it with 1 —- Changes the first value of the coefficient
vector to 1. The other coefficient values are unchanged.

• Normalize — Divides the entire vector of coefficients by the first
coefficient so that the first coefficient of the LPC vector is 1.

• Normalize and Warn — Divides the entire vector of coefficients by
the first coefficient so that the first coefficient of the LPC vector is 1.
The block displays a warning message telling you that your vector of
coefficients has been normalized.

• Error — Displays an error telling you that the first coefficient of
the LPC vector is not 1.

When you select Cepstral coefficients to LPCs from the Type of
conversion list, the Output P check box appears on the block. Select
this check box when you want to output the prediction error power
from output port P.

Algorithm The cepstral coefficients are the coefficients of the Fourier transform
representation of the logarithm magnitude spectrum. Consider a
sequence, , having a Fourier transform . The cepstrum,

, is defined by the inverse Fourier transform of , where
. See the Real Cepstrum block reference page for

information on computing cepstrum coefficients from time-domain
signals.

LPC to CC

When in this mode, this block uses a recursion technique to convert

LPCs to CCs. The LPC vector is defined by a a a ap0 1 2 ...⎡⎣ ⎤⎦

and the CC vector is defined by
c c c c cp n0 1 2 1... ... −⎡⎣ ⎤⎦ . The

recursion is defined by the following equations:

c Ee0
2= log

10-642

LPC to/from Cepstral Coefficients

c a
m

m k a c m pm m k m k
k

m
= + − −() ⋅ ⋅⎡

⎣
⎤
⎦ ≤ ≤−()

=

−

∑1
1

1

1
,

c
m k

m
a c p m nm k m k

k

m
=

− −()
⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥ < <−()

=

−

∑
1

1
,

CC to LPC

When in this mode, this block uses a recursion technique to convert CCs

to LPCs. The CC vector is defined by c c c c cp n0 1 2⎡⎣ ⎤⎦ and

the LPC vector is defined by a a a ap0 1 2 ...⎡⎣ ⎤⎦ . The recursion is
defined by the following equations

a c
m

m k c am m m k k
k

m
= − −() ⋅ ⋅⎡

⎣
⎤
⎦−()

=

−

∑1

1

1

P C= ()exp 0

where m p= 1 2, ,..., .

10-643

LPC to/from Cepstral Coefficients

Dialog
Box

Type of conversion
Choose LPCs to cepstral coefficients or Cepstral
coefficients to LPCs to specify the domain into which you
want to convert your coefficients.

Specify P
Choose via input port to input the values of prediction error
power using input port P. Select assume P equals 1 to set the
prediction error power equal to 1.

Output size same as input size
When you select this check box, the length of the input vector of
LPCs is equal to the output vector of CCs.

Length of output cepstral coefficients
Enter the length of the output vector of CCs.

10-644

LPC to/from Cepstral Coefficients

If first input value is not 1
Select what you would like the block to do when the first coefficient
of the LPC vector is not 1. You can choose Replace it with 1,
Normalize, Normalize and Warn, and Error.

Output P
Select this check box to output the prediction error power from
output port P.

References Rabiner, L and Biing-Hwang Juang, Fundamentals of Speech
Recognition. Englewood Cliffs, NJ: Prentice Hall, 1993.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Levinson-Durbin Signal Processing Blockset

LPC to LSF/LSP Conversion Signal Processing Blockset

LSF/LSP to LPC Conversion Signal Processing Blockset

LPC to/from RC Signal Processing Blockset

LPC/RC to Autocorrelation Signal Processing Blockset

Real Cepstrum Signal Processing Blockset

Complex Cepstrum Signal Processing Blockset

10-645

LPC to/from RC

Purpose Convert linear prediction coefficients (LPCs) to reflection coefficients
(RCs) or reflection coefficients to linear prediction coefficients

Library Estimation / Linear Prediction

Description The LPC to/from RC block either converts linear prediction coefficients
(LPCs) to reflection coefficients (RCs) or reflection coefficients to linear
prediction coefficients. Set the Type of conversion parameter to LPC
to RC or RC to LPC to select the domain into which you want to convert
your coefficients. The A port corresponds to LPC coefficients, and the
K port corresponds to the RC coefficients. For more information, see
“Algorithm” on page 10-647.

Consider a signal as the input to an FIR analysis filter represented
by LPC coefficients. The output of the this analysis filter, , is
known as the prediction error signal. The power of this error signal is
denoted by P. When the zero lag autocorrelation coefficient of is
one, the autocorrelation sequence and prediction error power are said to
be normalized.

Select the Output normalized prediction error power check box
to enable port P. The normalized prediction error power, a scalar, is
output at port P and varies between zero and one.

Select the Output LPC filter stability check box to output the
stability of the filter represented by the LPCs or RCs. The synthesis
filter represented by the LPCs is stable when the absolute value of
each of the roots of the LPC polynomial is less than one. The lattice
filter represented by the RCs is stable when the absolute value of each
reflection coefficient is less than 1. When the filter is stable, the block
outputs a Boolean value of 1 at the S port. When the filter is unstable,
the block outputs a Boolean value of 0 at the S port.

If first input value is not 1 parameter specifies the behavior of the
block when the first coefficient of the LPC coefficient vector is not 1.
The following options are available:

• Replace it with 1 — Changes the first value of the coefficient
vector to 1. The other coefficient values are unchanged.

10-646

LPC to/from RC

• Normalize — Divides the entire vector of coefficients by the first
coefficient so that the first coefficient of the LPC coefficient vector is 1.

• Normalize and Warn — Divides the entire vector of coefficients by
the first coefficient so that the first coefficient of the LPC coefficient
vector is 1. The block displays a warning message telling you that
your vector of coefficients has been normalized.

• Error — Displays an error telling you that the first coefficient of the
LPC coefficient vector is not 1.

Algorithm LPC to RC

When in this mode, this block uses backward Levinson recursion to
convert linear prediction coefficients (LPCs) to reflection coefficients

(RCs).For a given Nth order LPC vector ,
the block calculates the Nth reflection coefficient value using the
formula . The block then finds the lower order LPC vectors ,

, using the following recursion.

for ,

end

Finally, . The reflection coefficient vector is .

RC to LPC

When in this mode, this block uses Levinson recursion to convert
reflection coefficients (RCs) to linear prediction coefficients (LPCs).In

this case, the input to the block is . The zeroth order

10-647

LPC to/from RC

LPC vector term is 1. Starting with this term, the block uses recursion
to calculate the higher order LPC vectors, , until
it has calculated the entire LPC matrix.

This LPC matrix consists of LPC vectors of order 0 through N found by
using the Levinson recursion. The following are the formulas for the
recursion steps, for .

10-648

LPC to/from RC

Dialog
Box

Type of conversion
Select LPC to RC or RC to LPC to select the domain into which
you want to convert your coefficients.

Output normalized prediction error power
Select this check box to output the normalized prediction error
power at port P.

Output LPC filter stability
Select this check box to output the stability of the filter. When the
filter represented by the LPCs or RCs is stable, the block outputs
a Boolean value of 1 at the S port. When the filter represented by
the LPCs or RCs is unstable, the block outputs a Boolean value
of 0 at the S port.

If first input value is not 1
Select what you would like the block to do when the first coefficient
of the LPC coefficient vector is not 1. You can choose Replace it
with 1, Normalize, Normalize and Warn, and Error.

References Makhoul, J Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56
(1975).

10-649

LPC to/from RC

Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New
York, Springer-Verlag, 1976.

Supported
Data
Types

• Double-precision floating-point

• Single-precision floating-point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Levinson-Durbin Signal Processing Blockset

LPC to LSF/LSP Conversion Signal Processing Blockset

LSF/LSP to LPC Conversion Signal Processing Blockset

LPC/RC to Autocorrelation Signal Processing Blockset

10-650

LPC/RC to Autocorrelation

Purpose Convert linear prediction coefficients (LPCs) or reflection coefficients
(RCs) to autocorrelation coefficients (ACs)

Library Estimation / Linear Prediction

Description The LPC/RC to Autocorrelation block either converts linear prediction
coefficients (LPCs) to autocorrelation coefficients (ACs) or reflection
coefficients (RCs) to autocorrelation coefficients (ACs). Set the Type
of conversion parameter to LPC to autocorrelation or RC to
autocorrelation to select the domain from which you want to convert
your coefficients. The A port corresponds to LPC coefficients, and the K
port corresponds to the RC coefficients.

Use the Specify P parameter to set the value of the prediction error
power. You can set this parameter to 1 by selecting Assume P=1. When
you select Via input port, a P port appears on the block. You can
use this port to input the value of the actual, non-unity prediction
error power.

The If first input value is not 1 parameter specifies the behavior of
the block when the first coefficient of the LPC coefficient vector is not 1.
The following options are available:

• Replace it with 1 — The block changes the first value of the
coefficient vector to 1. The rest of the coefficient values are
unchanged.

• Normalize — The block divides the entire vector of coefficients by
the first coefficient so that the first coefficient of the LPC coefficient
vector is 1.

• Normalize and Warn — The block divides the entire vector of
coefficients by the first coefficient so that the first coefficient of the
LPC coefficient vector is 1. The block displays a warning message
telling you that your vector of coefficients has been normalized.

• Error — The block displays an error telling you that the first
coefficient of the LPC coefficient vector is not 1.

10-651

LPC/RC to Autocorrelation

Dialog
Box

Type of conversion
From the list select LPC to autocorrelation or RC to
autocorrelation to specify the domain from which you want to
convert your coefficients.

Specify P
From the list select Assume P=1 or Via input port to specify the
value of prediction error power.

If first input value is not 1
Select what you would like the block to do when the first coefficient
of the LPC coefficient vector is not 1. You can choose Replace it
with 1, Normalize, Normalize and Warn, and Error.

References Orfanidis, S.J. Optimum Signal Processing. New York, McGraw-Hill,
1988.

Makhoul, J. Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56
(1975).

Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New
York, Springer-Verlag, 1976.

10-652

LPC/RC to Autocorrelation

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Levinson-Durbin Signal Processing Blockset

LPC to LSF/LSP Conversion Signal Processing Blockset

LSF/LSP to LPC Conversion Signal Processing Blockset

LPC to/from RC Signal Processing Blockset

10-653

LU Factorization

Purpose Factor square matrix into lower and upper triangular components

Library Math Functions / Matrices and Linear Algebra / Matrix Factorizations

Description The LU Factorization block factors a row permutation of the square
input matrix A as Ap = L*U, where L is the “psychologically lower
triangular” matrix, and U is the upper triangular matrix. For more
information, see the lu function reference page in the MATLAB
documentation. The row-pivoted matrix Ap contains the rows of A
permuted as indicated by the permutation index vector P.

Ap = A(P,:) % Equivalent
MATLAB code

The output of the LU Factorization block at port LU is a composite
matrix with lower subtriangle elements from L and upper triangle
elements from U. It is always sample based. The output is not in the
same form as the output of the MATLAB lu function. In order to
convert the output of the LU Factorization block to the MATLAB form,
use the following equations:

L = tril(LU,-1)+diag(ones(size(LU,1),1));
U = triu(LU);

Here, LU is the output of the LU Factorization block. Due to roundoff
error, these equations do not produce a result that is exactly the same
as the MATLAB result.

Examples The row-pivoted matrix Ap and permutation index vector P computed by
the block are shown below for 3-by-3 input matrix A.

The LU output is a composite matrix whose lower subtriangle forms L
and whose upper triangle forms U.

10-654

LU Factorization

Dialog
Box

Show singularity status
When selected, the block indicates the singularity of the input
at a third output port labeled S, which outputs Boolean data
type values of 1 or 0. An output of 1 indicates that the current
input is singular, and an output of 0 indicates the current input
is nonsingular.

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

10-655

LU Factorization

Supported
Data
Types

Port Supported Data Types

A • Double-precision floating point

• Single-precision floating point

LU • Double-precision floating point

• Single-precision floating point

P • Double-precision floating point

• Single-precision floating point

S • Boolean

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Factorization Signal Processing Blockset

LDL Factorization Signal Processing Blockset

LU Inverse Signal Processing Blockset

LU Solver Signal Processing Blockset

Permute Matrix Signal Processing Blockset

QR Factorization Signal Processing Blockset

lu MATLAB

See “Factoring Matrices” on page 6-9 for related information.

10-656

LU Inverse

Purpose Compute inverse of square matrix using LU factorization

Library Math Functions / Matrices and Linear Algebra / Matrix Inverses

Description The LU Inverse block computes the inverse of the square input matrix
A by factoring and inverting row-pivoted variant Ap.

L is a lower-triangular square matrix with unity diagonal elements,
and U is an upper-triangular square matrix. The block’s output is A-1,
and is always sample based.

Dialog
Box

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Inverse Signal Processing Blockset

LDL Inverse Signal Processing Blockset

10-657

LU Inverse

LU Factorization Signal Processing Blockset

LU Solver Signal Processing Blockset

inv MATLAB

See “Inverting Matrices” on page 6-10 for related information.

10-658

LU Solver

Purpose Solve AX=B for X when A is square matrix

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The LU Solver block solves the linear system AX=B by applying LU
factorization to the M-by-M matrix at the A port. The input to the B port
is the right side M-by-N matrix, B. The output is the unique solution of
the equations, M-by-N matrix X, and is always sample based.

A length-M 1-D vector input for right side B is treated as an M-by-1
matrix.

Algorithm The LU algorithm factors a row-permuted variant (Ap) of the square
input matrix A as

where L is a lower-triangular square matrix with unity diagonal
elements, and U is an upper-triangular square matrix.

The matrix factors are substituted for Ap in

where Bp is the row-permuted variant of B, and the resulting equation

is solved for X by making the substitution Y = UX, and solving two
triangular systems.

10-659

LU Solver

Dialog
Box

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Solver Signal Processing Blockset

LDL Solver Signal Processing Blockset

Levinson-Durbin Signal Processing Blockset

LU Factorization Signal Processing Blockset

LU Inverse Signal Processing Blockset

QR Solver Signal Processing Blockset

See “Solving Linear Systems” on page 6-7 for related information.

10-660

Magnitude FFT

Purpose Compute nonparametric estimate of the spectrum using the
periodogram method

Library • Estimation / Power Spectrum Estimation

• Transforms

Description The Magnitude FFT block computes a nonparametric estimate of the
spectrum using the periodogram method. When the Output parameter
is set to Magnitude squared, the block output for an input u is
equivalent to

y = abs(fft(u,nfft)).^2 % Equivalent
MATLAB code

When the Output parameter is set to Magnitude, the block output for
an input u is equivalent to

y = abs(fft(u,nfft)) % Equivalent
MATLAB code

Both an M-by-N frame-based matrix input and an M-by-N sample-based
matrix input are treated as M sequential time samples from N
independent channels. The block computes a separate estimate
for each of the N independent channels and generates an Nfft-by-N
matrix output. When you select Inherit FFT length from input
dimensions, Nfft is specified by the frame size of the input, which must
be a power of 2. When you do not select Inherit FFT length from
input dimensions, Nfft is specified as a power of 2 by the FFT length
parameter, and the block zero pads or truncates the input to Nfft before
computing the FFT.

Each column of the output matrix contains the estimate of the
corresponding input column’s power spectral density at Nfft equally
spaced frequency points in the range [0,Fs), where Fs is the signal’s
sample frequency. The output is always sample based.

The block does not accept sample-based 1-by-N row vector inputs.

10-661

Magnitude FFT

The Magnitude FFT block supports real and complex floating-point
and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Magnitude
FFT subsystem block for fixed-point signals.

The settings for the fixed-point parameters of the FFT block in the
diagram above are as follows:

• Sine table — Same word length as input

• Round integer calculations toward: Floor

• Saturate on integer overflow — unchecked

• Product output — Inherit via internal rule

• Accumulator — Inherit via internal rule

• Output — Inherit via internal rule

The settings for the fixed-point parameters of the Magnitude Squared
block in the diagram above are as follows:

• Round integer calculations toward: Floor

• Saturate on integer overflow — checked

• Output — Inherit via internal rule

The Magnitude Squared block is an implementation of the Simulink
Math Function block. Refer to the FFT, Zero Pad, and Math Function
reference pages for more information.

10-662

Magnitude FFT

Examples The dspsacomp demo compares the periodogram method with several
other spectral estimation methods.

Dialog
Box

Output
Determines whether the block computes the magnitude FFT
(Magnitude) or magnitude-squared FFT (Magnitude squared) of
the input. Nontunable.

Inherit FFT length from input dimensions
When selected, uses the input frame size as the number of data
points, Nfft, on which to perform the FFT.

FFT length
The number of data points on which to perform the FFT, Nfft.
When Nfft exceeds the input frame size, the frame is zero-padded
as needed. This parameter is enabled when you do not select
Inherit FFT length from input dimensions.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-663

Magnitude FFT

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Burg Method Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Spectrum Scope Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

pwelch Signal Processing Toolbox

See “Power Spectrum Estimation” on page 6-6 for related information.

10-664

Matrix 1-Norm

Purpose Compute the 1-norm of a matrix

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Matrix 1-Norm block computes the 1-norm, or maximum
column-sum, of an M-by-N input matrix, A.

This is equivalent to

y = max(sum(abs(A))) % Equivalent
MATLAB code

A length-M 1-D vector input is treated as an M-by-1 matrix. The output,
y, is always a scalar.

The Matrix 1-Norm block supports real and complex floating-point
inputs, and real fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix
1-Norm block for fixed-point signals.

10-665

Matrix 1-Norm

The block calculations are all done in the accumulator data type until
the max is performed. The result is then cast to the output data type.
You can set the accumulator and output data types in the block dialog
as discussed in “Dialog Box” on page 10-666 below.

Dialog
Box

There are no parameters on the Main pane of this dialog.

The Fixed-point pane of the Matrix 1-Norm block dialog appears as
follows:

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

10-666

Matrix 1-Norm

Accumulator
Choose how you will specify the word length and fraction length of
the accumulator:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the word length and fraction length of
the output of the block:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

10-667

Matrix 1-Norm

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Normalization Signal Processing Blockset

Reciprocal Condition Signal Processing Blockset

norm MATLAB

10-668

Matrix Exponential

Purpose Compute matrix exponential

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Matrix Exponential block computes the matrix exponential using a
scaling and squaring algorithm with a Pade approximation. The input
matrix must be square.

Dialog
Box

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

expm MATLAB

Dot Product Simulink

Matrix Product Signal Processing Blockset

Matrix Scaling Signal Processing Blockset

Product Simulink

10-669

Matrix Multiply

Purpose Multiply or divide inputs

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Matrix Multiply block is an implementation of the Simulink
Product block. See Product for more information.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8–, 16–, and 32–bit signed integers

• 8–, 16–, and 32–bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Dot Product Simulink

Matrix Product Signal Processing Blockset

Matrix Scaling Signal Processing Blockset

Product Simulink

10-670

Matrix Product

Purpose Multiply matrix elements along rows or columns

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Matrix Product block multiplies the elements of an M-by-N input
matrix u along either the rows or columns. When the Multiply along
parameter is set to Rows, the block multiplies across the elements of
each row and outputs the resulting M-by-1 matrix. A length-N 1-D
vector input is treated as a 1-by-N matrix.

This is equivalent to

y = prod(u,2) % Equivalent MATLAB code

When the Multiply along parameter is set to Columns, the block
multiplies down the elements of each column and outputs the resulting
1-by-N matrix. A length-M 1-D vector input is treated as a M-by-1
matrix.

This is equivalent to

y = prod(u) % Equivalent MATLAB code

10-671

Matrix Product

The output of the Matrix Product block has the same frame status
as the input. This block accepts real and complex floating-point and
fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix
Product block for fixed-point signals.

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” on page 8-16. You
can set the accumulator, product output, intermediate product, and
output data types in the block dialog as discussed in “Dialog Box” on
page 10-673 below.

10-672

Matrix Product

Dialog
Box

The Main pane of the Matrix Product block dialog appears as follows:

Multiply along
Indicate whether to multiply together the elements of each row
or of each column of the input.

The Fixed-point pane of the Matrix Product block dialog appears as
follows:

10-673

Matrix Product

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Intermediate product
As shown in “Fixed-Point Data Types” on page 10-672, the output
of the multiplier is cast to the intermediate product data type
before the next element of the input is multiplied into it. Use
this parameter to specify how you would like to designate the
intermediate product word and fraction lengths:

• When you select Same as input, these characteristics will
match those of the input to the block.

10-674

Matrix Product

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the intermediate
product, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the intermediate
product. This block requires power-of-two slope and a bias of
zero.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-672 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

10-675

Matrix Product

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-672 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the accumulator
data type in this block. Note that the accumulator data type is
only used when both inputs to the multiplier are complex:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

10-676

Matrix Product

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the word length and fraction length of
the output of the block:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-677

Matrix Product

See Also

Matrix Multiply Signal Processing Blockset

Matrix Square Signal Processing Blockset

Matrix Sum Signal Processing Blockset

prod MATLAB

10-678

Matrix Scaling

Purpose Scale matrix rows or columns by specified vector

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Matrix Scaling block scales the rows or columns of the M-by-N
input matrix A by the values in input vector D. When the Mode
parameter is set to Scale Rows (D*A), the input D can be a 1-D or 2-D
vector of length M, and the block multiplies each element of D across
the corresponding row of matrix A.

This is equivalent to premultiplying A by a diagonal matrix with
diagonal D.

y = diag(D)*A % Equivalent MATLAB code

When the Mode parameter is set to Scale Columns (A*D), the input D
can be a 1-D or 2-D vector of length N, and the block multiplies each
element of D across the corresponding column of matrix A.

This is equivalent to postmultiplying A by a diagonal matrix with
diagonal D.

y = A*diag(D) % Equivalent MATLAB code

10-679

Matrix Scaling

The output of the Matrix Scaling block is the same size as the input
matrix, A. When both inputs are sample based, the output is sample
based; otherwise, the output is frame based. This block accepts real and
complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix
Scaling block for fixed-point signals.

When the scaling vector D is designated in the block mask, its elements
have the data type and scaling that you specify in the Scaling vector
parameters on the Fixed-point tab. When the scaling vector comes in
through the block port, its elements inherit their data type and scaling
from the driving block.

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” on page 8-16.

You can set the scaling vector, accumulator, product output, and output
data types in the block dialog as discussed below.

10-680

Matrix Scaling

Dialog
Box

The Main pane of the Matrix Scaling block dialog appears as follows:

Mode
Specify the mode of operation, row scaling or column scaling.
Nontunable.

Scaling vector (D) source
Specify the source of the scaling vector, D. The scaling vector can
come from an Input port or from a Dialog parameter.

10-681

Matrix Scaling

Scaling vector (D)
Specify the scaling vector, D. This parameter is visible only
when you select Input port for the Scaling vector (D) source
parameter.

The Fixed-point pane of the Matrix Scaling block dialog appears as
follows:

Rounding mode
Select the rounding mode for fixed-point operations.

10-682

Matrix Scaling

Overflow mode
Select the overflow mode for fixed-point operations.

Scaling vector
Use this parameter to specify how you would like to designate the
word and fraction lengths of the elements of the scaling vector, D:

• When you select Same word length as input, the word
length of the scaling vector values will match that of the input
to the block.

• When you select Specify word length, you are able to
enter the word length of the scaling vector values, in bits. In
this mode, the fraction length of the scaling vector values is
automatically set to the binary-point only scaling that provides
you with the best precision possible given the value and word
length of the values.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the scaling vector
elements, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the scaling
vector element. This block requires power-of-two slope and
a bias of zero.

Note The Scaling vector parameters on the Fixed-point pane
are only applicable when you specify the scaling vector through
the Scaling vector (D) parameter on the block mask. When the
scaling vector comes in through the block port, the data type and
scaling of its elements are inherited from the driving block.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-680 and “Multiplication Data Types” on

10-683

Matrix Scaling

page 8-16 for illustrations depicting the use of the product output
data type in this block:

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-680 and “Multiplication Data Types” on
page 8-16 for illustrations depicting the use of the accumulator
data type in this block. Note that the accumulator data type is
only used when both inputs to the multiplier are complex:

10-684

Matrix Scaling

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Same as product output, these
characteristics will match those of the product output.

10-685

Matrix Scaling

• When you select Same as first input, these characteristics
will match those of the first input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Matrix Multiply Signal Processing Blockset

Matrix Product Signal Processing Blockset

Matrix Sum Signal Processing Blockset

10-686

Matrix Square

Purpose Compute square of input matrix

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Matrix Square block computes the square of an M-by-N input
matrix, u, by premultiplying with the Hermitian transpose.

y = u' * u % Equivalent MATLAB code

A length-M 1-D vector input is treated as an M-by-1 matrix. For both
sample-based and frame-based inputs, output y is sample based with
dimension N-by-N.

Applications

The Matrix Square block is useful in a variety of applications:

• General matrix squares — The Matrix Square block computes the
output matrix, y, without explicitly forming u’. It is therefore more
efficient than other methods for computing the matrix square.

• Sum of squares — When the input is a column vector (N=1), the
block’s operation is equivalent to a multiply-accumulate (MAC)
process, or inner product. The output is the sum of the squares of the
input, and is always a real scalar.

• Correlation matrix — When the input is a row vector (M=1), the
output, y, is the symmetric autocorrelation matrix, or outer product.

Dialog
Box

10-687

Matrix Square

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Matrix Multiply Signal Processing Blockset

Matrix Product Signal Processing Blockset

Matrix Sum Signal Processing Blockset

Transpose Signal Processing Blockset

10-688

Matrix Sum

Purpose Sum matrix elements along rows or columns

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Matrix Sum block sums the elements of an M-by-N input matrix u
along either the rows or columns. When the Sum along parameter is
set to Rows, the block sums across the elements of each row and outputs
the resulting M-by-1 matrix. A length-N 1-D vector input is treated
as a 1-by-N matrix.

This is equivalent to

y = sum(u,2) % Equivalent MATLAB code

When the Sum along parameter is set to Columns, the block sums
down the elements of each column and outputs the resulting 1-by-N
matrix. A length-M 1-D vector input is treated as a M-by-1 matrix.

This is equivalent to

y = sum(u) % Equivalent MATLAB code

10-689

Matrix Sum

The output of the Matrix Sum block has the same frame status as
the input. This block accepts real and complex floating-point and
fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix
Sum block for fixed-point signals.

You can set the accumulator and output data types in the block dialog
as discussed in “Dialog Box” on page 10-691 below.

10-690

Matrix Sum

Dialog
Box

The Main pane of the Matrix Sum block dialog appears as follows:

Sum along
Indicate whether to sum the elements of each row or of each
column of the input.

The Fixed-point pane of the Matrix Sum block dialog appears as
follows:

10-691

Matrix Sum

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Accumulator

10-692

Matrix Sum

As depicted above, the elements of the block input are cast to
the accumulator data type before they are added together. The
output of the adder remains in the accumulator data type as
each element of the input is added to it. Use this parameter to
specify how you would like to designate this accumulator word
and fraction lengths:

• When you select Inherit via internal rule, the
accumulator word length and fraction length are automatically
set according to the following equations:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

10-693

Matrix Sum

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Matrix Product Signal Processing Blockset

Matrix Multiply Signal Processing Blockset

sum MATLAB

10-694

Matrix Viewer

Purpose Display matrices as color images

Library Signal Processing Sinks

Description The Matrix Viewer block displays an M-by-N matrix input by mapping
the matrix element values to a specified range of colors. The display is
updated as each new input is received. This block treats a length M 1-D
vector input as an M-by-1 matrix.

Image Properties

Select the Image Properties tab to show the image property
parameters, which control the colormap and display.

You specify the mapping of matrix element values to colors in the
Colormap matrix, Minimum input value, and Maximum input
value parameters. For a colormap with L colors, the colormap matrix
has dimension L-by-3, with one row for each color and one column for
each element of the RGB triple that defines the color. Examples of RGB
triples are

[1 0 0] (red)
[0 0 1] (blue)
[0.8 0.8 0.8] (light gray)

See the ColorSpec property in the MATLAB documentation for
complete information about defining RGB triples.

MATLAB provides a number of functions for generating predefined
colormaps, such as hot, cool, bone, and autumn. Each of these
functions accepts the colormap size as an argument, and can be
used in the Colormap matrix parameter. For example, when you
specify gray(128) for the Colormap matrix parameter, the matrix
is displayed in 128 shades of gray. The color in the first row of the
colormap matrix represents the value specified by the Minimum
input value parameter, and the color in the last row represents the
value specified by the Maximum input value parameter. Values
between the minimum and maximum are quantized and mapped to the
intermediate rows of the colormap matrix.

10-695

Matrix Viewer

The documentation for the MATLAB colormap function provides
complete information about specifying colormap matrices, and includes
a complete list of the available colormap functions.

Axis Properties

Select the Axis Properties tab to show the axis property parameters,
which control labeling and positioning.

The Axis origin parameter determines where the first element of
the input matrix, U(1,1), is displayed. When you specify Upper left
corner, the matrix is displayed in matrix orientation, with U(1,1) in
the upper-left corner.

When you specify Lower left corner, the matrix is flipped vertically
to image orientation, with U(1,1) in the lower-left corner.

Axis zoom, when selected, causes the image display to completely fill
the figure window. Axis titles are not displayed. This option can also be
selected from the pop-up menu that is displayed when you right-click
in the figure window. When Axis zoom is cleared, the axis labels and
titles are displayed in a gray border surrounding the image axes.

10-696

Matrix Viewer

Figure Window

The image title in the figure title bar is the same as the block title.
The axis tick marks reflect the size of the input matrix; the x-axis is
numbered from 1 to N (number of columns), and the y-axis is numbered
from 1 to M (number of rows).

Right-click the image in the figure window to access the following menu
items:

• Refresh erases all data on the scope display except for the most
recent image.

• Autoscale recomputes the minimum and maximum input values
to fit the range of values observed in a series of 10 consecutive
inputs. The numerical limits selected by the autoscale feature are
shown in the Minimum input value and Maximum input value
parameters, where you can make further adjustments to them
manually.

• Axis zoom, when selected, causes the image to completely fill the
figure window. Axis titles are not displayed. When Axis zoom is
cleared, the axis labels and titles are displayed in a gray border
surrounding the scope axes. This option can also be set in the Axis
Properties pane of the parameter dialog box.

• Colorbar, when selected, displays a bar with the specified colormap
to the right of the image axes.

• Save Position automatically updates the Figure position
parameter in the Axis Properties pane to reflect the figure window’s
current position and size on the screen. To make the scope window
open at a particular location on the screen when the simulation runs,
drag the window to the desired location, resize it, and select Save
Position. The parameter dialog box must be closed when you select
Save Position for the Figure position parameter to be updated.

Examples See the demo dspstfft.mdl for an example of using the Matrix Viewer
block to create a moving spectrogram, or time-frequency plot, of a

10-697

Matrix Viewer

speech signal by updating just one column of the input matrix at each
sample time.

Dialog
Box

Colormap matrix
A 3-column matrix defining the colormap as a set of RGB triples,
or a call to a colormap-generating function such as hot or spring.
See the ColorSpec property for complete information about
defining RGB triples, and the MATLAB colormap function for a
list of colormap-generating functions. Tunable.

Minimum input value
The input value to be mapped to the color defined in the first row
of the colormap matrix. Right-click in the figure window and
select Autoscale from pop-up menu to set this parameter to the
minimum value observed in a series of 10 consecutive matrix
inputs. Tunable.

10-698

Matrix Viewer

Maximum input value
The input value to be mapped to the color defined in the last row
of the colormap matrix. Right-click in the figure window and
select Autoscale from the pop-up menu to set this parameter to
the maximum value observed in a series of 10 consecutive matrix
inputs. Tunable.

Display colorbar
Select to display a bar with the selected colormap to the right of
the image axes. Tunable.

Axis origin
The position within the axes where the first element of the input
matrix, U(1,1), is plotted; bottom left or top left. Tunable.

X-axis title
The text to be displayed below the x-axis. Tunable.

10-699

Matrix Viewer

Y-axis title
The text to be displayed to the left of the y-axis. Tunable.

Colorbar title
The text to be displayed to the right of the color bar, when
Display colorbar is currently selected. Tunable.

Figure position, [x y width height]
A 4-element vector of the form [x y width height] specifying
the position of the figure window, where (0,0) is the lower-left
corner of the display. Tunable.

Axis zoom
Resizes the image to fill the figure window. Tunable.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Spectrum Scope Signal Processing Blockset

Vector Scope Signal Processing Blockset

10-700

Matrix Viewer

colormap MATLAB

ColorSpec MATLAB

image MATLAB

10-701

Maximum

Purpose Find maximum values in an input or sequence of inputs

Library Statistics

Description The Maximum block identifies the value and/or position of the largest
element in each column of the input, or tracks the maximum values in a
sequence of inputs over a period of time. The Mode parameter specifies
the block’s mode of operation and can be set to Value, Index, Value and
Index, or Running.

The Maximum block supports real and complex floating-point and
fixed-point inputs. Real fixed-point inputs can be either signed or
unsigned, while complex fixed-point inputs must be signed. The data
type of the maximum values output by the block match the data type of
the input. The index values output by the block are double when the
input is double, and uint32 otherwise.

Value Mode

When Mode is set to Value, the block computes the maximum value
in each column of the M-by-N input matrix u independently at each
sample time.

val = max(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, val, is a 1-by-N vector containing the
maximum value of each column in u.

For complex inputs, the block selects the value in each column that has
the maximum magnitude squared as shown below. For complex value

u a bi= + , the magnitude squared is a b2 2+ .

10-702

Maximum

The frame status of the output is the same as that of the input.

Index Mode

When Mode is set to Index, the block computes the maximum value
in each column of the M-by-N input matrix u,

[val,idx] = max(u) % Equivalent MATLAB code

and outputs the sample-based 1-by-N index vector, idx. Each value
in idx is an integer in the range [1 M] indexing the maximum value
in the corresponding column of u. When inputs to the block are
double-precision values, the index values are double-precision values.
Otherwise, the index values are 32-bit unsigned integer values.

As in Value mode, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

When a maximum value occurs more than once in a particular column of
u, the computed index corresponds to the first occurrence. For example,
when the input is the column vector [3 2 1 2 3]', the computed index
of the maximum value is 1 rather than 5.

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the
vector of maxima, val, and the vector of indices, idx.

Running Mode

When Mode is set to Running, the block tracks the maximum value of
each channel in a time-sequence of M-by-N inputs. For sample-based
inputs, the output is a sample-based M-by-N matrix with each element
yij containing the maximum value observed in element uij for all inputs

10-703

Maximum

since the last reset. For frame-based inputs, the output is a frame-based
M-by-N matrix with each element yij containing the maximum value
observed in the jth column of all inputs since the last reset, up to and
including element uij of the current input.

As in the other modes, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Maximum

The block resets the running maximum whenever a reset event is
detected at the optional Rst port. The rate of the reset signal must be a
positive integer multiple of the rate of the data signal input.

For sample-based inputs, a reset event causes the running maximum
for each channel to be initialized to the value in the corresponding
channel of the current input. For frame-based inputs, a reset event
causes the running maximum for each channel to be initialized to the
earliest value in each channel of the current input.

You specify the reset event in the Reset port menu:

• None — disables the Rst port.

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-704

Maximum

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero

10-705

Maximum

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when
the block detects a reset event, there is a one-sample delay at
the reset port rate before the block applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the block dialog are only
used for complex fixed-point inputs. The sum of the squares of the real
and imaginary parts of such an input are formed before a comparison
is made, as described in “Value Mode” on page 10-702. The results of
the squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

Examples The Maximum block in the following model calculates the running
maximum of a frame-based 3-by-2 (two-channel) matrix input, u. The
running maximum is reset at t=2 by an impulse to the block’s Rst port.

The Maximum block has the following settings:

• Mode = Running

• Reset port = Non-zero signal

10-706

Maximum

The Signal From Workspace block has the following settings

• Signal = u

• Sample time = 1/3

• Samples per frame = 3

where

u
= [6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'

The Discrete Impulse block has the following settings:

• Delay (samples) = 2

• Sample time = 1

• Samples per frame = 1

The block’s operation is shown in the figure below.

10-707

Maximum

The statsdem demo illustrates the operation of several blocks from
the Statistics library.

10-708

Maximum

Dialog
Box

The Main pane of the Maximum block dialog appears as follows:

Mode
Specify the block’s mode of operation:

• Value — Output the maximum value of each input

• Index — Output the index of the maximum value

• Value and index — Output both the value and the index

• Running — Track the maximum value of the input sequence
over time

10-709

Maximum

For more information about these modes, refer to

“Description ” on page 10-702.

Reset port
Specify the reset event detected at the Rst input port when you
select Running for the Mode parameter. The rate of the reset
signal must be a positive integer multiple of the rate of the data
signal input. For information about the possible values of this
parameter, refer to “Resetting the Running Maximum” on page
10-704.

The Fixed-point pane of the Maximum block dialog appears as follows:

10-710

Maximum

Note The parameters on the Fixed-point pane are only used for
complex fixed-point inputs. The sum of the squares of the real and
imaginary parts of such an input are formed before a comparison is
made, as described in “Value Mode” on page 10-702. The results of the
squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how you would like to designate
the product output word and fraction lengths resulting from
a complex-complex multiplication in the block. Refer to
“Multiplication Data Types” on page 8-16 for more information:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block. Refer to “Multiplication Data Types” on page 8-16 for more
information:

10-711

Maximum

• When you select Same as product output, these
characteristics will match those of the product output

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point — Signed and unsigned real fixed point, and signed
complex fixed-point

• Boolean — The block accepts Boolean inputs to the Rst port.

• 32-bit unsigned integer — When inputs to the block are
double-precision values, the index values are double-precision values.
Otherwise, the index values are 32-bit unsigned integer values.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-712

Maximum

See Also

Mean Signal Processing Blockset

Minimum Signal Processing Blockset

MinMax Simulink

max MATLAB

10-713

Mean

Purpose Find mean value of an input or sequence of inputs

Library Statistics

Description The Mean block computes the mean of each column in the input, or
tracks the mean values in a sequence of inputs over a period of time.
The Running mean parameter selects between basic operation and
running operation.

The Mean block accepts real and complex fixed-point and floating-point
inputs.

Basic Operation

When you do not select the Running mean check box, the block
computes the mean of each column of M-by-N input matrix u
independently at each sample time.

y = mean(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, y, is a 1-by-N vector containing the
mean value for each column in u. The mean of a complex input is
computed independently for the real and imaginary components, as
shown below.

The frame status of the output is the same as that of the input.

10-714

Mean

Running Operation

When you select the Running mean check box, the block tracks the
mean value of each channel in a time-sequence of M-by-N inputs. For
sample-based inputs, the output is a sample-based M-by-N matrix
with each element yij containing the mean value of element uij over all
inputs since the last reset. For frame-based inputs, the output is a
frame-based M-by-N matrix with each element yij containing the mean
value of the jth column over all inputs since the last reset, up to and
including element uij of the current input.

As in basic operation, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Mean

The block resets the running mean whenever a reset event is detected
at the optional Rst port. The rate of the reset signal must be a positive
integer multiple of the rate of the data signal input.

When the block is reset for sample-based inputs, the running mean for
each channel is initialized to the value in the corresponding channel
of the current input. For frame-based inputs, the running mean for
each channel is initialized to the earliest value in each channel of the
current input.

You specify the reset event by the Reset port parameter:

• None disables the Rst port.

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-715

Mean

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero

10-716

Mean

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when
the block detects a reset event, there is a one-sample delay at
the reset port rate before the block applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Fixed-Point Data Types

The following diagram shows the data types used within the Mean
block for fixed-point signals.

You can set the accumulator and output data types in the block dialog
as discussed in “Dialog Box” on page 10-720.

Examples The Mean block in the following model calculates the running mean of a
frame-based 3-by-2 (two-channel) matrix input, u. The running mean is
reset at t=2 by an impulse to the block’s Rst port.

10-717

Mean

The Mean block has the following settings:

• Running mean = Select this check box

• Reset port = Non-zero sample

The Signal From Workspace block has the following settings

• Signal = u

• Sample time = 1/3

• Samples per frame = 3

where

u = [6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'

The Discrete Impulse block has the following settings:

• Delay (samples) = 2

• Sample time = 1

• Samples per frame = 1

The block’s operation is shown in the figure below.

10-718

Mean

The statsdem demo illustrates the operation of several blocks from
the Statistics library.

10-719

Mean

Dialog
Box

The Main pane of the Mean block dialog appears as follows.

Running mean
Enables running operation when selected.

Reset port
Determines the reset event that causes the block to reset the
running mean. The rate of the reset signal must be a positive
integer multiple of the rate of the data signal input. This
parameter is enabled only when you set the Running mean
parameter. For more information, see “Resetting the Running
Histogram” on page 10-505.

The Fixed-point pane of the Mean block dialog appears as follows:

10-720

Mean

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

10-721

Mean

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Boolean — The block accepts Boolean inputs to the Rst port

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-722

Mean

See Also

Maximum Signal Processing Blockset

Median Signal Processing Blockset

Minimum Signal Processing Blockset

Standard Deviation Signal Processing Blockset

mean MATLAB

10-723

Median

Purpose Find median value of an input

Library Statistics

Description The Median block computes the median value of each column in an
M-by-N input matrix.

y = median(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, y, is a sample-based 1-by-N vector
containing the median value for each column in u.

When M is odd, the block sorts the column elements by value, and
outputs the central row of the sorted matrix.

s = sort(u); y = s((M+1)/2,:)

When M is even, the block sorts the column elements by value, and
outputs the average of the two central rows in the sorted matrix.

s = sort(u);
y = mean([s(M/2,:);s(M/2+1,:)])

Complex inputs are sorted by magnitude squared. For complex value

u a bi= + , the magnitude squared is a b2 2+ .

The Median block accepts real and complex fixed-point and
floating-point inputs.

Fixed-Point Data Types

For fixed-point inputs, you can specify accumulator, product output, and
output data types as discussed in “Dialog Box” on page 10-726. Not all
these fixed-point parameters are applicable for all types of fixed-point
inputs. The following table shows when each kind of data type and
scaling is used.

10-724

Median

Output data type
Accumulator data
type

Product output
data type

Even M X X

Odd M X

Odd M and
complex

X X X

Even M and
complex

X X X

The accumulator and output data types and scalings are used for
fixed-point signals when M is even. The result of the sum performed
while calculating the average of the two central rows of the input matrix
is stored in the accumulator data type and scaling. The total result of
the average is then put into the output data type and scaling.

The accumulator and product output parameters are used for complex
fixed-point inputs. The sum of the squares of the real and imaginary
parts of such an input are formed before the input elements are sorted,

as described in “Description ” on page 10-724. The results of
the squares of the real and imaginary parts are placed into the product
output data type and scaling. The result of the sum of the squares is
placed into the accumulator data type and scaling.

For fixed-point inputs that are both complex and have even M, the data
types are used in all of the ways described. Therefore, in such cases the
accumulator type is used in two different ways.

10-725

Median

Dialog
Box

The Main pane of the Median block dialog appears as follows:

Sort algorithm
Specify whether the elements of the input are sorted using a
Quick sort or an Insertion sort algorithm.

The Fixed-point pane of the Median block dialog appears as follows:

10-726

Median

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Note The product output, accumulator, and output parameters
listed below are only used in certain cases. Refer to “Fixed-Point
Data Types” on page 10-724 for more information.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths:

10-727

Median

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block:

• When you select Same as product output, these
characteristics will match those of the product output

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Same as product output, these
characteristics will match those of the product output.

10-728

Median

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, 32-, and 128-bit signed integers

• 8-, 16-, 32-, and 128-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, 32-, and 128-bit signed integers

• 8-, 16-, 32-, and 128-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-729

Median

See Also

Maximum Signal Processing Blockset

Mean Signal Processing Blockset

Minimum Signal Processing Blockset

Sort Signal Processing Blockset

Standard Deviation Signal Processing Blockset

Variance Signal Processing Blockset

median MATLAB

10-730

Minimum

Purpose Find minimum values in an input or sequence of inputs

Library Statistics

Description The Minimum block identifies the value and/or position of the smallest
element in each column of the input, or tracks the minimum values
in a sequence of inputs over a period of time. The Mode parameter
specifies the block’s mode of operation, and can be set to Value, Index,
Value and Index, or Running.

The Minimum block supports real and complex floating-point and
fixed-point inputs. Fixed-point real inputs can be either signed or
unsigned, while fixed-point complex inputs must be signed. The data
type of the minimum values output by the block match the data type of
the input. The index values output by the block are double when the
input is double, and uint32 otherwise.

Value Mode

When Mode is set to Value, the block computes the minimum value
in each column of the M-by-N input matrix u independently at each
sample time.

val = min(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, val, is a 1-by-N vector containing the
minimum value of each column in u.

For complex inputs, the block selects the value in each column that has
the minimum magnitude squared as shown below. For complex value

u a bi= + , the magnitude squared is a b2 2+ .

10-731

Minimum

The frame status of the output is the same as that of the input.

Index Mode

When Mode is set to Index, the block computes the minimum value in
each column of the M-by-N input matrix u,

[val,idx] = min(u) % Equivalent MATLAB code

and outputs the sample-based 1-by-N index vector, idx. Each value
in idx is an integer in the range [1M] indexing the minimum value
in the corresponding column of u. When inputs to the block are
double-precision values, the index values are double-precision values.
Otherwise, the index values are 32-bit unsigned integer values.

As in Value mode, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

When a minimum value occurs more than once in a particular column of
u, the computed index corresponds to the first occurrence. For example,
when the input is the column vector [-1 2 3 2 -1]', the computed
index of the minimum value is 1 rather than 5.

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the
vector of minima, val, and the vector of indices, idx.

Running Mode

When Mode is set to Running, the block tracks the minimum value of
each channel in a time-sequence of M-by-N inputs. For sample-based
inputs, the output is a sample-based M-by-N matrix with each element

10-732

Minimum

yij containing the minimum value observed in element uij for all inputs
since the last reset. For frame-based inputs, the output is a frame-based
M-by-N matrix with each element yij containing the minimum value
observed in the jth column of all inputs since the last reset, up to and
including element uij of the current input.

As in the other modes, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Minimum

The block resets the running minimum whenever a reset event is
detected at the optional Rst port. The rate of the reset signal must be a
positive integer multiple of the rate of the data signal input.

When the block is reset for sample-based inputs, the running minimum
for each channel is initialized to the value in the corresponding channel
of the current input. For frame-based inputs, the running minimum for
each channel is initialized to the earliest value in each channel of the
current input.

Yo specify the reset event by the Reset port parameter:

• None disables the Rst port.

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-733

Minimum

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero

10-734

Minimum

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when
the block detects a reset event, there is a one-sample delay at
the reset port rate before the block applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the block dialog are only
used for complex fixed-point inputs. The sum of the squares of the real
and imaginary parts of such an input are formed before a comparison
is made, as described in “Value Mode” on page 10-731. The results of
the squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

Examples The Minimum block in the following model calculates the running
minimum of a frame-based 3-by-2 (two-channel) matrix input. The
running minimum is reset at t=2 by an impulse to the block’s Rst port.

The Minimum block has the following settings:

• Mode = Running

• Reset port = Non-zero sample

10-735

Minimum

The Signal From Workspace block has the following settings

• Signal = u

• Sample time = 1/3

• Samples per frame = 3

where

u = [6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 2 6 2 5 0 4 17]'

The Discrete Impulse block has the following settings:

• Delay (samples) = 2

• Sample time = 1

• Samples per frame = 1

The block’s operation is shown in the figure below.

10-736

Minimum

10-737

Minimum

Dialog
Box

The Main pane of the Minimum block dialog appears as follows:

Mode
Specify the block’s mode of operation:

• Value — Output the minimum value of each input

• Index — Output the index of the minimum value

• Value and index — Output both the value and the index

• Running — Track the minimum value of the input sequence
over time

10-738

Minimum

For more information about these modes, refer to

“Description ” on page 10-731.

Reset port
Specify the reset event detected at the RST input port when you
select Running for the Mode parameter. The rate of the reset
signal must be a positive integer multiple of the rate of the data
signal input. This parameter is enabled only when you set the
Mode parameter to Running. For information about the possible
values of this parameter, see “Resetting the Running Minimum”
on page 10-733.

The Fixed-point pane of the Minimum block dialog appears as follows:

10-739

Minimum

Note The parameters on the Fixed-point pane are only used for
complex fixed-point inputs. The sum of the squares of the real and
imaginary parts of such an input are formed before a comparison is
made, as described in “Value Mode” on page 10-731. The results of the
squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

10-740

Minimum

Product output
Use this parameter to specify how you would like to designate
the product output word and fraction lengths resulting from
a complex-complex multiplication in the block. Refer to
“Multiplication Data Types” on page 8-16 for more information:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block. Refer to “Multiplication Data Types” on page 8-16 for more
information:

• When you select Same as product output, these
characteristics will match those of the product output

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling

10-741

Minimum

tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point — Signed and unsigned real fixed point, and signed
complex fixed-point

• Boolean — The block accepts Boolean inputs to the Rst port.

• 32-bit unsigned integer — When inputs to the block are
double-precision values, the index values are double-precision values.
Otherwise, the index values are 32-bit unsigned integer values.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Maximum Signal Processing Blockset

Mean Signal Processing Blockset

MinMax Simulink

Histogram Signal Processing Blockset

min MATLAB

10-742

Modified Covariance AR Estimator

Purpose Compute estimate of autoregressive (AR) model parameters using
modified covariance method

Library Estimation / Parametric Estimation

Description The Modified Covariance AR Estimator block uses the modified
covariance method to fit an autoregressive (AR) model to the input data.
This method minimizes the forward and backward prediction errors
in the least squares sense. The input is a frame of consecutive time
samples, which is assumed to be the output of an AR system driven by
white noise. The block computes the normalized estimate of the AR
system parameters, A(z), independently for each successive input.

You specify the order, p, of the all-pole model in the Estimation order
parameter. To guarantee a valid output, you must set the Estimation
order parameter to be less than or equal to two thirds the input vector
length.

The output port labeled A outputs the normalized estimate of the AR
model coefficients in descending powers of z.

[1 a(2) ... a(p+1)]

The scalar gain, G, is output from the output port labeled G.

See the Burg AR Estimator block reference page for a comparison of the
Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR
Estimator, and Yule-Walker AR Estimator blocks.

10-743

Modified Covariance AR Estimator

Dialog
Box

Estimation order
The order of the AR model, p.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

A • Double-precision floating point

• Single-precision floating point

G • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

10-744

Modified Covariance AR Estimator

See Also

Burg AR Estimator Signal Processing Blockset

Covariance AR Estimator Signal Processing Blockset

Modified Covariance Method Signal Processing Blockset

Yule-Walker AR Estimator Signal Processing Blockset

armcov Signal Processing Toolbox

10-745

Modified Covariance Method

Purpose Compute parametric spectral estimate using modified covariance
method

Library Estimation / Power Spectrum Estimation

Description The Modified Covariance Method block estimates the power spectral
density (PSD) of the input using the modified covariance method. This
method fits an autoregressive (AR) model to the signal by minimizing
the forward and backward prediction errors in the least squares sense.
The order of the all-pole model is the value specified by the Estimation
order parameter. To guarantee a valid output, you must set the
Estimation order parameter to be less than or equal to two thirds the
input vector length. The spectrum is computed from the FFT of the
estimated AR model parameters.

The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only) representing a frame of consecutive time samples
from a single-channel signal. The block’s output (a column vector) is
the estimate of the signal’s power spectral density at Nfft equally spaced
frequency points in the range [0,Fs), where Fs is the signal’s sample
frequency.

When you select Inherit FFT length from input dimensions, Nfft
is specified by the frame size of the input, which must be a power of 2.
When you do not select Inherit FFT length from input dimensions,
Nfft is specified as a power of 2 by the FFT length parameter, and the
block zero pads or truncates the input to Nfft before computing the FFT.
The output is always sample based.

See the Burg Method block reference for a comparison of the Burg
Method, Covariance Method, Modified Covariance Method, and
Yule-Walker Method blocks.

Examples The dspsacomp demo compares the modified covariance method with
several other spectral estimation methods.

10-746

Modified Covariance Method

Dialog
Box

Estimation order
The order of the AR model.

Inherit FFT length from input dimensions
When selected, uses the input frame size as the number of data
points, Nfft, on which to perform the FFT. Tunable.

FFT length
The number of data points, Nfft, on which to perform the FFT.
When Nfft exceeds the input frame size, the frame is zero-padded
as needed. This parameter is enabled when you do not select
Inherit FFT length from input dimensions.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

10-747

Modified Covariance Method

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

Output • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Burg Method Signal Processing Blockset

Covariance Method Signal Processing Blockset

Modified Covariance AR
Estimator

Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

pmcov Signal Processing Toolbox

See “Power Spectrum Estimation” on page 6-6 for related information.

10-748

Multiphase Clock

Purpose Generate multiple binary clock signals

Library • Signal Processing Sources

• Signal Management / Switches and Counters

Description The Multiphase Clock block generates a sample-based 1-by-N vector
of clock signals, where you specify the integer N in the Number of
phases parameter. Each of the N phases has the same frequency, f,
specified in hertz by the Clock frequency parameter.

The clock signal indexed by the Starting phase parameter is the first
to become active, at t=0. The other signals in the output vector become
active in turn, each one lagging the preceding signal’s activation by
1/(N*f) seconds, the phase interval. The period of the sample-based
output is therefore 1/(N*f) seconds.

The active level can be either high (1) or low (0), as specified by the
Active level (polarity) parameter. The duration of the active level,
D, is set by the Number of phase intervals over which the clock
is active. This value, which can be an integer value between 1 and
N-1, specifies the number of phase intervals that each signal should
remain in the active state after becoming active. The active duty cycle
of the signal is D/N.

Examples Configure the Multiphase Clock block in the model below to generate
a 100 Hz five-phase output in which the third signal is first to become
active. Use a high active level with a duration of one interval.

The corresponding settings are as follows:

• Clock frequency = 100

10-749

Multiphase Clock

• Number of phases = 5

• Starting phase = 3

• Number of phase intervals over which the clock is active = 1

• Active level (polarity) = High (1)

The Scope window below shows the Multiphase Clock block’s output for
these settings. Note that the first active level appears at t=0 on y(3),
the second active level appears at t=0.002 on y(4), the third active level
appears at t=0.004 on y(5), the fourth active level appears at t=0.006
on y(1), and the fifth active level appears at t=0.008 on y(2). Each
signal becomes active 1/(5*100) seconds after the previous signal.

To experiment further, try changing the Number of phase intervals
over which clock is active setting to 3 so that the active-level
duration is three phase intervals (60% duty cycle).

10-750

Multiphase Clock

Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Clock frequency
The frequency of all output clock signals.

Number of phases
The number of different phases, N, in the output vector.

Starting phase
The vector index of the output signal to first become active.
Tunable.

Number of phase intervals over which clock is active
The duration of the active level for every output signal. Tunable
in simulation, but not in Real-Time Workshop external mode.

Active level
The active level, High (1) or Low (0). Tunable.

10-751

Multiphase Clock

Output data type
The output data type. For information on the Logical and
Boolean options of this parameter, see “Effects of Enabling and
Disabling Boolean Support” on page 7-17.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean — The block might output Boolean values depending on the
Output data type parameter setting, as described in “Effects of
Enabling and Disabling Boolean Support” on page 7-17. To learn how
to disable Boolean output support, see “Steps to Disabling Boolean
Support” on page 7-18.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Clock Simulink

Counter Signal Processing Blockset

Pulse Generator Simulink

Event-Count Comparator Signal Processing Blockset

10-752

Multiport Selector

Purpose Distribute arbitrary subsets of input rows or columns to multiple output
ports

Library Signal Management / Indexing

Description The Multiport Selector block extracts multiple subsets of rows or
columns from M-by-N input matrix u, and propagates each new
submatrix to a distinct output port. A length-M 1-D vector input is
treated as an M-by-1 matrix.

The Indices to output parameter is a cell array whose kth cell
contains a one-dimensional indexing expression specifying the subset
of input rows or columns to be propagated to the kth output port. The
total number of cells in the array determines the number of output
ports on the block.

When the Select parameter is set to Rows, the specified one-dimensional
indices are used to select matrix rows, and all elements on the chosen
rows are included. When the Select parameter is set to Columns, the
specified one-dimensional indices are used to select matrix columns,
and all elements on the chosen columns are included. A given input
row or column can appear any number of times in any of the outputs,
or not at all.

When an index references a nonexistent row or column of the input,
the block reacts with the behavior specified by the Invalid index
parameter. The following options are available:

• Clip index — Clip the index to the nearest valid value, and do not
issue an alert.

Example: For a 64-by-4 input with Select = Rows, an index of 72 is
clipped to 64; with Select = Columns, an index of 72 is clipped to 4.
In both cases, an index of -2 is clipped to 1.

• Clip and warn — Display a warning message in the MATLAB
Command Window, and clip as above.

• Generate error — Display an error dialog box and terminate the
simulation.

10-753

Multiport Selector

Examples Consider the following Indices to output cell array:

{4,[1:2
5],[7;8],10:-1:6}

This is a four-cell array, which requires the block to generate four
independent outputs (each at a distinct port). The table below shows
the dimensions of these outputs when Select = Rows and the input
dimension is M-by-N.

Cell Expression Description Output Size

1 4 Row 4 of input 1-by-N

2 [1:2 5] Rows 1, 2, and
5 of input

3-by-N

3 [7;8] Rows 7 and 8 of
input

2-by-N

4 10:-1:6 Rows 10, 9,
8, 7, and 6 of
input

5-by-N

Dialog
Box

10-754

Multiport Selector

Select
The dimension of the input to select, Rows or Columns.

Indices to output
A cell array specifying the row- or column-subsets to propagate
to each of the output ports. The number of cells in the array
determines the number of output ports on the block.

Invalid index
Response to an invalid index value.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Outputs • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-755

Multiport Selector

See Also

Permute Matrix Signal Processing Blockset

Selector Simulink

Submatrix Signal Processing Blockset

Variable Selector Signal Processing Blockset

10-756

N-Sample Enable

Purpose Output ones or zeros for specified number of sample times

Library • Signal Processing Sources

• Signal Management / Switches and Counters

Description The N-Sample Enable block outputs the inactive value (0 or 1,
whichever is not selected in the Active level parameter) during the
first N sample times, where N is the Trigger count value. Beginning
with output sample N+1, the block outputs the active value (1 or 0,
whichever you select in the Active level parameter) until a reset event
occurs or the simulation terminates.

The output is always sample based.

The Reset input check box enables the Rst input port. At any time
during the count, a trigger event at the input port resets the counter
to its initial state. The rate of the reset signal must be a positive
integer multiple of the rate of the data signal input. This block supports
triggered subsystems when you select the Reset input check box.

You specify the triggering event in the Trigger type pop-up menu:

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-757

N-Sample Enable

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above).

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero.

10-758

N-Sample Enable

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Trigger count
The number of samples for which the block outputs the active
value. Tunable.

10-759

N-Sample Enable

Active level
The value to output after the first N sample times, 0 or 1. Tunable.

Reset input
Enables the Rst input port. The rate of the reset signal must be a
positive integer multiple of the rate of the data signal input.

Trigger type
The type of event that triggers a reset when the Rst port is
enabled. Nontunable.

Sample time
The sample period, Ts, for the block’s counter. The block switches
from the active value to the inactive value at t=Ts*(N+1).

Output data type
The output data type. Nontunable. For information on the
Logical and Boolean options of this parameter, see “Effects of
Enabling and Disabling Boolean Support” on page 7-17.

Supported
Data
Types

• Double-precision floating point

• Boolean — The block accepts Boolean inputs to the Rst port, which
is enabled when you set the Reset input parameter. The block
might output Boolean values depending on the Output data type
parameter setting, as described in “Effects of Enabling and Disabling
Boolean Support” on page 7-17. To learn how to disable Boolean
output support, see “Steps to Disabling Boolean Support” on page
7-18.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Counter Signal Processing Blockset

N-Sample Switch Signal Processing Blockset

10-760

N-Sample Switch

Purpose Switch between two inputs after specified number of sample periods

Library Signal Management / Switches and Counters

Description The N-Sample Switch block outputs the signal connected to the top
input port during the first N sample times after the simulation begins
or the block is reset, where you specify N in the Switch count
parameter. Beginning with output sample N+1, the block outputs the
signal connected to the bottom input until the next reset event or the
end of the simulation.

You specify the sample period of the output in the Sample time
parameter (that is, the output sample period is not inherited from the
sample period of either input). The block applies a zero-order hold at
the input ports, so the value the block reads from a given port between
input sample times is the value of the most recent input to that port.

Both inputs must have the same dimension, except in the following
two cases:

• When one input is a scalar, the block expands the scalar input to
match the size of the other input.

• When one input is a 1-D vector and the other input is a row or column
vector with the same number of elements, the block reshapes the 1-D
vector to match the dimension of the other input.

The inputs must either both be frame based or both be sample based.

The Reset input check box enables the Rst input port. At any time
during the count, a trigger event at the Rst port resets the counter to
zero. The rate of the reset signal must be a positive integer multiple
of the rate of the data signal input. This block supports triggered
subsystems when you select the Reset input check box.

You specify the triggering event in the Trigger type pop-up menu,
and can be one of the following:

10-761

N-Sample Switch

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above).

10-762

N-Sample Switch

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Dialog
Box

Switch count
The number of sample periods, N, for which the output is
connected to the top input before switching to the bottom input.
Tunable.

10-763

N-Sample Switch

Reset input
Enables the Rst input port when selected. The rate of the reset
signal must be a positive integer multiple of the rate of the data
signal input.

Trigger type
The type of event at the Rst port that resets the block’s counter.
This parameter is enabled when you select Reset input. Tunable.

Sample time
The sample period, Ts, for the block’s counter. The block switches
inputs at t=Ts*(N+1).

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean — The block accepts Boolean inputs to the Rst port, which is
enabled when you set the Reset input parameter.

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Counter Signal Processing Blockset

N-Sample Enable Signal Processing Blockset

10-764

NCO

Purpose Generate real or complex sinusoidal signals

Library Signal Operations

Description The NCO block generates a multichannel real or complex sinusoidal
signal, with independent frequency and phase in each output channel.
The amplitude of the created signal is always 1. The block implements
the algorithm as shown in the following diagram:

The implementation of a numerically controlled oscillator (NCO) has
two distinct parts. First, a phase accumulator accumulates the phase
increment and adds in the phase offset. In this stage, an optional
internal dither signal can also be added. The NCO output is then
calculated by quantizing the results of the phase accumulator section
and using them to select values from a lookup table.

Given a desired output frequency F0 , calculate the value of the Phase
increment block parameter with

10-765

NCO

phase increment
F

F

N

s
=

⋅
()0 2

where N is the accumulator word length and

F
T sample times

s
= =1 1

The frequency resolution of an NCO is defined by

∆ =
⋅

f
Ts

N
1

2
Hz

Given a desired phase offset (in radians), calculate the Phase offset
block parameter with

phase offset
desired phase offsetN

= ⋅2
2π

The spurious free dynamic range (SFDR) is estimated as follows for

a lookup table with 2P entries, where P is the number of quantized
accumulator bits:

SFDR P

SFDR P

= ()
= +()

6

6 12

 dB without dither

 dB witth dither

The NCO block supports real inputs only. All outputs are real except for
the output signal in Complex exponential mode.

Fixed-Point
Data
Types

The following diagram shows the data types used within the NCO block.

10-766

NCO

• You can set the accumulator and output data types in the block dialog
as discussed in “Dialog Box” on page 10-774 below.

• The phase increment and phase offset inputs must be integers or
fixed-point data types with zero fraction length.

• You specify the number of quantized accumulator bits in the Number
of quantized accumulator bits parameter.

• The phase quantization error word length is equal to the accumulator
word length minus the number of quantized accumulator bits, and
the fraction length is zero.

10-767

NCO

Examples Design an NCO source with the following specifications:

• Desired output frequency F0 510= Hz

• Frequency resolution ∆ =f 0 05. Hz

• Sample period Ts = 1 8000/ s

• Desired phase offset π / 2

1 Calculate the number of required accumulator bits from the equation
for frequency resolution:

Note that N must be an integer value. The value of N is rounded up to
the nearest integer; 18 accumulator bits are needed to accommodate
the value of the frequency resolution.

2 Using this best value of N, calculate the frequency resolution that
will be achieved by the NCO block:

∆ =
⋅

∆ =
⋅

∆ =

f
T

f

f

s
N

1

2
1

1
8000

2

0 0305

18

Hz

 Hz

.

3 Calculate the number of quantized accumulator bits from the
equation for spurious free dynamic range and the fact that for

a lookup table with 2P entries, P is the number of quantized
accumulator bits:

10-768

NCO

SFDR P

P
P

= +()
= +

=

6 12

96 6 12
14

dB

 dB dB()

4 Select the number of dither bits. In general, a good choice for the
number of dither bits is the accumulator word length minus the
output word length; in this case 4.

5 Calculate the phase increment:

phase increment
F

F

phase increment

N

s
=

⋅

= ⋅

round()

round(

0

1

2

501 2 88

8000
16417

)

phase increment =

6 Calculate the phase offset:

phase offset
desired phase offsetaccumulator word length

= ⋅2
22

2
2

2
65536

18

π
π

π
phase offset

phase offset

=
⋅

=

7 Type doc_nco_example at the MATLAB command line to open the
following model:

10-769

NCO

The NCO block in the model is populated with the specifications and
quantities you just calculated. The output word length and fraction
length depend on the constraints of your hardware; this example uses
a word length of 16 and a fraction length of 14. The three panes of
the block mask appear as follows:

10-770

NCO

10-771

NCO

10-772

NCO

Looking at the NCO Characterization pane, you can verify that the
specifications of this problem have been met.

8 Experiment with the model to observe the effects on the output
shown on the Spectrum Scope. For example, try turning dithering on
and off, and try changing the number of dither bits.

10-773

NCO

Dialog
Box

The Main pane of the NCO dialog appears as follows:

Phase increment source
Choose how you will specify the phase increment. The phase
increment can come from an input port or from the dialog.

• If you select Input port, the inc port appears on the block icon.

• If you select Specify via dialog, the Phase increment
parameter appears.

10-774

NCO

Phase increment
Specify the phase increment. Only integer data types, including
fixed-point data types with zero fraction length, are allowed.

This parameter is visible only if Specify via dialog is selected
for the Phase increment source parameter.

Phase offset source
Choose how you will specify the phase offset. The phase offset can
come from an input port or from the dialog.

• If you select Input port, the offset port appears on the block
icon.

• If you select Specify via dialog, the Phase offset parameter
appears.

Phase offset
Specify the phase offset. Only integer data types, including
fixed-point data types with fraction length, are allowed.

This parameter is visible only if Specify via dialog is selected
for the Phase offset source parameter.

Add internal dither
Select to add internal dithering to the NCO algorithm.
Dithering is added using the PN Sequence Generator from the
Communications Blockset.

Number of dither bits
Specify the number of dither bits.

This parameter is visible only if Add internal dither is selected.

Quantize phase
Select to enable quantization of the accumulated phase.

Number of quantized accumulator bits
Specify the number of quantized accumulator bits. This
determines the number of entries in the lookup table. The number

10-775

NCO

of quantized accumulator bits must be less than the accumulator
word length.

This parameter is visible only if Quantize phase is selected.

Show phase quantization error port
Select to output the phase quantization error. When you select
this, the Qerr port appears on the block icon.

This parameter is visible only if Quantize phase is selected.

Output signal
Choose whether the block should output a Sine, Cosine, Complex
exponential, or Sine and cosine signals. If you select Sine and
cosine, the two signals will output on different ports.

Sample time
Specify the sample time in seconds when the block is acting as a
source. When either the phase increment or phase offset come
in via block input ports, the sample time is inherited and this
parameter is not visible.

Samples per frame
Specify the number of samples per frame when the number of
samples per frame is greater than one. When it exists, the phase
offset input port has the same frame status as the output port(s).
The phase increment input port, when it exists, does not support
frames.

10-776

NCO

The Data Types pane of the NCO dialog appears as follows:

Rounding mode
The rounding mode used for this block when inputs are fixed
point is always Floor.

Overflow mode
The overflow mode used for this block when inputs are fixed point
is always Wrap.

10-777

NCO

Accumulator
Specify the word length of the accumulator data type. The fraction
length is always zero; this is an integer data type.

Output
Specify the output data type.

• Choose double or single for a floating-point implementation.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

The NCO Characterization pane of the NCO dialog appears as
follows:

10-778

NCO

The NCO Characterization pane does not have any parameters.
Instead, it provides you with details on the NCO signal currently being
implemented by the block:

• Calculated spurious free dynamic range — The spurious free
dynamic range (SFDR) is calculated as follows for a lookup table

with 2P entries:

SFDR P

SFDR P

= ()
= +()

6

6 12

 dB without dither

 dB witth dither

10-779

NCO

• Number of data points for lookup table — The lookup table is
implemented as a quarter-wave sine table. The number of lookup
table data points is defined by

2 2number of quantized accumulator bits−

• Quarter wave sine lookup table size — The quarter wave sine
lookup table size is defined by

()number of lookup table data points output word length⋅ ()
8

 bytes

Supported
Data
Types

Port Supported Data Types

inc • Fixed point (signed) with zero fraction length

• 8-, 16-, and 32-bit signed integers

offset • Fixed point (signed) with zero fraction length

• 8-, 16-, and 32-bit signed integers

sin • Double-precision floating point

• Single-precision floating point

• Fixed point (signed)

Qerr • 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

PN Sequence Generator Communications Blockset

Sine Wave Signal Processing Blockset

10-780

Normalization

Purpose Normalize input by its 2-norm or squared 2-norm

Library Math Functions / Math Operations

Description The Normalization block independently normalizes each column of the
M-by-N matrix input, u.

The block accepts the following types of inputs:

• Frame-based vectors and matrices

• Sample-based row and column vectors

• Sample-based unoriented (1-D) vectors

Note the block does not accept sample-based full matrix inputs.

The Normalization block accepts real and complex inputs. The block
accepts floating-point signals only for the 2-norm mode, and both
fixed-point and floating-point signals for the squared 2-norm mode.

The output always has the same dimension and frame status as the
input. For convenience, length-M 1-D vectors and sample-based
length-M row vectors are both treated as M-by-1 column vectors.

2-Norm

The 2-norm mode is supported for floating-point inputs only. When
you specify 2-norm for the Norm parameter, the block normalizes the
jth input column as follows

where you specify b in the Normalization bias parameter, and is
the 2-norm (or Euclidean norm) of the jth input column.

Equivalently,

10-781

Normalization

y = u ./ (norm(u) + b) % Equivalent MATLAB code

The normalization bias, b, is typically chosen to be a small positive
constant (for example, 1e-10) that prevents potential division by zero.

Squared 2-Norm

The squared 2-norm mode is supported for both fixed-point and
floating-point inputs. When you specify Squared 2-norm for the Norm
parameter, the block normalizes the jth input column as follows

where

Equivalently,

y = u ./ (norm(u).^2 + b) % Equivalent MATLAB code

Fixed-Point Data Types

The following diagram shows the data types used within the
Normalization block for fixed-point signals (squared 2-norm mode).

The output of the multiplier is in the product output data type
when the input is real. When the input is complex, the result of the
multiplication is in the accumulator data type. For details on the
complex multiplication performed, refer to “Multiplication Data Types”

10-782

Normalization

on page 8-16. You can set the accumulator, product output, and output
data types in the block dialog as discussed in “Dialog Box” on page
10-783 below.

Dialog
Box

The Main pane of the Normalization dialog appears as follows:

Norm
Specify the type of normalization to apply, 2-norm or Squared
2-norm. 2-norm mode supports floating-point signals. Squared
2-norm supports both fixed-point and floating-point signals.
Tunable.

Normalization bias
Specify the real value b to be added in the denominator to avoid
division by zero. Tunable.

10-783

Normalization

The Fixed-Point pane of the Normalization dialog appears as follows:

Note The parameters on this pane are only applicable to fixed-point
signals when the block is in squared 2-norm mode. Refer to “Fixed-Point
Data Types” on page 10-782 for a diagram of how the product output,
accumulator, and output data types are used in this case.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

10-784

Normalization

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths:

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block. The bias b is also quantized into the accumulator data type:

• When you select Same as product output, these
characteristics will match those of the product output

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

10-785

Normalization

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Matrix Scaling Signal Processing Blockset

Reciprocal Condition Signal Processing Blockset

norm MATLAB

10-786

Offset

Purpose Truncate vectors by removing or keeping beginning or ending values

Library Signal Operations

Description The Offset block removes or keeps values from the beginning or end
of a vector and outputs the result in a vector of user-specified length.
The inputs to the In ports (In1, In2, ...) can be scalars or vectors, but
they must be the same size and data type. The offset values are the
inputs to the O ports (O1, O2, ...); they must be scalar values with the
same data type. These offset values should be integer values because
they determine the number of values the block discards or retains
from each input vector. The block rounds any offset value that is a
noninteger value to the nearest integer value. There is one output port
for each pair of In and O ports. This block supports sample-based and
frame-based signals.

Use the Mode parameter to determine which values the block discards
or retains from the input vector. To discard the initial values of the
vector, select Remove beginning samples. To discard the final values
of the vector, select Remove ending samples. To retain the initial
values of the vector, select Keep beginning samples. To retain the
final values of a vector, select Keep ending samples.

Use the Number of input data-offset pairs parameter to specify the
number of inputs to the block. The number of input ports is twice the
scalar value you enter. For example, if you enter 3, ports In1, O1, In2,
O2, In3, and O3 appear on the block.

The block uses the Output port length parameter to determine the
length of the output vectors. If you select Same as input, the block
outputs vectors that are the same length as the input to the In ports.
If you select User-defined, the Output length parameter appears.
Enter a scalar that represents the desired length of the output vectors.
If your desired output length is greater than the number of values you
extracted from your input vector, the block zero-pads the end of the
vector to reach the length you specified.

Use the Action for out of range offset value parameter to determine
how the block behaves when an offset value is not in the range

10-787

Offset

, where N is the input vector length. Select Clip
if you want any offset values less than 0 to be set to 0 and any offset
values greater than N to be set to N. Select Clip and warn if you want
to be warned when any offset values less than 0 are set to 0 and any
offset values greater than N are set to N. Select Error if you want the
simulation to stop and display an error when the offset values are out
of range.

Dialog
Box

Mode
Use this parameter to determine which values the block discards
or retains from the input vector. Your choices are Remove
beginning samples, Remove ending samples, Keep beginning
samples, and Keep ending samples.

Number of input data-offset pairs
Specify the number of inputs to the block. The number of input
ports is twice the scalar value you enter.

Output port length
Use this parameter to specify the length of the output vectors. If
you select Same as input, the output vectors are the same length

10-788

Offset

as the input vectors. If you select User-defined, you can enter
the desired length of the output vectors.

Output length
Enter a scalar that represents the desired length of the output
vectors. This parameter is visible if, for the Output port length
parameter, you select User-defined.

Action for out of range offset value
Use this parameter to determine how the block behaves when
an offset value is not in the range such that ,
where N is the input vector length. When you want any offset
values less than 0 to be set to 0 and any offset values greater than
N to be set to N, select Clip. When you want to be warned when
any offset values less than 0 are set to 0 and any offset values
greater than N are set to N, select Clip and warn. When you
want the simulation to stop and display an error when the offset
values are out of range, select Error.

10-789

Offset

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

O • Double-precision floating point

• Single-precision floating point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

10-790

Overlap-Add FFT Filter

Purpose Implement overlap-add method of frequency-domain filtering

Library Filtering / Filter Designs

Description The Overlap-Add FFT Filter block uses an FFT to implement
the overlap-add method, a technique that combines successive
frequency-domain filtered sections of an input sequence.

Valid inputs to this block are 1-D vectors, sample-based vectors,
frame-based vectors, and frame-based full matrices. All outputs are
unbuffered into sample-based row vectors. The length of the output
vector is equal to the number of channels in the input vector. An M-by-1
sample-based input has M channels, so it would result in a length-M
sample-based output vector. An M-by-1 frame-based input has only one
channel, so would result in a 1-by-1 (scalar) output.

The block’s data output rate is M times faster than its data input
rate, where M is the input frame-size. Thus, the block’s data input
and output rates are the same when the inputs are 1-D vectors,
sample-based vectors, or frame-based row vectors. For frame-based
column and frame-based full-matrix inputs, the block’s data output rate
is M times greater than the block’s data input rate.

1-D vectors are treated as length-N sample-based vectors, and result in
sample-based length-N row vectors.

The block breaks the scalar input sequence u, of length nu, into length-L
nonoverlapping data sections,

which it linearly convolves with the filter’s FIR coefficients,

The numerator coefficients for H(z) are specified as a vector
by the FIR coefficients parameter. The coefficient vector,
b = [b(1) b(2) ... b(n+1)], can be generated by one of the filter

10-791

Overlap-Add FFT Filter

design functions in the Signal Processing Toolbox, such as fir1. All
filter states are internally initialized to zero.

When either the filter coefficients or the inputs to the block are complex,
the Output parameter should be set to Complex. Otherwise, the default
Output setting, Real, instructs the block to take only the real part
of the solution.

The block’s overlap-add operation is equivalent to

y = ifft(fft(u(i:i+L-1),nfft) .* fft(b,nfft))

where you specify nfft in the FFT size parameter as a power-of-two
value greater (typically much greater) than n+1. Values for FFT
size that are not powers of two are rounded upwards to the nearest
power-of-two value to obtain nfft.

The block overlaps successive output sections by n points and sums
them.

The first L samples of each summation are output in sequence. The
block chooses the parameter L based on the filter order and the FFT size.

L = nfft - n

Latency

In single-tasking operation, the Overlap-Add FFT Filter block has a
latency of nfft-n+1 samples. The first nfft-n+1 consecutive outputs
from the block are zero; the first filtered input value appears at the
output as sample nfft-n+2.

In multitasking operation, the Overlap-Add FFT Filter block has a
latency of 2*(nfft-n+1) samples. The first 2*(nfft-n+1) consecutive

10-792

Overlap-Add FFT Filter

outputs from the block are zero; the first filtered input value appears at
the output as sample 2*(nfft-n)+3.

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56
and “Models with Multiple Sample Rates” in the Real-Time Workshop
User’s Guide documentation.

Dialog
Box

FFT size
The size of the FFT, which should be a power-of-two value greater
than the length of the specified FIR filter.

FIR coefficients
The filter numerator coefficients.

Output
The complexity of the output; Real or Complex. When the input
signal or the filter coefficients are complex, this should be set to
Complex.

10-793

Overlap-Add FFT Filter

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Overlap-Save FFT Filter Signal Processing Blockset

10-794

Overlap-Save FFT Filter

Purpose Implement overlap-save method of frequency-domain filtering

Library Filtering / Filter Designs

Description The Overlap-Save FFT Filter block uses an FFT to implement
the overlap-save method, a technique that combines successive
frequency-domain filtered sections of an input sequence.

Valid inputs to this block are 1-D vectors, sample-based vectors,
frame-based vectors, and frame-based full matrices. All outputs are
unbuffered into sample-based row vectors. The length of the output
vector is equal to the number of channels in the input vector. An M-by-1
sample-based input has M channels, so it would result in a length-M
sample-based output vector. An M-by-1 frame-based input has only one
channel, so would result in a 1-by-1 (scalar) output.

The block’s data output rate is M times faster than its data input
rate, where M is the input frame-size. Thus, the block’s data input
and output rates are the same when the inputs are 1-D vectors,
sample-based vectors, or frame-based row vectors. For frame-based
column and frame-based full-matrix inputs, the block’s data output rate
is M times greater than the block’s data input rate.

1-D vectors are treated as length-N sample-based vectors, and result in
sample-based length-N row vectors.

Overlapping sections of input u are circularly convolved with the FIR
filter coefficients

The numerator coefficients for H(z) are specified as a vector
by the FIR coefficients parameter. The coefficient vector,
b = [b(1) b(2) ... b(n+1)], can be generated by one of the filter
design functions in the Signal Processing Toolbox, such as fir1. All
filter states are internally initialized to zero.

When either the filter coefficients or the inputs to the block are complex,
the Output parameter should be set to Complex. Otherwise, the default

10-795

Overlap-Save FFT Filter

Output setting, Real, instructs the block to take only the real part
of the solution.

The circular convolution of each section is computed by multiplying
the FFTs of the input section and filter coefficients, and computing the
inverse FFT of the product.

y = ifft(fft(u(i:i+(L-1)),nfft) .* fft(b,nfft))

where you specify nfft in the FFT size parameter as a power of
two value greater (typically much greater) than n+1. Values for FFT
size that are not powers of two are rounded upwards to the nearest
power-of-two value to obtain nfft.

The first n points of the circular convolution are invalid and are
discarded. The Overlap-Save FFT Filter block outputs the remaining
nfft-n points, which are equivalent to the linear convolution.

Latency

In single-tasking operation, the Overlap-Save FFT Filter block has a
latency of nfft-n+1 samples. The first nfft-n+1 consecutive outputs
from the block are zero; the first filtered input value appears at the
output as sample nfft-n+2.

In multitasking operation, the Overlap-Save FFT Filter block has a
latency of 2*(nfft-n+1) samples. The first 2*(nfft-n+1) consecutive
outputs from the block are zero; the first filtered input value appears at
the output as sample 2*(nfft-n)+3.

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56
and “Models with Multiple Sample Rates” in the Real-Time Workshop
User’s Guide documentation.

10-796

Overlap-Save FFT Filter

Dialog
Box

FFT size
The size of the FFT, which should be a power of two value greater
than the length of the specified FIR filter.

FIR coefficients
The filter numerator coefficients.

Output
The complexity of the output; Real or Complex. When the input
signal or the filter coefficients are complex, this should be set to
Complex.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-797

Overlap-Save FFT Filter

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Overlap-Add FFT Filter Signal Processing Blockset

10-798

Overwrite Values

Purpose Overwrite submatrix or subdiagonal of input

Library • Math Functions / Matrices and Linear Algebra / Matrix Operations

• Signal Management / Indexing

Description The Overwrite Values block overwrites a contiguous submatrix or
subdiagonal of an input matrix. You can provide the overwriting values
by typing them in a block parameter, or through an additional input
port, which is useful for providing overwriting values that change at
each time step.

The block accepts both sample- and frame-based vectors and matrices.
The output has the same size and frame status as the original input
signal, not necessarily the same size and frame status as the signal
containing the overwriting values.

Specifying the Overwriting Values

The Source of overwriting value(s) parameter determines how you
must provide the overwriting values, and has the following settings.

• Specify via dialog – You must provide the overwriting value(s)
in the Overwrite with parameter. The block uses the same
overwriting values to overwrite the specified portion of the input at
each time step. To learn how to specify valid overwriting values, see
“Valid Overwriting Values” on page 10-800.

• Second input port – You must provide overwriting values through
a second block input port, V. Use this setting to provide different
overwriting values at each time step. The output inherits its size,
rate, and frame status from the input signal, not the overwriting
values.

10-799

Overwrite Values

The rate at which you provide the overwriting values through input
port V must match the rate at which the block receives each input
matrix at input port A. The rate requirements depend on whether
the input signal and overwriting values signal have the same frame
status:

- When both signals are sample based, their sample rates must be
the same.

- When both signals are frame based, their frame rates must be
the same.

- When one signal is sample based and one signal is frame based,
the sample rate of the sample-based signal must be the same as
the frame rate of the frame-based signal.

Valid Overwriting Values

The overwriting values can be a single constant, vector, or matrix,
depending on the portion of the input you are overwriting, regardless of
whether you provide the overwriting values through an input port or by
providing them in the Overwrite with parameter.

Valid Overwriting Values

Portion of Input to
Overwrite Valid Overwriting Values Example

A single element in the input Any constant value, v v = 9

10-800

Overwrite Values

Portion of Input to
Overwrite Valid Overwriting Values Example

A length-k portion of the
diagonal

Any length-k column or row
vector, v

A length-k portion of a row Any length-k row vector, v

A length-k portion of a
column

Any length-k column vector,
v

An m-by-n submatrix Any m-by-n matrix, v

10-801

Overwrite Values

Portion of Input to
Overwrite Valid Overwriting Values Example

This block supports Simulink virtual buses.

10-802

Overwrite Values

Dialog
Box

Note Only some of the following parameters are visible in the dialog
box at any one time.

10-803

Overwrite Values

Overwrite
Determines whether to overwrite a specified submatrix or a
specified portion of the diagonal.

Source of overwriting value(s)
Determines where you must provide the overwriting values: either
through an input port, or by providing them in the Overwrite
with parameter. For more information, see “Specifying the
Overwriting Values” on page 10-799.

Overwrite with
The value(s) with which to overwrite the specified portion of
the input matrix. Enabled only when Source of overwriting
value(s) is set to Specify via dialog. To learn how to specify
valid overwriting values, see “Valid Overwriting Values” on page
10-800.

Row span
The range of input rows to be overwritten. Options are All rows,
One row, or Range of rows. For descriptions of these options, see
“Dialog Box” on page 10-803.

Row/Starting row
The input row that is the first row of the submatrix that the
block overwrites. For a description of the options for the Row
and Starting row parameters, see Settings for Row, Column,
Starting Row, and Starting Column Parameters on page 10-809.
Row is enabled when Row span is set to One row, and Starting
row when Row span is set to Range of rows.

Row index/Starting row index
Index of the input row that is the first row of the submatrix that
the block overwrites. See how to use these parameters in Settings
for Row, Column, Starting Row, and Starting Column Parameters
on page 10-809. Row index is enabled when Row is set to Index,
and Starting row index when Starting row is set to Index.

Row offset/Starting row offset
The offset of the input row that is the first row of the submatrix
that the block overwrites. See how to use these parameters in

10-804

Overwrite Values

Settings for Row, Column, Starting Row, and Starting Column
Parameters on page 10-809. Row offset is enabled when Row is
set to Offset from middle or Offset from last, and Starting
row offset is enabled when Starting row is set to Offset from
middle or Offset from last.

Ending row
The input row that is the last row of the submatrix that the
block overwrites. For a description of this parameter’s options,
see Settings for Ending Row and Ending Column Parameters on
page 10-810. This parameter is enabled when Row span is set to
Range of rows, and Starting row is set to any option but Last.

Ending row index
Index of the input row that is the last row of the submatrix that
the block overwrites. See how to use this parameter in Settings
for Ending Row and Ending Column Parameters on page 10-810.
Enabled when Ending row is set to Index.

Ending row offset
The offset of the input row that is the last row of the submatrix
that the block overwrites. See how to use this parameter in
Settings for Ending Row and Ending Column Parameters on
page 10-810. Enabled when Ending row is set to Offset from
middle or Offset from last.

Column span
The range of input columns to be overwritten. Options are All
columns, One column, or Range of columns. For descriptions of
the analogous row options, see “Dialog Box” on page 10-803.

Column/Starting column
The input column that is the first column of the submatrix that
the block overwrites. For a description of the options for the
Column and Starting column parameters, see Settings for
Row, Column, Starting Row, and Starting Column Parameters on
page 10-809. Column is enabled when Column span is set to
One column, and Starting column when Column span is set to
Range of columns.

10-805

Overwrite Values

Column index/Starting column index
Index of the input column that is the first column of the submatrix
that the block overwrites. See how to use these parameters in
Settings for Row, Column, Starting Row, and Starting Column
Parameters on page 10-809. Column index is enabled when
Column is set to Index, and Starting column index when
Starting column is set to Index.

Column offset/Starting column offset
The offset of the input column that is the first column of the
submatrix that the block overwrites. See how to use these
parameters in Settings for Row, Column, Starting Row, and
Starting Column Parameters on page 10-809. Column offset
is enabled when Column is set to Offset from middle or
Offset from last, and Starting column offset is enabled
when Starting column is set to Offset from middle or Offset
from last.

Ending column
The input column that is the last column of the submatrix that the
block overwrites. For a description of this parameter’s options,
see Settings for Ending Row and Ending Column Parameters on
page 10-810. This parameter is enabled when Column span is
set to Range of columns, and Starting column is set to any
option but Last.

Ending column index
Index of the input column that is the last column of the submatrix
that the block overwrites. See how to use this parameter in
Settings for Ending Row and Ending Column Parameters on
page 10-810. This parameter is enabled when Ending column
is set to Index.

Ending column offset
The offset of the input column that is the last column of the
submatrix that the block overwrites. See how to use this
parameter in Settings for Ending Row and Ending Column
Parameters on page 10-810. This parameter is enabled when

10-806

Overwrite Values

Ending column is set to Offset from middle or Offset from
last.

Diagonal span
The range of diagonal elements to be overwritten. Options are All
elements, One element, or Range of elements. For descriptions
of these options, see “Overwriting a Subdiagonal” on page 10-813.

Element/Starting element
The input diagonal element that is the first element in the
subdiagonal that the block overwrites. For a description of the
options for the Element and Starting element parameters,
see Element and Starting Element Parameters on page 10-813.
Element is enabled when Element span is set to One element,
and Starting element when Element span is set to Range of
elements.

Element index/Starting element index
Index of the input diagonal element that is the first element of
the subdiagonal that the block overwrites. See how to use these
parameters in Element and Starting Element Parameters on
page 10-813. Element index is enabled when Element is set to
Index, and Starting element index when Starting element
is set to Index.

Element offset/Starting element offset
The offset of the input diagonal element that is the first element
of the subdiagonal that the block overwrites. See how to use
these parameters in Element and Starting Element Parameters
on page 10-813. Element offset is enabled when Element is
set to Offset from middle or Offset from last, and Starting
element offset is enabled when Starting element is set to
Offset from middle or Offset from last.

Ending element
The input diagonal element that is the last element of the
subdiagonal that the block overwrites. For a description of this
parameter’s options, see Ending Element Parameters on page
10-814. This parameter is enabled when Element span is set to

10-807

Overwrite Values

Range of elements, and Starting element is set to any option
but Last.

Ending element index
Index of the input diagonal element that is the last element of
the subdiagonal that the block overwrites. See how to use this
parameter in Ending Element Parameters on page 10-814. This
parameter is enabled when Ending element is set to Index.

Ending element offset
The offset of the input diagonal element that is the last element
of the subdiagonal that the block overwrites. See how to use this
parameter in Ending Element Parameters on page 10-814. This
parameter is enabled when Ending element is set to Offset
from middle or Offset from last.

Examples Overwriting a Submatrix

To overwrite a submatrix, follow these steps:

1 Set the Overwrite parameter to Submatrix.

2 Specify the overwriting values as described in “Specifying the
Overwriting Values” on page 10-799.

3 Specify which rows and columns of the input matrix are contained in
the submatrix that you want to overwrite by setting the Row span
parameter to one of the following options and the Column span to
the analogous column-related options:

• All rows – The submatrix contains all rows of the input matrix.

• One row – The submatrix contains only one row of the input
matrix, which you must specify in the Row parameter, as
described in the following table.

• Range of rows – The submatrix contains one or more rows of the
input, which you must specify in the Starting Row and Ending
row parameters, as described in the following tables.

10-808

Overwrite Values

4 When you set Row span to One row or Range of rows, you need
to further specify the row(s) contained in the submatrix by setting
the Row or Starting row and Ending row parameters. Likewise,
when you set Column span to One column or Range of columns,
you must further specify the column(s) contained in the submatrix
by setting the Column or Starting column and Ending column
parameters. For descriptions of the settings for these parameters,
see the following tables.

Settings for Row, Column, Starting Row, and Starting Column Parameters

Settings for
Specifying
the
Submatrix’s
First Row
or Column

First Row of Submatrix
(Only row for Row span = One
row)

First Column of Submatrix
(Only row for Row span = One
row)

First First row of the input First column of the input

Index Input row specified in the Row
index parameter

Input column specified in the
Column index parameter

Offset from
last

Input row with the index
M - rowOffset
where M is the number of
input rows, and rowOffset is
the value of the Row offset or
Starting row offset parameter

Input column with the index
N - colOffset
where N is the number of
input columns, and colOffset is
the value of the Column offset or
Starting column offset parameter

Last Last row of the input Last column of the input

10-809

Overwrite Values

Settings for
Specifying
the
Submatrix’s
First Row
or Column

First Row of Submatrix
(Only row for Row span = One
row)

First Column of Submatrix
(Only row for Row span = One
row)

Offset from
middle

Input row with the index
floor(M/2 + 1 - rowOffset)
where M is the number of input
rows, and rowOffset is the value of
the Row offset or Starting row
offset parameter

Input column with the index
floor(N/2 + 1 - rowOffset)
where N is the number of input
columns, and colOffset is the value
of the or Column offset or Starting
column offset parameter

Middle Input row with the index
floor(M/2 + 1)
where M is the number of
input rows

Input columns with the index

floor(N/2 + 1)
where N is the number of
input columns

Settings for Ending Row and Ending Column Parameters

Settings for
Specifying
the
Submatrix’s
Last Row or
Column Last Row of Submatrix Last Column of Submatrix

Index Input row specified in the Ending
row index parameter

Input column specified in the
Ending column index parameter

Offset from
last

Input row with the index
M - rowOffset
where M is the number of
input rows, and rowOffset is the
value of the Ending row offset
parameter

Input column with the index
N - colOffset
where N is the number of
input columns, and colOffset is
the value of the Ending column
offset parameter

10-810

Overwrite Values

Settings for
Specifying
the
Submatrix’s
Last Row or
Column Last Row of Submatrix Last Column of Submatrix

Last Last row of the input Last column of the input

Offset from
middle

Input row with the index
floor(M/2 + 1 - rowOffset)
where M is the number of input
rows, and rowOffset is the value of
the Ending row offset parameter

Input column with the index
floor(N/2 + 1 - rowOffset)
where N is the number of input
columns, and colOffset is the
value of the Ending column offset
parameter

Middle Input row with the index
floor(M/2 + 1)
where M is the number of
input rows

Input columns with the
indexfloor(N/2 + 1)where N
is the number of input columns

For example, to overwrite the lower-right 2-by-3 submatrix of a 3-by-5
input matrix with all zeros, enter the following set of parameters:

• Overwrite = Submatrix

• Source of overwriting value(s) = Specify via dialog

• Overwrite with = 0

• Row span = Range of rows

• Starting row = Index

• Starting row index = 2

• Ending row = Last

• Column span = Range of columns

• Starting column = Offset from last

• Starting column offset = 2

10-811

Overwrite Values

• Ending column = Last

The following figure shows the block with the above settings overwriting
a portion of a 3-by-5 input matrix.

There are often several possible parameter combinations that select the
same submatrix from the input. For example, instead of specifying Last
for Ending column, you could select the same submatrix by specifying

• Ending column = Index

• Ending column index = 5

10-812

Overwrite Values

Overwriting a Subdiagonal

To overwrite a subdiagonal, follow these steps:

1 Set the Overwrite parameter to Diagonal.

2 Specify the overwriting values as described in “Specifying the
Overwriting Values” on page 10-799.

3 Specify the subdiagonal that you want to overwrite by setting the
Diagonal span parameter to one of the following options:

• All elements–Overwrite the entire input diagonal.

• One element–Overwrite one element in the diagonal, which you
must specify in the Element parameter (described below).

• Range of elements – Overwrite a portion of the input diagonal,
which you must specify in the Starting element and Ending
element parameters, as described in the following table.

4 When you set Diagonal span to One element or Range of
elements, you need to further specify which diagonal element(s) to
overwrite by setting the Element or Starting element and Ending
element parameters. See the following tables.

Element and Starting Element Parameters

Settings for Element
and Starting Element
Parameters

First Element in Subdiagonal
(Only element when Diagonal span = One
element)

First Diagonal element in first row of the input

Index kth diagonal element, where k is the value of the Element
index or Starting element index parameter

10-813

Overwrite Values

Settings for Element
and Starting Element
Parameters

First Element in Subdiagonal
(Only element when Diagonal span = One
element)

Offset from last Diagonal element in the row with the index
M - offset
where M is the number of input rows, and offset is the value of
the Element offset or Starting element offset parameter

Last Diagonal element in the last row of the input

Offset from middle Diagonal element in the input row with the index
floor(M/2 + 1 - offset)
where M is the number of input rows, and
offset is the value of the Element offset or Starting element
offset parameter

Middle Diagonal element in the input row with the index
floor(M/2 + 1)
where M is the number of input rows

Ending Element Parameters

Settings for Ending
Element Parameter Last Element in Subdiagonal

Index kth diagonal element, where k is the value of the Ending
element index parameter

Offset from last Diagonal element in the row with the index
M - offset
where M is the number of input rows, and offset is the value of
the Ending element offset parameter

Last Diagonal element in the last row of the input

10-814

Overwrite Values

Settings for Ending
Element Parameter Last Element in Subdiagonal

Offset from middle Diagonal element in the input row with the index
floor(M/2 + 1 - offset)
where M is the number of input rows, and
offset is the value of the Ending element offset parameter

Middle Diagonal element in the input row with the index
floor(M/2 + 1)
where M is the number of input rows

Supported
Data
Types

Port Supported Data Types

A • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

V • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

10-815

Overwrite Values

Port Supported Data Types

• 8-, 16-, and 32-bit unsigned integers

B • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Reshape Simulink

Selector Simulink

Submatrix Signal Processing Blockset

Variable Selector Signal Processing Blockset

reshape MATLAB

10-816

Pad

Purpose Alter input dimensions by padding or truncating rows and/or columns

Library Signal Operations

Description The Pad block changes the dimensions of the input matrix from
Mi-by-Ni to Mo-by-No by padding or truncating along the columns, rows,
or columns and rows. Use the Pad along parameter to specify the
dimensions to change.

Use the Value parameter to specify the value with which to pad your
input matrix.

Using the Pad signal at parameter, you can choose to pad your input
matrix at the end or the beginning of a row and/or column.

The Number of output rows and/or Number of output columns
parameters refer to the dimensions of the output, Mo and No. You can
set these parameters to User-specified or Next power of two. When
you choose User-specified, enter a scalar value in the Specified
number of output rows and/or Specified number of output
columns parameters. When you choose Next power of two, the block
pads the input matrix along the columns and/or rows until the length of
the columns and/or rows is equal to a power of two. When the length of
the input matrix’s columns and/or rows is already equal to a power of
two, the block does not pad the input matrix.

When you choose User-specified for the Number of output rows
and/or Number of output columns parameters, you can specify
a scalar value in the Specified number of output rows and/or
Specified number of output columns parameters that truncates the
size of your input matrix. The following options are available for the
Action when truncation occurs parameter:

• None – Select this option when you do not want to be notified that the
input matrix is truncated.

• Warning – Choose this option when you want a warning to be
displayed in the MATLAB Command Window when the input matrix
is truncated.

10-817

Pad

• Error – Click this option when you want an error dialog box to be
displayed and the simulation terminated when the input matrix is
truncated.

The behavior of the Pad block and Zero Pad block is identical, with the
exception that the Pad block can pad the input matrix with values other
than zero. See the Zero Pad block reference page for more information
on the behavior of the Zero Pad block.

Dialog
Box

Value
The scalar value with which to pad the input matrix. Tunable.

10-818

Pad

Pad signal at
The input matrix can be padded at the beginning of the rows
and/or columns or at the end of the rows and/or columns.

Pad along
The direction along which to pad or truncate. Columns specifies
that the row dimension should be changed to Mo. Rows specifies
that the column dimension should be changed to No. Columns and
rows specifies that both column and row dimensions should be
changed. None disables padding and truncation and passes the
input through to the output unchanged.

Number of output rows
The total number of output rows. When you select
User-specified, type a scalar value in the Specified Number
of output rows parameter. When you select Next power of
two, the block pads the columns of the input matrix until the
number of rows is equal to a power of two. When the number of
rows is already equal to a power of two, the block does not pad
the input matrix.

Specified number of output rows
The desired number of rows in the output, Mo. This parameter is
enabled when you select Columns or Columns and rows in the
Pad along menu and User-specified is chosen in the Number
of output rows parameter.

Number of output columns
The total number of output columns. When you select
User-specified, type a scalar value in the Specified Number
of output columns parameter. When you select Next power
of two, the block pads the rows of the input matrix until the
number of columns is equal to a power of two. When the number
of columns is already equal to a power of two, the block does not
pad the input matrix.

Specified number of output columns
The desired number of columns in the output, No. This parameter
is enabled when you select Rows or Columns and rows in the Pad

10-819

Pad

along menu and User-specified is chosen in the Number of
output columns parameter.

Action when truncation occurs
Choose None when you do not want to be notified that the input
matrix is truncated. Select Warning to display a warning when
the input matrix is truncated. Choose Error when you want an
error dialog box to be displayed and the simulation terminated
when the input matrix is truncated.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating-point

• Single-precision floating-point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating-point

• Single-precision floating-point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-820

Pad

See Also

Matrix Concatenation Simulink

Repeat Signal Processing Blockset

Submatrix Signal Processing Blockset

Upsample Signal Processing Blockset

Variable Selector Signal Processing Blockset

Zero Pad Signal Processing Blockset

10-821

Peak Finder

Purpose Determine whether each value of input signal is local minimum or
maximum

Library Signal Operations

Description The Peak Finder block outputs the number of local extrema in the
input signal at the Cnt port. Optionally, it can also output the extrema
indices, the extrema values, and a binary indicator of whether or not
the extrema are maxima or minima.

The Peak Finder block compares the current signal value to the previous
and next values to determine if the current value is an extremum. Use
the Peak type(s) parameter to specify whether you are looking for
maxima, minima, or both.

If you select the Output peak indices check box, the Idx port appears
on the block. The block outputs the zero-based extrema indices at the
Idx port. If you select the Output peak values check box, the Val
port appears on the block. The block outputs the extrema values at
the Val port. If you select either of these check boxes and Maxima and
Minima is selected for the Peak type(s), the Pol port also appears on
the block. If the signal value is a maximum, the block outputs a 1 at
the Pol ("Polarity") port. If the signal value is a minimum, the block
outputs a 0 at the Pol port.

Note that nothing is output at the Idx, Val, and Pol ports for an input
signal value that is not an extremum.

Use the Maximum number of peaks to find parameter to specify how
many extrema to look for in each input signal. The block stops searching
the input signal once this maximum number of extrema has been found.

If you select the Ignore peaks within threshold of neighboring
values check box, the block no longer detects low-amplitude peaks.
This feature allows the block to ignore noise within a threshold value
that you define. Enter a threshold value for the Threshold parameter.
Now, the current value is a maximum if
and . The current value is a minimum if

and .

10-822

Peak Finder

This block supports single-channel, frame-based, and sample-based
inputs. These input signals must be real-valued fixed-point or
floating-point scalars or vectors.

Examples Example 1

Consider the input vector

[9 6 10 3 4 5 0 12]

The table below shows the analysis made by the Peak Finder block.
Note that the first and last input signal values are not considered:

Previous, current, and next values 9 6 10 6 10 3 10 3 4 3 4 5 4 5
0

5 0 12

Current value if it is an extremum 6 10 3 – 5 0

Index of current value if it is an
extremum

1 2 3 – 5 6

Polarity of current value if it is an
extremum

0 1 0 – 1 0

Therefore, for this example the outputs at the block ports are

Cnt: 5

Idx: [1 2 3 5 6]

Val: [6 10 3 5 0]

Pol: [0 1 0 1 0]

Example 2

Note that the Overflow mode parameter can affect the output of the
block when the input is fixed point. Consider the following model:

10-823

Peak Finder

In this model, the settings in the DSP Constant block are

• Constant value – [-1 0.5 -1]

• Sample mode – Discrete

• Output – Sample-based

• Sample time – 1

• Output data type – Fixed-point

• Signed – selected

10-824

Peak Finder

• Word length – 16

• Set fraction length in output to – User-defined

• Fraction length – 15

The settings in the Peak Finder blocks are

• Peak type(s) – Maxima

• Output peak indices – not selected

• Output peak values – selected

• Maximum number of peaks to find – 2

• Ignore peaks within threshold of neighboring values – selected

• Threshold – 0.25

• Rounding mode – Floor

• Overflow mode – Wrap for Peak Finder Wrap, Saturate for Peak
Finder Saturate

Setting the Overflow mode parameter of the Peak Finder Wrap block
to Wrap causes the calculations and

to wrap on overflow, thereby causing the
maximum to be missed.

10-825

Peak Finder

Dialog
Box

The Main pane of the Peak Finder block dialog appears as follows:

Peak type(s)
Specify whether you are looking for maxima, minima, or both.

Output peak indices
Select this check box if you want the block to output the extrema
indices at the Idx port.

Output peak values
Select this check box if you want the block to output the extrema
values at the Val port.

Maximum number of peaks to find
Enter the number of extrema to look for in each input signal.
The block stops searching the input signal for extrema once the
maximum number of extrema has been found. The value of this
parameter must be an integer greater than or equal to one.

10-826

Peak Finder

Ignore peaks within threshold of neighboring values
Select this check box if you want to eliminate the detection of
peaks whose amplitudes are within a specified threshold of
neighboring values.

Threshold
Enter your threshold value. This parameter appears if you select
the Ignore peaks within threshold of neighboring values
check box.

The Fixed-point pane of the Peak Finder block dialog appears as
follows:

Rounding mode
Select the rounding mode to be used when block inputs are fixed
point.

Overflow mode
Select the overflow mode to be used when block inputs are fixed
point.

10-827

Peak Finder

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Cnt • 32-bit unsigned integers

Idx • 32-bit unsigned integers

Val • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Pol • Boolean

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Maximum Signal Processing Blockset

Minimum Signal Processing Blockset

10-828

Periodogram

Purpose Compute nonparametric estimate of the spectrum

Library Estimation / Power Spectrum Estimation

Description The Periodogram block computes a nonparametric estimate of the
spectrum. The block averages the squared magnitude of the FFT
computed over windowed sections of the input and normalizes the
spectral average by the square of the sum of the window samples.

Both an M-by-N frame-based matrix input and an M-by-N sample-based
matrix input are treated as M sequential time samples from N
independent channels. The block computes a separate estimate
for each of the N independent channels and generates an Nfft-by-N
matrix output. When you select the Inherit FFT length from input
dimensions check box, Nfft is specified by the frame size of the input,
which must be a power of 2. When you clear the Inherit FFT length
from input dimensions check box, Nfft is specified as a power of 2 by
the FFT length parameter, and the block zero pads or truncates the
input to Nfft before computing the FFT.

Each column of the output matrix contains the estimate of the
corresponding input column’s power spectral density at Nfft equally
spaced frequency points in the range [0,Fs), where Fs is the signal’s
sample frequency. The output is always sample based.

The Number of spectral averages specifies the number of spectra to
average. Setting this parameter to 1 effectively disables averaging.

The Window type, Stopband ripple, Beta, and Window sampling
parameters all apply to the specification of the window function; see the
Window Function block reference page for more details on these four
parameters.

Example The dspstfft demo provides an illustration of using the Periodogram
and Matrix Viewer blocks to create a spectrogram. The dspsacomp demo
compares the Periodogram block with several other spectral estimation
methods.

10-829

Periodogram

Dialog
Box

Window type
Enter the type of window to apply. See the Window Function block
reference page for more details. Tunable.

Stopband attenuation in dB
Enter the level, in dB, of stopband attenuation, Rs, for the
Chebyshev window. This parameter is enabled if, for the Window
type parameter, you choose Chebyshev. Tunable.

Beta
Enter the β parameter for the Kaiser window. This parameter
is enabled if, for the Window type parameter, you chose
Kaiser. Increasing Beta widens the mainlobe and decreases the
amplitude of the window sidelobes in the window’s frequency
magnitude response. Tunable.

10-830

Periodogram

Window sampling
From the list, choose Symmetric or Periodic. Tunable.

Inherit FFT length from input dimensions
When you select this check box, the block uses the input frame size
as the number of data points, Nfft, on which to perform the FFT.

FFT length
Enter the number of data points, Nfft, on which to perform
the FFT. When Nfft exceeds the input frame size, the frame is
zero-padded as needed. This parameter is enabled when you clear
the Inherit FFT length from input dimensions check box.

Number of spectral averages
Enter the number of spectra to average; setting this parameter
to 1 disables averaging.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

Output • Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-831

Periodogram

See Also

Burg Method Signal Processing Blockset

Inverse Short-Time FFT Signal Processing Blockset

Magnitude FFT Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Spectrum Scope Signal Processing Blockset

Window Function Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

pwelch Signal Processing Toolbox

See “Power Spectrum Estimation” on page 6-6 for related information.

10-832

Permute Matrix

Purpose Reorder matrix rows or columns

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Permute Matrix block reorders the rows or columns of M-by-N
input matrix A as specified by indexing input P.

When the Permute parameter is set to Rows, the block uses the rows
of A to create a new matrix with the same column dimension. Input P
is a length-L vector whose elements determine where each row from A
should be placed in the L-by-N output matrix.

% Equivalent MATLAB code
y = [A(P(1),:) ; A(P(2),:) ; A(P(3),:) ; ... ; A(P(end),:)]

For row permutation, a length-M 1-D vector input at the A port is
treated as a M-by-1 matrix.

When the Permute parameter is set to Columns, the block uses the
columns of A to create a new matrix with the same row dimension.
Input P is a length-L vector whose elements determine where each
column from A should be placed in the M-by-L output matrix.

% Equivalent MATLAB code
y = [A(:,P(1)) A(:,P(2)) A(:,P(3)) ... A(:,P(end))]

For column permutation, a length-N 1-D vector input at the A port is
treated as a 1-by-N matrix.

When an index value in input P references a nonexistent row or column
of matrix A, the block reacts with the behavior specified by the Invalid
permutation index parameter. The following options are available:

• Clip index – Clip the index to the nearest valid value (1 or M for
row permutation, and 1 or N for column permutation), and do not
issue an alert. Example: For a 3-by-7 input matrix, a column index
of 9 is clipped to 7, and a row index of -2 is clipped to 1.

10-833

Permute Matrix

• Clip and warn – Display a warning message in the MATLAB
command window, and clip the index as described above.

• Generate error – Display an error dialog box and terminate the
simulation.

When length of the permutation vector P is not equal to the number of
rows or columns of the input matrix A, you can choose to get an error
dialog box and terminate the simulation by selecting Error when
length of P is not equal to Permute dimension size.

When input A is frame based, the output is frame based; otherwise,
the output is sample based.

Examples In the model below, the top Permute Matrix block places the second row
of the input matrix in both the first and fifth rows of the output matrix,
and places the third row of the input matrix in the three middle rows of
the output matrix. The bottom Permute Matrix block places the second
column of the input matrix in both the first and fifth columns of the
output matrix, and places the third column of the input matrix in the
three middle columns of the output matrix.

As shown in the example above, rows and columns of A can appear any
number of times in the output, or not at all.

10-834

Permute Matrix

Dialog
Box

Permute
Method of constructing the output matrix; by permuting rows
or columns of the input.

Index mode
When set to One-based, a value of 1 in the permutation vector P
refers to the first row or column of the input matrix A. When set to
Zero-based, a value of 0 in P refers to the first row or column of A.

Invalid permutation index
Response to an invalid index value. Tunable.

Error when length of P is not equal to Permute dimension size
Option to display an error dialog box and terminate the simulation
when the length of the permutation vector P is not equal to the
number of rows or columns of the input matrix A.

10-835

Permute Matrix

Supported
Data
Types

Port Supported Data Types

A • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

P • Double-precision floating point

• Single-precision floating point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-836

Permute Matrix

See Also

Submatrix Signal Processing Blockset

Transpose Signal Processing Blockset

Variable Selector Signal Processing Blockset

permute MATLAB

See “Reordering Channels in Multichannel Frame-Based Signals” on
page 1-51 for related information.

10-837

Polynomial Evaluation

Purpose Evaluate polynomial expression

Library Math Functions / Polynomial Functions

Description The Polynomial Evaluation block applies a polynomial function to the
real or complex input at the In port.

y = polyval(u) % Equivalent MATLAB code

The Polynomial Evaluation block performs these types of operation
more efficiently than the equivalent construction using Simulink Sum
and Math Function blocks.

When you select the Use constant coefficients check box, you specify
the polynomial expression in the Constant coefficients parameter.
When you do not select Use constant coefficients, a variable
polynomial expression is specified by the input to the Coeffs port. In
both cases, the polynomial is specified as a vector of real or complex
coefficients in order of descending exponents.

The table below shows some examples of the block’s operation for
various coefficient vectors.

Coefficient Vector Equivalent Polynomial Expression

[1 2 3 4 5]

[1 0 3 0 5]

[1 2+i 3 4-3i
5i]

Each element of a vector or matrix input to the In port is processed
independently, and the output size and frame status are the same as
the input.

10-838

Polynomial Evaluation

Dialog
Box

Use constant coefficients
When selected, enables the Constant coefficients parameter
and disables the Coeffs input port.

Constant coefficients
The vector of polynomial coefficients to apply to the input, in order
of descending exponents. This parameter is enabled when you
select the Use constant coefficients check box.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Least Squares Polynomial
Fit

Signal Processing Blockset

Math Function Simulink

Sum Simulink

polyval MATLAB

10-839

Polynomial Stability Test

Purpose Use Schur-Cohn algorithm to determine whether all roots of input
polynomial are inside unit circle

Library Math Functions / Polynomial Functions

Description The Polynomial Stability Test block uses the Schur-Cohn algorithm to
determine whether all roots of a polynomial are within the unit circle.

y = all(abs(roots(u)) < 1) % Equivalent MATLAB code

Each column of the M-by-N input matrix u contains M coefficients from
a distinct polynomial,

arranged in order of descending exponents, u1, u2, ..., uM. The polynomial
has order M-1 and positive integer exponents.

Inputs can be frame based or sample based, and both represent the
polynomial coefficients as shown above. For convenience, a length-M
1-D vector input is treated as an M-by-1 matrix.

The output is a 1-by-N matrix with each column containing the value 1
or 0. The value 1 indicates that the polynomial in the corresponding
column of the input is stable; that is, the magnitudes of all solutions
to f(x) = 0 are less than 1. The value 0 indicates that the polynomial in
the corresponding column of the input might be unstable; that is, the
magnitude of at least one solution to f(x) = 0 is greater than or equal to 1.

The output is always sample based.

Applications

This block is most commonly used to check the pole locations of the
denominator polynomial, A(z), of a transfer function, H(z).

10-840

Polynomial Stability Test

The poles are the n-1 roots of the denominator polynomial, A(z). When
any poles are located outside the unit circle, the transfer function H(z)
is unstable. As is typical in DSP applications, the transfer function
above is specified in descending powers of z-1 rather than z.

Dialog
Box

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Boolean – Block outputs are always Boolean.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Least Squares Polynomial
Fit

Signal Processing Blockset

Polynomial Evaluation Signal Processing Blockset

polyfit MATLAB

10-841

Pseudoinverse

Purpose Compute Moore-Penrose pseudoinverse of matrix

Library Math Functions / Matrices and Linear Algebra / Matrix Inverses

Description The Pseudoinverse block computes the Moore-Penrose pseudoinverse of
input matrix A.

[U,S,V] = svd(A,0) % Equivalent MATLAB code

The pseudoinverse of A is the matrix A+ such that

where U and V are orthogonal matrices, and S is a diagonal matrix.
The pseudoinverse has the following properties:

• AA+ = (AA+)*

• A+A = (A+A)*

• AA+A = A

• A+AA+ = A+

The output is always sample based.

Dialog
Box

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

10-842

Pseudoinverse

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Inverse Signal Processing Blockset

LDL Inverse Signal Processing Blockset

LU Inverse Signal Processing Blockset

Singular Value
Decomposition

Signal Processing Blockset

inv MATLAB

See “Inverting Matrices” on page 6-10 for related information.

10-843

QR Factorization

Purpose Factor rectangular matrix into unitary and upper triangular
components

Library Math Functions / Matrices and Linear Algebra / Matrix Factorizations

Description The QR Factorization block uses a modified Gram-Schmidt iteration to
factor a column permutation of the M-by-N input matrix A as

where Q is an M-by-min(M,N) unitary matrix, and R is a min(M,N)-by-N
upper-triangular matrix. A length-M vector input is treated as an
M-by-1 matrix, and is always sample based.

The column-pivoted matrix Ae contains the columns of A permuted as
indicated by the contents of length-N permutation vector E.

Ae = A(:,E) % Equivalent MATLAB code

The block selects a column permutation vector E, which ensures that
the diagonal elements of matrix R are arranged in order of decreasing
magnitude.

QR factorization is an important tool for solving linear systems of
equations because of good error propagation properties and the
invertability of unitary matrices.

Unlike LU and Cholesky factorizations, the matrix A does not need to
be square for QR factorization. Note, however, that QR factorization
requires twice as many operations as Gaussian elimination.

Examples A sample factorization is shown below. The input to the block is
matrix A, which is permuted according to vector E to produce matrix Ae.
Matrix Ae is factored to produce the Q and R output matrices.

10-844

QR Factorization

Dialog
Box

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Cholesky Factorization Signal Processing Blockset

LU Factorization Signal Processing Blockset

10-845

QR Factorization

QR Solver Signal Processing Blockset

Singular Value
Decomposition

Signal Processing Blockset

qr MATLAB

See “Factoring Matrices” on page 6-9 for related information.

10-846

QR Solver

Purpose Find minimum-norm-residual solution to AX=B

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The QR Solver block solves the linear system AX=B, which can be
overdetermined, underdetermined, or exactly determined. The system
is solved by applying QR factorization to the M-by-N matrix, A, at the
A port. The input to the B port is the right side M-by-L matrix, B. A
length-M 1-D vector input at either port is treated as an M-by-1 matrix.

The output at the x port is the N-by-L matrix, X. X is always sample
based, and is chosen to minimize the sum of the squares of the elements
of B-AX. When B is a vector, this solution minimizes the vector 2-norm
of the residual (B-AX is the residual). When B is a matrix, this solution
minimizes the matrix Frobenius norm of the residual. In this case, the
columns of X are the solutions to the L corresponding systems AXk=Bk,
where Bk is the kth column of B, and Xk is the kth column of X.

X is known as the minimum-norm-residual solution to AX=B. The
minimum-norm-residual solution is unique for overdetermined
and exactly determined linear systems, but it is not unique for
underdetermined linear systems. Thus when the QR Solver is applied
to an underdetermined system, the output X is chosen such that the
number of nonzero entries in X is minimized.

Algorithm QR factorization factors a column-permuted variant (Ae) of the M-by-N
input matrix A as

where Q is a M-by-min(M,N) unitary matrix, and R is a min(M,N)-by-N
upper-triangular matrix.

The factored matrix is substituted for Ae in

and

10-847

QR Solver

is solved for X by noting that Q-1 = Q* and substituting Y = Q*Be.
This requires computing a matrix multiplication for Y and solving
a triangular system for X.

Dialog
Box

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Levinson-Durbin Signal Processing Blockset

LDL Solver Signal Processing Blockset

LU Solver Signal Processing Blockset

QR Factorization Signal Processing Blockset

SVD Solver Signal Processing Blockset

See “Solving Linear Systems” on page 6-7 for related information.

10-848

Queue

Purpose Store inputs in FIFO register

Library Signal Management / Buffers

Description The Queue block stores a sequence of input samples in a first in, first
out (FIFO) register. The register capacity is set by the Register size
parameter, and inputs can be scalars, vectors, or matrices.

The block pushes the input at the In port onto the end of the queue
when a trigger event is received at the Push port. When a trigger event
is received at the Pop port, the block pops the first element off the queue
and holds the Out port at that value. The first input to be pushed onto
the queue is always the first to be popped off.

10-849

Queue

A trigger event at the optional Clr port (enabled by the Clear input
check box) empties the queue contents. When you select Clear output
port on reset, then a trigger event at the Clr port empties the queue
and sets the value at the Out port to zero. This setting also applies
when a disabled subsystem containing the Queue block is reenabled;
the Out port value is only reset to zero in this case when you select
Clear output port on reset.

When two or more of the control input ports are triggered at the same
time step, the operations are executed in the following order:

1 Clr

2 Push

3 Pop

The rate of the trigger signal must be the same as the rate of the data
signal input. You specify the triggering event for the Push, Pop, and Clr
ports by the Trigger type pop-up menu:

• Rising edge – Triggers execution of the block when the trigger input
does one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero; see the
following figure

10-850

Queue

• Falling edge – Triggers execution of the block when the trigger
input does one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero; see the following
figure

• Either edge – Triggers execution of the block when the trigger input
is a Rising edge or Falling edge (as described above).

• Non-zero sample – Triggers execution of the block at each sample
time that the trigger input is not zero.

Note When running simulations in the Simulink MultiTasking
mode, sample-based trigger signals have a one-sample latency, and
frame-based trigger signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a trigger event, and when it applies the trigger. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

10-851

Queue

The Push onto full register parameter specifies the block’s behavior
when a trigger is received at the Push port but the register is full. The
Pop empty register parameter specifies the block’s behavior when
a trigger is received at the Pop port but the register is empty. The
following options are available for both cases:

• Ignore – Ignore the trigger event, and continue the simulation.

• Warning – Ignore the trigger event, but display a warning message in
the MATLAB Command Window.

• Error – Display an error dialog box and terminate the simulation.

Note The Push onto full register and Pop empty register
parameters are diagnostic parameters. Like all diagnostic
parameters on the Configuration Parameters dialog box, they are set
to Ignore in the Real-Time Workshop code generated for this block.

The Push onto full register parameter additionally offers the
Dynamic reallocation option, which dynamically resizes the register
to accept as many additional inputs as memory permits. To find out how
many elements are on the queue at a given time, enable the Num output
port by selecting the Output number of register entries option.

Examples Example 1

The table below illustrates the Queue block’s operation for a Register
size of 4, Trigger type of Either edge, and Clear output port on
reset enabled. Because the block triggers on both rising and falling
edges in this example, each transition from 1 to 0 or 0 to 1 in the Push,
Pop, and Clr columns below represents a distinct trigger event. A 1
in the Empty column indicates an empty queue, while a 1 in the Full
column indicates a full queue.

10-852

Queue

In PushPop Clr Queue Out EmptyFull Num

1 0 0 0 0 1 0 0

2 1 0 0 0 0 0 1

3 0 0 0 0 0 0 2

4 1 0 0 0 0 0 3

5 0 0 0 0 0 1 4

6 0 1 0 2 0 0 3

7 0 0 0 3 0 0 2

8 0 1 0 4 0 0 1

9 0 0 0 5 1 0 0

10 1 0 0 5 0 0 1

11 0 0 0 5 0 0 2

12 1 0 1 0 0 0 1

Note that at the last step shown, the Push and Clr ports are triggered
simultaneously. The Clr trigger takes precedence, and the queue is first
cleared and then pushed.

Example 2

The dspqdemo demo provides another example of the operation of the
Queue block.

10-853

Queue

Dialog
Box

Register size
The number of entries that the FIFO register can hold.

Trigger type
The type of event that triggers the block’s execution. The rate of
the trigger signal must be the same as the rate of the data signal
input. Tunable.

Push onto full register
Response to a trigger received at the Push port when the register
is full. Inputs to this port must have the same built-in data type
as inputs to the Pop and Clr input ports.

Pop empty register
Response to a trigger received at the Pop port when the register is
empty. Inputs to this port must have the same built-in data type
as inputs to the Push and Clr input ports. Tunable.

10-854

Queue

Empty register output
Enable the Empty output port, which is high (1) when the queue is
empty, and low (0) otherwise.

Full register output
Enable the Full output port, which is high (1) when the queue is
full, and low (0) otherwise. The Full port remains low when you
select Dynamic reallocation from the Push onto full register
parameter.

Output number of register entries
Enable the Num output port, which tracks the number of
entries currently on the queue. When inputs to the In port
are double-precision values, the outputs from the Num port are
double-precision values. Otherwise, the outputs from the Num port
are 32-bit unsigned integer values.

Clear input
Enable the Clr input port, which empties the queue when the
trigger specified by the Trigger type is received. Inputs to this
port must have the same built-in data type as inputs to the Push
and Pop input ports.

Clear output port on reset
Reset the Out port to zero, in addition to clearing the queue, when
a trigger is received at the Clr input port. Tunable.

10-855

Queue

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Push • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type
as inputs to the Pop and Clr input ports

10-856

Queue

Port Supported Data Types

Pop • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type
as inputs to the Push and Clr input ports.

Clr • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type
as inputs to the Push and Pop input ports.

10-857

Queue

Port Supported Data Types

Out • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Empty • Double-precision floating point

• Boolean

The block outputs Boolean values at this port when
Boolean support is enabled, as described in “Effects of
Enabling and Disabling Boolean Support” on page 7-17.
To learn how to disable Boolean output support, see
“Steps to Disabling Boolean Support” on page 7-18

Full • Double-precision floating point

• Boolean

The block outputs Boolean values at this port when
Boolean support is enabled, as described in “Effects of
Enabling and Disabling Boolean Support” on page 7-17.
To learn how to disable Boolean output support, see
“Steps to Disabling Boolean Support” on page 7-18

Num • Double-precision floating point

The block outputs a double-precision floating-point
value at this port when the data type of the In port is
double-precision floating-point.

• 32-bit unsigned integers

10-858

Queue

Port Supported Data Types

The block outputs a 32-bit unsigned integer value at this
port when the data type of the In port is anything other
than double-precision floating-point.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Delay Line Signal Processing Blockset

Stack Signal Processing Blockset

10-859

Random Source

Purpose Generate randomly distributed values

Library Signal Processing Sources

Description The Random Source block generates a frame of M values drawn from a
uniform or Gaussian pseudorandom distribution, where you specify M
in the Samples per frame parameter.

This reference page contains a detailed discussion of the following
Random Source block topics:

• “Distribution Type” on page 10-860

• “Output Complexity” on page 10-861

• “Output Repeatability” on page 10-863

• “Specifying the Initial Seed” on page 10-863

• “Sample Period” on page 10-864

• “Dialog Box” on page 10-865

• “Supported Data Types” on page 10-868

• “See Also” on page 10-869

Distribution Type

When the Source type parameter is set to Uniform, the output samples
are drawn from a uniform distribution whose minimum and maximum
values are specified by the Minimum and Maximum parameters,
respectively. All values in this range are equally likely to be selected. A
length-N vector specified for one or both of these parameters generates
an N-channel output (M-by-N matrix) containing a unique random
distribution in each channel.

For example, specify

• Minimum = [0 0 -3 -3]

• Maximum = [10 10 20 20]

10-860

Random Source

to generate a four-channel output whose first and second columns
contain random values in the range [0, 10], and whose third and fourth
columns contain random values in the range [-3, 20]. When you specify
only one of the Minimum and Maximum parameters as a vector, the
block scalar expands the other parameter so it is the same length as
the vector.

When the Source type parameter is set to Gaussian, you must also
set the Method parameter, which determines the method by which the
block computes the output, and has the following settings:

• Ziggurat – Produces Gaussian random values by using the Ziggurat
method, which is the same method used by the MATLAB randn
function.

• Sum of uniform values – Produces Gaussian random values by
adding and scaling uniformly distributed random signals based on
the central limit theorem. This theorem states that the probability
distribution of the sum of a sufficiently high number of random
variables approaches the Gaussian distribution. You must set the
Number of uniform values to sum parameter, which determines
the number of uniformly distributed random numbers to sum to
produce a single Gaussian random value.

For both settings of the Method parameter, the output samples are
drawn from the normal distribution defined by the Mean and Variance
parameters. A length-N vector specified for one or both of the Mean and
Variance parameters generates an N-channel output (M-by-N frame
matrix) containing a distinct random distribution in each column. When
you specify only one of these parameters as a vector, the block scalar
expands the other parameter so it is the same length as the vector.

Output Complexity

The block’s output can be either real or complex, as determined by
the Real and Complex options in the Complexity parameter. These
settings control all channels of the output, so real and complex data
cannot be combined in the same output. For complex output with a
Uniform distribution, the real and imaginary components in each

10-861

Random Source

channel are both drawn from the same uniform random distribution,
defined by the Minimum and Maximum parameters for that channel.

For complex output with a Gaussian distribution, the real and
imaginary components in each channel are drawn from normal
distributions with different means. In this case, the Mean parameter
for each channel should specify a complex value; the real component
of the Mean parameter specifies the mean of the real components in
the channel, while the imaginary component specifies the mean of
the imaginary components in the channel. When either the real or
imaginary component is omitted from the Mean parameter, a default
value of 0 is used for the mean of that component.

For example, a Mean parameter setting of [5+2i 0.5 3i] generates a
three-channel output with the following means.

Channel 1 mean real = 5 imaginary = 2

Channel 2 mean real = 0.5 imaginary = 0

Channel 3 mean real = 0 imaginary = 3

For complex output, the Variance parameter, σ2, specifies the total
variance for each output channel. This is the sum of the variances of
the real and imaginary components in that channel.

The specified variance is equally divided between the real and
imaginary components, so that

10-862

Random Source

Output Repeatability

The Repeatability parameter determines whether or not the block
outputs the same signal each time you run the simulation. You can set
the parameter to one of the following options:

• Repeatable – Outputs the same signal each time you run the
simulation. The first time you run the simulation, the block randomly
selects an initial seed. The block reuses these same initial seeds
every time you rerun the simulation.

• Specify seed – Outputs the same signal each time you run the
simulation. Every time you run the simulation, the block uses
the initial seed(s) specified in the Initial seed parameter. Also
see“Specifying the Initial Seed” on page 10-863.

• Not repeatable – Does not output the same signal each time you
run the simulation. Every time you run the simulation, the block
randomly selects an initial seed.

Specifying the Initial Seed

When you set the Repeatability parameter to Specify seed, you must
set the Initial seed parameter. The Initial seed parameter specifies
the initial seed for the pseudorandom number generator. The generator
produces an identical sequence of pseudorandom numbers each time it
is executed with a particular initial seed.

Specifying Initial Seeds for Real Outputs

To specify the N initial seeds for an N-channel real-valued output,
Complexity parameter set to Real, provide one of the following in the
Initial seed parameter:

• Length-N vector of initial seeds – Uses each vector element as an
initial seed for the corresponding channel in the N-channel output.

• Single scalar – Uses the scalar to generate N random values, which it
uses as the seeds for the N-channel output.

10-863

Random Source

Specifying Initial Seeds for Complex Outputs

To specify the initial seeds for an N-channel complex-valued output,
Complexity parameter set to Complex, provide one of the following in
the Initial seed parameter:

• Length-N vector of initial seeds – Uses each vector element as an
initial seed for generating N channels of real random values. The
block uses pairs of adjacent values in each of these channels as the
real and imaginary components of the final output, as illustrated in
the following figure.

• Single scalar – Uses the scalar to generate N random values, which it
uses as the seeds for generating N channels of real random values.
The block uses pairs of adjacent values in each of these channels as
the real and imaginary components of the final output, as illustrated
in the following figure.

Sample Period

The Sample time parameter value, Ts, specifies the random sequence
sample period when the Sample mode parameter is set to Discrete.
In this mode, the block generates the number of samples specified by
the Samples per frame parameter value, M, and outputs this frame

10-864

Random Source

with a period of M*Ts. For M=1, the output is sample based; otherwise,
the output is frame based.

When Sample mode is set to Continuous, the block is configured
for continuous-time operation, and the Sample time and Samples
per frame parameters are disabled. Note that many blocks in the
DSP Blockset do not accept continuous-time inputs.

Dialog
Box

Only some of the parameters described below are visible in the dialog
box at any one time.

10-865

Random Source

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Source type
The distribution from which to draw the random values, Uniform
or Gaussian. For more information, see “Distribution Type” on
page 10-860.

Method
The method by which the block computes the Gaussian random
values, Ziggurat or Sum of uniform values. This parameter
is enabled when Source type is set to Gaussian. For more
information, see “Distribution Type” on page 10-860.

Minimum
The minimum value in the uniform distribution. This parameter
is enabled when you select Uniform from the Source type
parameter. Tunable.

Maximum
The maximum value in the uniform distribution. This parameter
is enabled when you select you select Uniform from the Source
type parameter. Tunable.

Number of uniform values to sum
The number of uniformly distributed random values to sum to
compute a single number in a Gaussian random distribution. This
parameter is enabled when the Source type parameter is set to
Gaussian, and the Method parameter is set to Sum of uniform
values. For more information, see “Distribution Type” on page
10-860.

Mean
The mean of the Gaussian (normal) distribution. This parameter
is enabled when you select Gaussian from the Source type
parameter. Tunable.

10-866

Random Source

Variance
The variance of the Gaussian (normal) distribution. This
parameter is enabled when you select Gaussian from the Source
type parameter. Tunable.

Repeatability
The repeatability of the block output: Not repeatable,
Repeatable, or Specify seed. In the Repeatable and Specify
seed settings, the block outputs the same signal every time you
run the simulation. For details, see “Output Repeatability” on
page 10-863.

Initial seed
The initial seed(s) to use for the random number generator when
you set the Repeatability parameter to Specify seed. For
details, see “Specifying the Initial Seed” on page 10-863. Tunable.

Inherit output port attributes
When you select this check box, block inherits the sample mode,
sample time, output data type, complexity, and signal dimensions
of a sample-based signal from a downstream block. When you
select this check box, the Sample mode, Sample time, Samples
per frame, Output data type, and Complexity parameters
are disabled.

Suppose you want to back propagate a 1-D vector. The output
of the Random Source block is a length M sample-based 1-D
vector, where length M is inherited from the downstream block.
When the Minimum, Maximum, Mean, or Variance parameter
specifies N channels, the 1-D vector output contains M/N samples
from each channel. An error occurs in this case when M is not
an integer multiple of N.

Suppose you want to back propagate a M-by-N signal. When
N>1, your signal has N channels. When N = 1, your signal has
M channels. The value of the Minimum, Maximum, Mean, or
Variance parameter can be a scalar or a vector of length equal
to the number of channels. You can specify these parameters

10-867

Random Source

as either row or column vectors, except when the signal is a
row vector. In this case, the Minimum, Maximum, Mean, or
Variance parameter must also be specified as a row vector.

Sample mode
The sample mode, Continuous or Discrete. This parameter is
enabled when the Inherit output port attributes check box
is cleared.

Sample time
The sample period, Ts, of the random output sequence. The
output frame period is M*Ts. This parameter is enabled when the
Inherit output port attributes check box is cleared.

Samples per frame
The number of samples, M, in each output frame. This parameter
is enabled when the Inherit output port attributes check box
is cleared.

Output data type
The data type of the output, single-precision or double-precision.
This parameter is enabled when the Inherit output port
attributes check box is cleared.

Output complexity
The complexity of the output, Real or Complex. This parameter
is enabled when the Inherit output port attributes check box
is cleared.

Supported
Data
Types

• Double-precision floating-point

• Single-precision floating-point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-868

Random Source

See Also

Discrete Impulse Signal Processing Blockset

DSP Constant Signal Processing Blockset

Maximum Signal Processing Blockset

Minimum Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

Standard Deviation Signal Processing Blockset

Variance Signal Processing Blockset

Random Number Simulink

Signal Generator Simulink

rand MATLAB

randn MATLAB

10-869

Real Cepstrum

Purpose Compute real cepstrum of input

Library Transforms

Description The Real Cepstrum block computes the real cepstrum of each channel
in the real-valued M-by-N input matrix, u. For both sample-based and
frame-based inputs, the block assumes that each input column is a
frame containing M consecutive samples from an independent channel.
The block does not accept complex-valued inputs.

The output is a real Mo-by-N matrix, where you specify Mo in the FFT
length parameter. Each output column contains the length-Mo real
cepstrum of the corresponding input column.

y = real(ifft(log(abs(fft(u,Mo))))) % Equivalent MATLAB code

or, more compactly,

y = rceps(u,Mo)

When you select the Inherit FFT length from input port
dimensions check box, the output frame size matches the input frame
size (Mo=M). In this case, a sample-based length-M row vector input
is processed as a single channel, that is, as an M-by-1 column vector,
and the output is a length-M row vector. A 1-D vector input is always
processed as a single channel, and the output is a 1-D vector.

The output is always sample based, and the output port rate is the
same as the input port rate.

10-870

Real Cepstrum

Dialog
Box

Inherit FFT length from input port dimensions
When selected, matches the output frame size to the input frame
size.

FFT length
The number of frequency points at which to compute the FFT,
which is also the output frame size, Mo. This parameter is
available when you do not select Inherit FFT length from
input port dimensions.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Complex Cepstrum Signal Processing Blockset

DCT Signal Processing Blockset

FFT Signal Processing Blockset

rceps Signal Processing Toolbox

10-871

Reciprocal Condition

Purpose Compute reciprocal condition of square matrix in the 1-norm

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Reciprocal Condition block computes the reciprocal of the condition
number for a square input matrix A.

y = rcond(A) % Equivalent MATLAB code

or

where κ is the condition number (κ ≥ 1), and y is the scalar sample-based
output (0 ≤ y < 1).

The matrix 1-norm, , is the maximum column-sum in the M-by-M
matrix A.

For a 3-by-3 matrix:

10-872

Reciprocal Condition

Dialog
Box

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Matrix 1-Norm Signal Processing Blockset

Normalization Signal Processing Blockset

rcond MATLAB

10-873

Remez FIR Filter Design

Purpose Design and apply an equiripple FIR filter.

Library dspobslib

Description
Note The Remez FIR Filter Design block is still supported but is likely
to be obsoleted in a future release. We strongly recommend replacing
this block with the Digital Filter block.

The Remez FIR Filter Design block implements the Parks-McClellan
algorithm to design and apply a linear-phase filter with an arbitrary
multiband magnitude response. The filter design, which uses the firpm
function in the Signal Processing Toolbox, minimizes the maximum
error between the desired frequency response and the actual frequency
response. Such filters are called equiripple due to the equiripple
behavior of their approximation error. The block applies the filter to a
discrete-time input using the Direct-Form II Transpose Filter block.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The Filter type parameter allows you to specify one of the following
filters:

• Multiband

The multiband filter has an arbitrary magnitude response and linear
phase.

• Differentiator

The differentiator filter approximates the ideal differentiator.
Differentiators are antisymmetric FIR filters with approximately
linear magnitude responses. To obtain the correct derivative, scale

10-874

Remez FIR Filter Design

the Gains at these frequencies vector by πFs rad/s, where Fs is
the sample frequency in Hertz.

• Hilbert Transformer

The Hilbert transformer filter approximates the ideal Hilbert
transformer. Hilbert transformers are antisymmetric FIR filters with
approximately constant magnitude.

The Band-edge frequency vector parameter is a vector of frequency
points in the range 0 to 1, where 1 corresponds to half the sample
frequency. Each band is defined by the two bounding frequencies, so
this vector must have even length. Frequency points must appear in
ascending order. The Gains at these frequencies parameter is a
vector of the same size containing the desired magnitude response at
the corresponding points in the Band-edge frequency vector.

Each odd-indexed frequency-amplitude pair defines the left endpoint
of a line segment representing the desired magnitude response in that
frequency band. The corresponding even-indexed frequency-amplitude
pair defines the right endpoint. Between the frequency bands specified
by these end-points, there may be undefined sections of the specified
frequency response. These are called "don’t care" or "transition" regions,
and the magnitude response in these areas is a by-product of the
optimization in the other specified frequency ranges.

10-875

Remez FIR Filter Design

The Weights parameter is a vector that specifies the emphasis to be
placed on minimizing the error in certain frequency bands relative
to others. This vector specifies one weight per band, so it is half the
length of the Band-edge frequency vector and Gains at these
frequencies vectors.

In most cases, differentiators and Hilbert transformers have only a
single band, so the weight is a scalar value that does not affect the
final filter. However, the Weights parameter is useful when using the
block to design an antisymmetric multiband filter, such as a Hilbert
transformer with stopbands.

Examples Example 1: Multiband

Consider a lowpass filter with a transition band in the normalized
frequency range 0.4 to 0.5, and 10 times greater error minimization in
the stopband than in the passband.

In this case:

• Filter type = Multiband

10-876

Remez FIR Filter Design

• Band-edge frequency vector = [0 0.4 0.5 1]

• Gains at these frequencies = [1 1 0 0]

• Weights = [1 10]

Example 2: Differentiator

Assume the specifications for a differentiator filter require it to have
order 21. The "ramp" response extends over the entire frequency range.
In this case, specify:

• Filter type = Differentiator

• Band-edge frequency vector = [0 1]

• Gains at these frequencies = [0 pi*Fs]

• Filter order = 21

For a type III even order filter, the differentiation band should stop
short of half the sample frequency. For example, if the filter order is 20,
you could specify the block parameters as follows:

• Filter type = Differentiator

• Band-edge frequency vector = [0 0.9]

• Gains at these frequencies = [0 0.9*pi*Fs]

• Filter order = 20

10-877

Remez FIR Filter Design

Dialog
Box

Filter type
The filter type. Tunable.

Band-edge frequency vector
A vector of frequency points, in ascending order, in the range
0 to 1. The value 1 corresponds to half the sample frequency. This
vector must have even length. Tunable.

Gains at these frequencies
A vector of frequency-response magnitudes corresponding to the
points in the Band-edge frequency vector. This vector must be
the same length as the Band-edge frequency vector. Tunable.

Weights
A vector containing one weight for each frequency band. This
vector must be half the length of the Band-edge frequency and
Gains at these frequencies vectors. Tunable.

Filter order
The filter order.

10-878

Remez FIR Filter Design

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-879

Repeat

Purpose Resample input at higher rate by repeating values

Library Signal Operations

Description The Repeat block upsamples each channel of the Mi-by-N input to a rate
L times higher than the input sample rate by repeating each consecutive
input sample L times at the output. You specify the integer L in the
Repetition count parameter.

This block supports triggered subsystems if, for Frame-based mode,
you select Maintain input frame rate.

Sample-Based Operation

When the input is sample based, the block treats each of the M*N
matrix elements as an independent channel, and upsamples each
channel over time. The Frame-based mode parameter must be set
to Maintain input frame size. The output sample rate is L times
higher than the input sample rate (Tso = Tsi/L), and the input and output
sizes are identical.

Frame-Based Operation

When the input is frame based, the block treats each of the N input
columns as a frame containing Mi sequential time samples from an
independent channel. The block upsamples each channel independently
by repeating each row of the input matrix L times at the output. The
Frame-based mode parameter determines how the block adjusts the
rate at the output to accommodate the repeated rows. There are two
available options:

• Maintain input frame size

The block generates the output at the faster (upsampled) rate by
using a proportionally shorter frame period at the output port than
at the input port. For L repetitions of the input, the output frame
period is L times shorter than the input frame period (Tfo = Tfi/L), but
the input and output frame sizes are equal.

10-880

Repeat

The model below shows a single-channel input with a frame period
of 1 second being upsampled through 4-times repetition to a frame
period of 0.25 second. The input and output frame sizes are identical.

• Maintain input frame rate

The block generates the output at the faster (upsampled) rate
by using a proportionally larger frame size than the input. For
L repetitions of the input, the output frame size is L times larger
than the input frame size (Mo = Mi*L), but the input and output
frame rates are equal.

The model below shows a single-channel input of frame size 16 being
upsampled through 4-times repetition to a frame size of 64. The
input and output frame rates are identical.

Zero Latency

The Repeat block has zero-tasking latency for all single-rate operations.
The block is single-rate for the particular combinations of sampling
mode and parameter settings shown in the table below.

10-881

Repeat

Sampling
Mode Parameter Settings

Sample
based

Repetition count parameter, L, is 1.

Frame based Repetition count parameter, L, is 1, or

Frame-based mode parameter is Maintain input
frame rate.

The block also has zero latency for all multirate operations in the
Simulink single-tasking mode.

Zero tasking latency means that the block repeats the first input
(received at t=0) for the first L output samples, the second input for the
next L output samples, and so on. The Initial condition parameter
value is not used.

Nonzero Latency

The Repeat block has tasking latency only for multirate operation in
the Simulink multitasking mode:

• In sample-based mode, the initial condition for each channel is
repeated for the first L output samples. The channel’s first input
appears as output sample L+1. The Initial condition value can be
an Mi-by-N matrix containing one value for each channel, or a scalar
to be applied to all signal channels.

• In frame-based mode, the first row of the initial condition matrix is
repeated for the first L output samples, the second row of the initial
condition matrix is repeated for the next L output samples, and so
on. The first row of the first input matrix appears in the output as
sample MiL+1. The Initial condition value can be an Mi-by-N
matrix, or a scalar to be repeated across all elements of the Mi-by-N
matrix. See the example below for an illustration of this case.

10-882

Repeat

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page
2-56 and “Models with Multiple Sample Rates” in the Real-Time
Workshop User’s Guide documentation.

Examples Construct the frame-based model shown below.

Adjust the block parameters as follows.

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents
an output frame period of 1 (0.25*4). The first channel should contain
the positive ramp signal 1, 2, ..., 100, and the second channel should
contain the negative ramp signal -1, -2, ..., -100.

- Signal = [(1:100)' (-1:-1:-100)']

- Sample time = 0.25

- Samples per frame = 4

• Configure the Repeat block to upsample the two-channel input by
increasing the output frame rate by a factor of 2 relative to the input
frame rate. Set an initial condition matrix of

10-883

Repeat

- Repetition count = 2

- Initial condition = [11 -11;12 -12;13 -13;14 -14]

- Frame-based mode = Maintain input frame size

• Configure the Probe blocks by clearing the Probe width and Probe
complex signal check boxes (if desired).

This model is multirate because there are at least two distinct sample
rates, as shown by the two Probe blocks. To run this model in the
Simulink multitasking mode, in the Solver pane of the Configuration
Parameters dialog box, set the Type list to Fixed-step and set the
Solver list to discrete (no continuous states). For the Tasking
mode for periodic sample times parameter, select MultiTasking.
Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples
of each channel are shown below.

yout =
11 -11
11 -11
12 -12
12 -12
13 -13
13 -13
14 -14
14 -14
1 -1
1 -1
2 -2
2 -2
3 -3

10-884

Repeat

3 -3
4 -4
4 -4
5 -5
5 -5

Since we ran this frame-based multirate model in multitasking mode,
the block repeats each row of the initial condition matrix for L output
samples, where L is the Repetition count of 2. The first row of the
first input matrix appears in the output as sample 9 ,that is, sample
MiL+1, where Mi is the input frame size.

Dialog
Box

Repetition count
The integer number of times, L, that the input value is repeated
at the output. This is the factor by which the output frame size or
sample rate is increased.

Initial conditions
The value with which the block is initialized for cases of nonzero
latency; a scalar or matrix.

Frame-based mode
For frame-based operation, the method by which to implement
the repetition (upsampling): Maintain input frame size that

10-885

Repeat

is, increase the frame rate, or Maintain input frame rate, that
is, increase the frame size. The Frame-based mode parameter
must be set to Maintain input frame size for sample-base
inputs.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-886

Repeat

See Also

FIR Interpolation Signal Processing Blockset

Upsample Signal Processing Blockset

Zero Pad Signal Processing Blockset

10-887

RLS Adaptive Filter

Purpose Compute filter estimates for an input using the RLS adaptive filter
algorithm

Library dspobslib

Description
Note The RLS Adaptive Filter block is still supported but is likely to
be obsoleted in a future release. We recommend replacing this block
with the RLS Filter block.

The RLS Adaptive Filter block recursively computes the recursive least
squares (RLS) estimate of the FIR filter coefficients.

The corresponding RLS filter is expressed in matrix form as

where λ-1 denotes the reciprocal of the exponential weighting factor.
The variables are as follows

Variable Description

n The current algorithm iteration

u(n) The buffered input samples at step n

P(n) The inverse correlation matrix at step n

k(n) The gain vector at step n

The vector of filter-tap estimates at step n

10-888

RLS Adaptive Filter

Variable Description

y(n) The filtered output at step n

e(n) The estimation error at step n

d(n) The desired response at step n

λ The exponential memory weighting factor

The block icon has port labels corresponding to the inputs and outputs
of the RLS algorithm. Note that inputs to the In and Err ports must be
sample-based scalars. The signal at the Out port is a scalar, while the
signal at the Taps port is a sample-based vector.

Block Ports Corresponding Variables

In u, the scalar input, which is internally buffered into
the vector u(n)

Out y(n), the filtered scalar output

Err e(n), the scalar estimation error

Taps , the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt
input check box in the dialog box. When this port is enabled, the block
continuously adapts the filter coefficients while the Adapt input is
nonzero. A zero-valued input to the Adapt port causes the block to stop
adapting, and to hold the filter coefficients at their current values until
the next nonzero Adapt input.

The implementation of the algorithm in the block is optimized by
exploiting the symmetry of the inverse correlation matrix P(n). This
decreases the total number of computations by a factor of two.

The FIR filter length parameter specifies the length of the filter
that the RLS algorithm estimates. The Memory weighting factor
corresponds to λ in the equations, and specifies how quickly the filter

10-889

RLS Adaptive Filter

“forgets” past sample information. Setting λ=1 specifies an infinite
memory; typically, 0.95 ≤λ≤1.

The Initial value of filter taps specifies the initial value as a
vector, or as a scalar to be repeated for all vector elements. The initial
value of P(n) is

where you specify in the Initial input variance estimate
parameter.

Examples The rlsdemo demo illustrates a noise cancellation system built around
the RLS Adaptive Filter block.

Dialog
Box

FIR filter length
The length of the FIR filter.

10-890

RLS Adaptive Filter

Memory weighting factor
The exponential weighting factor, in the range [0,1]. A value of 1
specifies an infinite memory. Tunable.

Initial value of filter taps
The initial FIR filter coefficients.

Initial input variance estimate
The initial value of 1/P(n).

Adapt input
Enables the Adapt port.

References Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Kalman Adaptive Filter Signal Processing Blockset

LMS Adaptive Filter Signal Processing Blockset

See “Adaptive Filters” on page 3-53 for related information.

10-891

RLS Filter

Purpose Compute filtered output, filter error, and filter weights for a given input
and desired signal using RLS adaptive filter algorithm

Library Filtering / Adaptive Filters

Description The RLS Filter block recursively computes the least squares estimate
(RLS) of the FIR filter weights. The block estimates the filter weights,
or coefficients, needed to convert the input signal into the desired signal.
Connect the signal you want to filter to the Input port. This input signal
can be a sample-based scalar or a single-channel frame-based signal.
Connect the signal you want to model to the Desired port. The desired
signal must have the same data type, frame status, complexity, and
dimensions as the input signal. The Output port outputs the filtered
input signal, which can be sample or frame based. The Error port
outputs the result of subtracting the output signal from the desired
signal.

The corresponding RLS filter is expressed in matrix form as

where λ-1 denotes the reciprocal of the exponential weighting factor.
The variables are as follows

Variable Description

n The current time index

u(n) The vector of buffered input samples at step n

P(n) The inverse correlation matrix at step n

10-892

RLS Filter

Variable Description

k(n) The gain vector at step n

The vector of filter-tap estimates at step n

y(n) The filtered output at step n

e(n) The estimation error at step n

d(n) The desired response at step n

λ The forgetting factor

The implementation of the algorithm in the block is optimized by
exploiting the symmetry of the inverse correlation matrix P(n). This
decreases the total number of computations by a factor of two.

Use the Filter length parameter to specify the length of the filter
weights vector.

The Forgetting factor (0 to 1) parameter corresponds to λ in the
equations. It specifies how quickly the filter "forgets" past sample
information. Setting λ=1 specifies an infinite memory. Typically,

, where L is the filter length. You can specify a forgetting
factor using the input port, Lambda, or enter a value in the Forgetting
factor (0 to 1) parameter in the Block Parameters: RLS Filter dialog
box.

Enter the initial filter weights, , as a vector or a scalar for the
Initial value of filter weights parameter. When you enter a scalar,
the block uses the scalar value to create a vector of filter weights. This
vector has length equal to the filter length and all of its values are equal
to the scalar value.

The initial value of P(n) is

10-893

RLS Filter

where you specify in the Initial input variance estimate
parameter.

When you select the Adapt port check box, an Adapt port appears on
the block. When the input to this port is nonzero, the block continuously
updates the filter weights. When the input to this port is zero, the filter
weights remain at their current values.

When you want to reset the value of the filter weights to their initial
values, use the Reset input parameter. The block resets the filter
weights whenever a reset event is detected at the Reset port. The reset
signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To
enable the Reset port, select one of the following from the Reset input
list:

• Rising edge – Triggers a reset operation when the Reset input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero; see the
following figure

• Falling edge – Triggers a reset operation when the Reset input
does one of the following:

- Falls from a positive value to a negative value or zero

10-894

RLS Filter

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero; see the following
figure

• Either edge – Triggers a reset operation when the Reset input is a
Rising edge or Falling edge, as described above

• Non-zero sample – Triggers a reset operation at each sample time
that the Reset input is not zero

Note When running simulations in the Simulink MultiTasking
mode, sample-based reset signals have a one-sample latency, and
frame-based reset signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a reset event, and when it applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Select the Output filter weights check box to create a Wts port on the
block. For each iteration, the block outputs the current updated filter
weights from this port.

10-895

RLS Filter

Examples The rlsdemo demo illustrates a noise cancellation system built around
the RLS Filter block.

Dialog
Box

Filter length
Enter the length of the FIR filter weights vector.

Specify forgetting factor via
Select Dialog to enter a value for the forgetting factor in the
Block parameters: RLS Filter dialog box. Select Input port to
specify the forgetting factor using the Lambda input port.

10-896

RLS Filter

Forgetting factor (0 to 1)
Enter the exponential weighting factor in the range 0 ≤λ≤1. A
value of 1 specifies an infinite memory. Tunable.

Initial value of filter weights
Specify the initial values of the FIR filter weights.

Initial input variance estimate
The initial value of 1/P(n).

Adapt port
Select this check box to enable the Adapt input port.

Reset input
Select this check box to enable the Reset input port.

Output filter weights
Select this check box to export the filter weights from the Wts port.

References Hayes, M.H. Statistical Digital Signal Processing and Modeling. New
York: John Wiley & Sons, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Kalman Adaptive Filter Signal Processing Blockset

LMS Filter Signal Processing Blockset

Block LMS Filter Signal Processing Blockset

Fast Block LMS Filter Signal Processing Blockset

See “Adaptive Filters” on page 3-53 for related information.

10-897

RMS

Purpose Compute root-mean-square (RMS) value of an input or sequence of
inputs

Library Statistics

Description The RMS block computes the RMS value of each column in the input,
or tracks the RMS value of a sequence of inputs over a period of time.
The Running RMS parameter selects between basic operation and
running operation.

Basic Operation

When you do not select the Running RMS check box, the block
computes the RMS value of each column in M-by-N input matrix u
independently at each sample time.

y = sqrt(sum(u.*conj(u))/size(u,1))

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, y, is a 1-by-N vector containing the
RMS value for each column in u. The RMS value of the jth column is

The frame status of the output is the same as that of the input.

Running Operation

When you select the Running RMS check box, the block tracks the
RMS value of each channel in a time-sequence of M-by-N inputs. For
sample-based inputs, the output is a sample-based M-by-N matrix
with each element yij containing the RMS value of element uij over all
inputs since the last reset. For frame-based inputs, the output is a
frame-based M-by-N matrix with each element yij containing the RMS

10-898

RMS

value of the jth column over all inputs since the last reset, up to and
including element uij of the current input.

As in basic operation, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running RMS

The block resets the running RMS whenever a reset event is detected at
the optional Rst port. The reset signal rate must be a positive integer
multiple of the rate of the data signal input.

When the block is reset for sample-based inputs, the running RMS for
each channel is initialized to the value in the corresponding channel
of the current input. For frame-based inputs, the running RMS for
each channel is initialized to the earliest value in each channel of the
current input.

You specify the reset event in the Reset port parameter:

• None disables the Rst port.

• Rising edge – Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero; see the
following figure

10-899

RMS

• Falling edge – Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero; see the following
figure

• Either edge – Triggers a reset operation when the Rst input is a
Rising edge or Falling edge, as described above.

• Non-zero sample – Triggers a reset operation at each sample time
that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when
the block detects a reset event, there is a one-sample delay at
the reset port rate before the block applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

10-900

RMS

Examples The RMS block in the model below calculates the running RMS of a
frame-based 3-by-2 (two-channel) matrix input, u. The running RMS is
reset at t=2 by an impulse to the block’s Rst port.

The RMS block has the following settings:

• Running RMS = Select this check box

• Reset port = Non-zero sample

The Signal From Workspace block has the following settings:

• Signal = u

• Sample time = 1/3

• Samples per frame = 3

where

u = [6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'

The Discrete Impulse block has the following settings:

• Delay (samples) = 2

• Sample time = 1

• Samples per frame = 1

The block’s operation is shown in the figure below.

10-901

RMS

Dialog
Box

10-902

RMS

Running RMS
Enables running operation when selected.

Reset port
Determines the reset event that causes the block to reset the
running RMS. The reset signal rate must be a positive integer
multiple of the rate of the data signal input. This parameter is
enabled only when you set the Running RMS parameter. For
more information, see “Resetting the Running RMS” on page
10-899.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Boolean – The block accepts Boolean inputs to the Rst port.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Mean Signal Processing Blockset

Variance Signal Processing Blockset

10-903

Sample and Hold

Purpose Sample and hold input signal

Library Signal Operations

Description The Sample and Hold block acquires the input at the signal port
whenever it receives a trigger event at the trigger port (marked by).
The block then holds the output at the acquired input value until the
next triggering event occurs. When the acquired input is frame based,
the output is frame based; otherwise, the output is sample based.

The trigger input must be a sample-based scalar with sample rate equal
to the input frame rate at the signal port. You specify the trigger event
in the Trigger type pop-up menu:

• Rising edge triggers the block to acquire the signal input when the
trigger input rises from a negative value or zero to a positive value.

• Falling edge triggers the block to acquire the signal input when the
trigger input falls from a positive value or zero to a negative value.

• Either edge triggers the block to acquire the signal input when the
trigger input either rises from a negative value or zero to a positive
value or falls from a positive value or zero to a negative value.

You specify the block’s output prior to the first trigger event using the
Initial condition parameter. When the acquired input is an M-by-N
matrix, the Initial condition can be an M-by-N matrix, or a scalar
to be repeated across all elements of the matrix. When the input is
a length-M 1-D vector, the Initial condition can be a length-M row
or column vector, or a scalar to be repeated across all elements of the
vector.

If you select the Latch (buffer) input check box, the block outputs the
value of the input from the previous time step until the next triggering
event occurs. To use this block in a loop, select this check box.

10-904

Sample and Hold

Dialog
Box

Trigger type
The type of event that triggers the block to acquire the input
signal.

Initial condition
The block’s output prior to the first trigger event.

Latch (buffer) input
If you select this check box, the block outputs the value of the
input from the previous time step until the next triggering event
occurs.

10-905

Sample and Hold

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Trigger • Any data type supported by the Trigger block

Outputs • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Downsample Signal Processing Blockset

N-Sample Switch Signal Processing Blockset

10-906

Scalar Quantizer

Purpose Convert an input signal into a set of quantized output values. Convert
an input signal into a set of index values. Convert a set of index values
into a quantized output signal.

Library dspobslib

Description
Note The Scalar Quantizer block is still supported but is likely to be
obsoleted in a future release. We recommend replacing this block with
the Scalar Quantizer Encoder block or the Scalar Quantizer Decoder
block.

The Scalar Quantizer block has three modes of operation. In Encoder
mode, the block maps each input value to a quantization region by
comparing the input value to the quantizer boundary points defined in
the Boundary points parameter. The block outputs the index of the
associated region. In Decoder mode, the block transforms the input
index values into quantized output values, defined in the Codebook
parameter. In the Encoder and Decoder mode, the block performs both
the encoding and decoding operations. The block outputs the index
values and the quantized output values.

You can select how you want to enter the Boundary points and/or
Codebook values using the Source of quantizer parameters. When
you select Specify via dialog, type the parameters into the block
parameters dialog box. Select Input ports, and port B and/or C
appears on the block. In Encoder and Encoder and decoder mode,
the input to port B is used as the Boundary points. In Decoder
and Encoder and decoder mode, the input to port C is used as the
Codebook.

In Encoder and Encoder and decoder mode, the Boundary points
are the values used to break up the input signal into regions. Each
region is specified by an index number. When your first boundary
point is -inf and your last boundary point is inf, your quantizer is
unbounded. When your first and last boundary point is finite, your

10-907

Scalar Quantizer

quantizer is bounded. When only your first or last boundary point is
-inf or inf, your quantizer is semi-bounded.

For instance, when your input signal ranges from 0 to 11, you can create
a bounded quantizer using the following boundary points:

[0 0.5 3.7 5.8 6.0 11]

The boundary points can have equal or varied spacing. Any input
values between 0 and 0.5 would correspond to index 0. Input values
between 0.5 and 3.7 would correspond to index 1, and so on.

Suppose you wanted to create an unbounded quantizer with the
following boundary points:

[-inf 0 2 5.5 7.1 10 inf]

When your input signal has values less than 0, these values would be
assigned to index 0. When your input signal has values greater than
10, these values would be assigned to index 6.

When an input value is the same as a boundary point, the Tie-breaking
rule parameter defines the index to which the value is assigned. When
you want the input value to be assigned to the lower index value, select
Choose the lower index. To assign the input value with the higher
index, select Choose the higher index.

In Decoder and Encoder and decoder mode, the Codebook is a vector
of quantized output values that correspond to each index value.

In Encoder and Encoder and decoder mode, the Searching method
determines how the appropriate quantizer index is found. Select Linear
and the Scalar Quantizer block compares the input value to the first
region defined by the first two boundary points. When the input value
does not fall within this region, the block then compares the input
value to the next region. This process continues until the input value is
determined to be within a region and is associated with the appropriate
index value. The computational cost of this process is of the order P,
where P is the number of boundary points.

10-908

Scalar Quantizer

Select Binary for the Searching method and the block compares the
input value to the middle value of the boundary points vector. When
the input value is larger than this boundary point, the block discards
the boundary points that are lower than this middle value. The block
then compares the input value to the middle boundary point of the
new range, defined by the remaining boundary points. This process
continues until the input value is associated with the appropriate index
value. The computational cost of this process is of the order ,
where P is the number of boundary points. In most cases, the Binary
option is faster than the Linear option.

In Decoder mode, the input to this block is a vector of index values,
where and N is the length of the codebook vector. Use the
Action for out of range input parameter to determine what happens
when an input index value is out of this range. When you want any
index values less than 0 to be set to 0 and any index values greater than
or equal to N to be set to N-1, select Clip. When you want to be warned
when any index values less than 0 are set to 0 and any index values
greater than or equal to N are set to N-1, select Clip and warn. When
you want the simulation to stop and display an error when the index
values are out of range, select Error.

In Encoder and decoder mode, you can select the Output the
quantization error check box. The quantization error is the difference
between the input value and the quantized output value. Select this
check box to output the quantization error for each input value from
the Err port on this block.

Data Type Support

In Encoder mode, the input data values and the boundary points can
be the input to the block at ports U and B. Similarly, in Encoder and
decoder mode, the codebook values can also be the input to the block at
port C. The data type of the input data values, boundary points, and
codebook values can be double, single, uint8, uint16, uint32, int8,
int16, or int32. In Decoder mode, the input to the block can be the
index values and the codebook values. The data type of the index input
to the block at port Idx can be uint8, uint16, uint32, int8, int16, or

10-909

Scalar Quantizer

int32. The data type of the codebook values can be double, single,
uint8, uint16, uint32, int8, int16, or int32.

In Encoder mode, the output of the block is the index values. In
Encoder and decoder mode, the output can also include the quantized
output values and the quantization error. In Encoder and Encoder and
decoder mode, use the Output index data type parameter to specify
the data type of the index output from the block at port Idx. The data
type of the index output can be uint8, uint16, uint32, int8, int16, or
int32. The data type of the quantized output and the quantization
error can be double, single, uint8, uint16, uint32, int8, int16, or
int32. In Decoder mode, the output of the block is the quantized output
values. Use the Output data type parameter to specify the data type
of the quantized output values. The data type can be double, single,
uint8, uint16, uint32, int8, int16, int32.

Note The input data, codebook values, boundary points, quantization
error, and the quantized output values must have the same data type
whenever they are present in any of the quantizer modes.

10-910

Scalar Quantizer

Dialog
Box

10-911

Scalar Quantizer

10-912

Scalar Quantizer

Quantizer mode
Specify Encoder, Decoder, or Encoder and decoder as a mode of
operation. Nontunable.

Source of quantizer parameters
Choose Specify via dialog to type the parameters into the
block parameters dialog box. Select Input ports to specify the

10-913

Scalar Quantizer

parameters using the block’s input ports. In Encoder and Encoder
and decoder mode, input the Boundary points using port B. In
Decoder and Encoder and decoder mode, input the Codebook
values using port C. Nontunable.

Boundary points
Enter a vector of values that represent the boundary points of
the quantizer regions. Tunable.

Codebook
Enter a vector of quantized output values that correspond to each
index value. Tunable.

Searching method
Select Linear and the block finds the region in which the input
value is located using a linear search. Select Binary and the block
finds the region in which the input value is located using a binary
search. Nontunable.

Tie-breaking rule
Set this parameter to determine the behavior of the block when
the input value is the same as the boundary point. When you
select Choose the lower index, the input value is assigned to
lower index value. When you select Choose the higher index,
the value is assigned to the higher index. Nontunable.

Action for out of range input
Choose the block’s behavior when an input index value is out of
range, where and N is the length of the codebook
vector. Select Clip, when you want any index values less than 0
to be set to 0 and any index values greater than or equal to N to
be set to N-1. Select Clip and warn, when you want to be warned
when any index values less than 0 are set to 0 and any index
values greater than or equal to N are set to N-1. Select Error,
when you want the simulation to stop and display an error when
the index values are out of range. Nontunable.

Output the quantization error
In Encoder and decoder mode, select this check box to output the
quantization error from the Err port on this block. Nontunable.

10-914

Scalar Quantizer

Output index data type
In Encoder and Encoder and decoder mode, specify the data
type of the index output from the block at port Idx. The data
type can be uint8, uint16, uint32, int8, int16, or int32. This
parameter becomes visible when you select the Show additional
parameters check box. Nontunable.

Output data type
In Decoder mode, specify the data type of the quantized output.
The data type can be uint8, uint16, uint32, int8, int16,
int32, single, or double. This parameter becomes visible when
you select Specify via dialog for the Source of quantizer
parameters and you select the Show additional parameters
check box. Nontunable.

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

For more information on what data types are supported for each
quantizer mode, see “Data Type Support” on page 10-909. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

10-915

Scalar Quantizer

Scalar Quantizer Design Signal Processing Blockset

Scalar Quantizer Encoder Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

10-916

Scalar Quantizer Decoder

Purpose Convert each index value into quantized output value

Library Quantizers

Description The Scalar Quantizer Decoder block transforms the zero-based input
index values into quantized output values. The set of all possible
quantized output values is defined by the Codebook values parameter.

Use the Codebook values parameter to specify a matrix containing all
possible quantized output values. You can select how you want to enter
the codebook values using the Source of codebook parameter. When
you select Specify via dialog, type the codebook values into the block
parameters dialog box. When you select Input port, port C appears
on the block. The block uses the input to port C as the Codebook
values parameter.

The input to this block is a vector of integer index values, where
and N is the number of distinct codeword vectors in

the codebook matrix. Use the Action for out of range index value
parameter to determine what happens when an input index value is
outside this range. When you want any index value less than 0 to be
set to 0 and any index value greater than or equal to N to be set to N-1,
select Clip. When you want to be warned when clipping occurs, select
Clip and warn. When you want the simulation to stop and the block to
display an error when the index values are out of range, select Error.

Data Type Support

The data type of the index values input at port I can be uint8, uint16,
uint32, int8, int16, or int32. The data type of the codebook values
input at port C can be double, single, or Fixed-point.

The output of the block is the quantized output values. If, for the
Source of codebook parameter, you select Specify via dialog, the
Codebook and output data type parameter appears. You can use
this parameter to specify the data type of the codebook and quantized
output values. In this case, the data type of the output values can
be Same as input, double, single, Fixed-point, or User-defined.
If, for the Source of codebook parameter you select Input port,

10-917

Scalar Quantizer Decoder

the quantized output values have the same data type as the codebook
values input at port C.

Dialog
Box

Source of codebook
Choose Specify via dialog to type the codebook values into the
block parameters dialog box. Select Input port to specify the
codebook using input port C. Nontunable.

Action for out of range index value
Use this parameter to determine the block’s behavior when an
input index value is out of range, where and N is
the length of the codebook vector. Select Clip, when you want
any index values less than 0 to be set to 0 and any index values
greater than or equal to N to be set to N-1. Select Clip and warn,
when you want to be warned when clipping occurs. Select Error,
when you want the simulation to stop and the block to display an
error when the index values are outside the range. Nontunable.

Codebook values
Enter a vector of quantized output values that correspond to each
index value. Tunable.

10-918

Scalar Quantizer Decoder

Codebook and output data type
Use this parameter to specify the data type of the codebook and
quantized output values. The data type can be Same as input,
double, single, Fixed-point, or User-defined. This parameter
becomes visible when you select Specify via dialog for the
Source of codebook parameter. Nontunable.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is only visible if, from the
Codebook and output data type list, you select Fixed-point.

10-919

Scalar Quantizer Decoder

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible if, from the Codebook and
output data type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

Choose Best precision to have the output scaling automatically
set such that the output signal has the best possible precision.

Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible if, from the Codebook and output
data type list, you select Fixed-point or when you select
User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is only
visible when you select Fixed-point or User-defined for the
Codebook and output data type parameter and User-defined
for the Set fraction length in output to parameter.

10-920

Scalar Quantizer Decoder

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Codebook
and output data type parameter.

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

10-921

Scalar Quantizer Decoder

Supported
Data
Types

Port Supported Data Types

I • 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

C • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

Q(U) • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

For more information on what data types are supported for each
quantizer mode, see “Data Type Support” on page 10-917. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Quantizer Simulink

Scalar Quantizer Design Signal Processing Blockset

Scalar Quantizer Encoder Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

10-922

Scalar Quantizer Design

Purpose Start Scalar Quantizer Design Tool (SQDTool) to design scalar quantizer
using Lloyd algorithm

Library Quantizers

Description Double-click on the Scalar Quantizer Design block to start SQDTool, a
GUI that allows you to design and implement a scalar quantizer. Based
on your input values, SQDTool iteratively calculates the codebook
values that minimize the mean squared error until the stopping
criteria for the design process is satisfied. The block uses the resulting
quantizer codebook values and boundary points to implement your
scalar quantizer encoder and/or decoder.

For the Training Set parameter, enter a set of observations, or
samples, of the signal you want to quantize. This data can be any
variable defined in the MATLAB workspace including a variable created
using a MATLAB function, such as the default value randn(10000,1).

You have two choices for the Source of initial codebook parameter.
Select Auto-generate to have the block choose the values of the initial
codebook vector. In this case, the minimum training set value becomes
the first codeword, and the maximum training set value becomes the
last codeword. Then, the remaining initial codewords are equally spaced
between these two values to form a codebook vector of length N, where
N is the Number of levels parameter. When you select User defined,
enter the initial codebook values in the Initial codebook field. Then,
set the Source of initial boundary points parameter. You can select
Mid-points to locate the boundary points at the midpoint between the
codewords. To calculate the mid-points, the block internally arranges
the initial codebook values in ascending order. You can also choose User
defined and enter your own boundary points in the Initial boundary
points (unbounded) field. Only one boundary point can be located
between two codewords. When you select User defined for the Source
of initial boundary points parameter, the values you enter in the
Initial codebook and Initial boundary points (unbounded) fields
must be arranged in ascending order.

10-923

Scalar Quantizer Design

Note This block assumes that you are designing an unbounded
quantizer. Therefore, the first and last boundary points are always -inf
and inf regardless of any other boundary point values you might enter.

After you have specified the quantization parameters, the block
performs an iterative process to design the optimal scalar quantizer.
Each step of the design process involves using the Lloyd algorithm to
calculate codebook values and quantizer boundary points. Then, the
block calculates the squared quantization error and checks whether the
stopping criteria has been satisfied.

The two possible options for the Stopping criteria parameter are
Relative threshold and Maximum iteration. When you want
the design process to stop when the fractional drop in the squared
quantization error is below a certain value, select Relative threshold.
Then, for Relative threshold, type the maximum acceptable fractional
drop. When you want the design process to stop after a certain
number of iterations, choose Maximum iteration. Then, enter the
maximum number of iterations you want the block to perform in the
Maximum iteration field. For Stopping criteria, you can also
choose Whichever comes first and enter a Relative threshold and
Maximum iteration value. The block stops iterating as soon as one of
these conditions is satisfied.

With each iteration, the block quantizes the training set values based
on the newly calculated codebook values and boundary points. When
the training point lies on a boundary point, the algorithm uses the
Tie-breaking rules parameter to determine which region the value is
associated with. When you want the training point to be assigned to the
lower indexed region, select Lower indexed codeword. To assign the
training point with the higher indexed region, select Higher indexed
codeword.

The Searching methods parameter determines how the block
compares the training points to the boundary points. Select Linear
search and SQDTool compares each training point to each quantization

10-924

Scalar Quantizer Design

region sequentially. This process continues until all the training points
are associated with the appropriate regions.

Select Binary search for the Searching methods parameter and the
block compares the training point to the middle value of the boundary
points vector. When the training point is larger than this boundary
point, the block discards the lower boundary points. The block then
compares the training point to the middle boundary point of the
new range, defined by the remaining boundary points. This process
continues until the training point is associated with the appropriate
region.

Click Design and Plot to design the quantizer with the parameter
values specified on the left side of the GUI. The performance curve and
the staircase character of the quantizer are updated and displayed in
the figures on the right side of the GUI.

Note You must click Design and Plot to apply any changes you make
to the parameter values in the SQDTool dialog box.

SQDTool can export parameter values that correspond to the figures
displayed in the GUI. Click the Export Outputs button, or press
Ctrl+E, to export the Final Codebook, Final Boundary Points, and
Error values to the workspace, a text file, or a MAT-file. The Error
values represent the mean squared error for each iteration.

In the Model section of the GUI, specify the destination of the block
that will contain the parameters of your quantizer. For Destination,
select Current model to create a block with your parameters in the
model you most recently selected. Type gcs in the MATLAB Command
Window to display the name of your current model. Select New model to
create a block in a new model file.

From the Block type list, select Encoder to design a Scalar Quantizer
Encoder block. Select Decoder to design a Scalar Quantizer Decoder
block. Select Both to design a Scalar Quantizer Encoder block and a
Scalar Quantizer Decoder block.

10-925

Scalar Quantizer Design

In the Encoder block name field, enter a name for the Scalar
Quantizer Encoder block. In the Decoder block name field, enter a
name for the Scalar Quantizer Decoder block. When you have a Scalar
Quantizer Encoder and/or Decoder block in your destination model with
the same name, select the Overwrite target block(s) check box to
replace the block’s parameters with the current parameters. When you
do not select this check box, a new Scalar Quantizer Encoder and/or
Decoder block is created in your destination model.

Click Generate Model. SQDTool uses the parameters that correspond
to the current plots to set the parameters of the Scalar Quantizer
Encoder and/or Decoder blocks.

10-926

Scalar Quantizer Design

Dialog
Box

10-927

Scalar Quantizer Design

Training Set
Enter the samples of the signal you would like to quantize. This
data set can be a MATLAB function or a variable defined in the
MATLAB workspace. The typical length of this data vector is 1e6.

Source of initial codebook
Select Auto-generate to have the block choose the initial
codebook values. Select User defined to enter your own initial
codebook values.

Number of levels
Enter the length of the codebook vector. For a b-bit quantizer,
the length should be .

Initial codebook
Enter your initial codebook values. From the Source of initial
codebook list, select User defined in order to activate this
parameter.

Source of initial boundary points
Select Mid-points to locate the boundary points at the midpoint
between the codebook values. Choose User defined to enter your
own boundary points. From the Source of initial codebook list,
select User defined in order to activate this parameter.

Initial boundary points (unbounded)
Enter your initial boundary points. This block assumes that you
are designing an unbounded quantizer. Therefore, the first and
last boundary point are -inf and inf, regardless of any other
boundary point values you might enter. From the Source of
initial boundary points list, select User defined in order to
activate this parameter.

Stopping criteria
Choose Relative threshold to enter the maximum acceptable
fractional drop in the squared quantization error. Choose Maximum
iteration to specify the number of iterations at which to stop.
Choose Whichever comes first and the block stops the iteration
process as soon as the relative threshold or maximum iteration
value is attained.

10-928

Scalar Quantizer Design

Relative threshold
Type the value that is the maximum acceptable fractional drop in
the squared quantization error.

Maximum iteration
Enter the maximum number of iterations you want the block
to perform. From the Stopping criteria list, select Maximum
iteration in order to activate this parameter.

Searching methods
Choose Linear search to use a linear search method when
comparing the training points to the boundary points. Choose
Binary search to use a binary search method when comparing
the training points to the boundary points.

Tie-breaking rules
When a training point lies on a boundary point, choose Lower
indexed codeword to assign the training point to the lower
indexed quantization region. Choose Higher indexed codeword
to assign the training point to the higher indexed region.

Design and Plot
Click this button to display the performance curve and the
staircase character of the quantizer in the figures on the right
side of the GUI. These plots are based on the current parameter
settings.

You must click Design and Plot to apply any changes you make
to the parameter values in the SQDTool GUI.

Export Outputs
Click this button, or press Ctrl+E, to export the Final Codebook,
Final Boundary Points, and Error values to the workspace, a
text file, or a MAT-file.

Destination
Choose Current model to create a Scalar Quantizer block in
the model you most recently selected. Type gcs in the MATLAB
Command Window to display the name of your current model.
Choose New model to create a block in a new model file.

10-929

Scalar Quantizer Design

Block type
Select Encoder to design a Scalar Quantizer Encoder block. Select
Decoder to design a Scalar Quantizer Decoder block. Select
Both to design a Scalar Quantizer Encoder block and a Scalar
Quantizer Decoder block.

Encoder block name
Enter a name for the Scalar Quantizer Encoder block.

Decoder block name
Enter a name for the Scalar Quantizer Decoder block.

Overwrite target block(s)
When you do not select this check box and a Scalar Quantizer
Encoder and/or Decoder block with the same block name exists
in the destination model, a new Scalar Quantizer Encoder and/or
Decoder block is created in the destination model. When you
select this check box and a Scalar Quantizer Encoder and/or
Decoder block with the same block name exists in the destination
model, the parameters of these blocks are overwritten by new
parameters.

Generate Model
Click this button and SQDTool uses the parameters that
correspond to the current plots to set the parameters of the Scalar
Quantizer Encoder and/or Decoder blocks.

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

Supported
Data
Types

• Double-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-930

Scalar Quantizer Design

See Also

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

Scalar Quantizer Encoder Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

10-931

Scalar Quantizer Encoder

Purpose Encode each input value by associating it with the index value of a
quantization region

Library Quantizers

Description The Scalar Quantizer Encoder block maps each input value to a
quantization region by comparing the input value to the quantizer
boundary points defined in the Boundary points parameter. The block
outputs the zero-based index of the associated region.

You can select how you want to enter the Boundary points using the
Source of quantizer parameters. When you select Specify via
dialog, type the boundary points into the block parameters dialog box.
When you select Input port, port B appears on the block. The block
uses the input to port B as the Boundary points parameter.

Use the Boundary points parameter to specify the boundary points
for your quantizer. These values are used to break up the set of input
numbers into regions. Each region is specified by an index number.

Let N be the number of quantization regions. When the codebook
is defined as [c1 c2 c3 ... cN], and the Boundary points
parameter is defined as [p0 p1 p2 p3 ... pN], then p0<c1<p1<c2
... p(N-1)<cN<pN for a regular quantizer. When your quantizer
is bounded, from the Partitioning list, select Bounded. You need to
specify N+1 boundary points, or [p0 p1 p2 p3 ... pN]. When your
quantizer is unbounded, from the Partitioning list, select Unbounded.
You need to specify N-1 boundary points, or[p1 p2 p3 ... p(N-1)];
the block sets p0 equal to -inf and pN equal to inf.

The block uses the Partitioning parameter to interpret the boundary
points you enter. For instance, to create a bounded quantizer, from the
Partitioning list, select Bounded and enter the following boundary
points:

[0 0.5 3.7 5.8 6.0 11]

The block assigns any input values between 0 and 0.5 to index 0, input
values between 0.5 and 3.7 to index 1, and so on. The block assigns

10-932

Scalar Quantizer Encoder

any values that are less than 0 to index 0, the lowest index value.
The block assigns any values that are greater than 11 to index 4, the
highest index value.

To create an unbounded quantizer, from the Partitioning list, select
Unbounded and enter the following boundary points:

[0 0.5 3.7 5.8 6.0 11]

The block assigns any input values between 0 and 0.5 to index 1, input
values between 0.5 and 3.7 to index 2, and so on. The block assigns
any input values less than 0 to index 0 and any values greater than 11
to index 6.

The Searching method parameter determines how the appropriate
quantizer index is found. When you select Linear, the Scalar Quantizer
Encoder block compares the input value to the first region defined
by the first two boundary points. When the input value does not fall
within this region, the block then compares the input value to the next
region. This process continues until the input value is determined to
be within a region and is associated with the appropriate index value.
The computational cost of this process is of the order P, where P is the
number of boundary points.

When you select Binary for the Searching method, the block
compares the input value to the middle value of the boundary points
vector. When the input value is larger than this boundary point, the
block discards the boundary points that are lower than this middle
value. The block then compares the input value to the middle boundary
point of the new range, defined by the remaining boundary points.
This process continues until the input value is associated with the
appropriate index value. The computational cost of this process is of the
order , where P is the number of boundary points. In most cases,
the Binary option is faster than the Linear option.

When an input value is the same as a boundary point, the Tie-breaking
rule parameter determines the region to which the value is assigned.
When you want the input value to be assigned to the lower indexed

10-933

Scalar Quantizer Encoder

region, select Choose the lower index. To assign the input value with
the higher indexed region, select Choose the higher index.

Select the Output codeword check box to output the codeword values
that correspond to each index value at port Q(U).

Select the Output the quantization error check box to output the
quantization error for each input value from the Err port on this block.
The quantization error is the difference between the input value and
the quantized output value.

When you select either the Output codeword check box or the Output
quantization error check box, you must also enter your codebook
values. If, from the Source of quantizer parameters list, you choose
Specify via dialog, use the Codebook parameter to enter a vector
of quantized output values that correspond to each region. If, from the
Source of quantizer parameters list, you choose Input port, use
input port C to specify your codebook values.

If, for the Partitioning parameter, you select Bounded, the Output
clipping status check box and the Action for out of range input
parameter appear. When you select the Output clipping status check
box, port S appears on the block. Any time an input value is outside the
range defined by the Boundary points parameter, the block outputs a
1 at the S port. When the value is inside the range, the blocks outputs
a 0.

You can use the Action for out of range input parameter to determine
the block’s behavior when an input value is outside the range defined
by the Boundary points parameter. Suppose the boundary points for
a bounded quantizer are defined as [p0 p1 p2 p3 ... pN] and the
possible index values are defined as [i0 i1 i2 ... i(N-1)], where
i0=0 and i0<i1<i2<...<i(N-1). When you want any input value less
than p0 to be assigned to index value i0 and any input values greater
than pN to be assigned to index value i(N-1), select Clip. When you
want to be warned when clipping occurs, select Clip and warn. When
you want the simulation to stop and the block to display an error when
the index values are out of range, select Error.

10-934

Scalar Quantizer Encoder

The Scalar Quantizer Encoder block accepts real floating-point and
fixed-point inputs. For more information on the data types accepted by
each port, see “Data Type Support” on page 10-935 or “Supported Data
Types” on page 10-940.

Data Type Support

The input data values, boundary points, and codebook values can be
input to the block at ports U, B, and C, respectively. The data type of
the inputs can be double, single, or Fixed-point.

The outputs of the block can be the index values, the quantized output
values, the quantization error, and the clipping status. Use the Index
output data type parameter to specify the data type of the index
output from the block at port I. You can choose int8, uint8, int16,
uint16, int32, or uint32. The data type of the quantized output and
the quantization error can be double, single, or Fixed-point. The
clipping status values output at port S are Boolean values.

Note The input data, boundary points, codebook values, quantized
output values, and the quantization error must have the same data
type whenever they are present.

10-935

Scalar Quantizer Encoder

Dialog
Box

Source of quantizer parameters
Choose Specify via dialog to enter the boundary points and
codebook values using the block parameters dialog box. Select
Input port to specify the parameters using the block’s input
ports. Input the boundary points and codebook values using ports
B and C, respectively. Nontunable.

Partitioning
When your quantizer is bounded, select Bounded. When your
quantizer is unbounded, select Unbounded. Nontunable.

10-936

Scalar Quantizer Encoder

Boundary points
Enter a vector of values that represent the boundary points
of the quantizer regions. This parameter is visible when you
select Specify via dialog from the Source of quantizer
parameters list. Tunable.

Searching method
When you select Linear, the block finds the region in which the
input value is located using a linear search. When you select
Binary, the block finds the region in which the input value is
located using a binary search. Nontunable.

Tie-breaking rule
Set this parameter to determine the behavior of the block when the
input value is the same as the boundary point. When you select
Choose the lower index, the input value is assigned to lower
indexed region. When you select Choose the higher index, the
value is assigned to the higher indexed region. Nontunable.

Output codeword
Select this check box to output the codeword values that
correspond to each index value at port Q(U). Nontunable.

Output quantization error
Select this check box to output the quantization error for each
input value at port Err. Nontunable.

Codebook
Enter a vector of quantized output values that correspond to
each index value. If, for the Partitioning parameter, you select
Bounded and your boundary points vector has length N, then you
must specify a codebook of length N-1. If, for the Partitioning
parameter, you select Unbounded and your boundary points vector
has length N, then you must specify a codebook of length N+1.

This parameter is visible when you select Specify via dialog
from the Source of quantizer parameters list and you select
either the Output codeword or Output quantization error
check box. Tunable.

10-937

Scalar Quantizer Encoder

Output clipping status
When you select this check box, port S appears on the block. Any
time an input value is outside the range defined by the Boundary
points parameter, the block outputs a 1 at this port. When the
value is inside the range, the block outputs a 0. This parameter is
visible when you select Bounded from the Partitioning list.

Action for out of range input
Use this parameter to determine the behavior of the block when
an input value is outside the range defined by the Boundary
points parameter. Suppose the boundary points are defined as
[p0 p1 p2 p3 ... pN] and the index values are defined as
[i0 i1 i2 ... i(N-1)]. When you want any input value less
than p0 to be assigned to index value i0 and any input values
greater than pN to be assigned to index value i(N-1), select Clip.
When you want to be warned when clipping occurs, select Clip
and warn. When you want the simulation to stop and the block
to display an error when the index values are out of range, select
Error. This parameter is visible when you select Bounded from
the Partitioning list.

10-938

Scalar Quantizer Encoder

Index output data type
Specify the data type of the index output from the block at port
I. You can choose int8, uint8, int16, uint16, int32, or uint32.
Nontunable.

Round integer calculations toward
Select the rounding mode for integer output.

10-939

Scalar Quantizer Encoder

Saturate on integer overflow
When selected, overflows saturate.

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

Supported
Data
Types

Port Supported Data Types

U • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

B • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

C • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

I • 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Q(U) • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

10-940

Scalar Quantizer Encoder

Port Supported Data Types

Err • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

S • Boolean

For more information on what data types are supported for each
quantizer mode, see “Data Type Support” on page 10-917. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

Scalar Quantizer Design Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

10-941

Short-Time FFT

Purpose Compute nonparametric estimate of the spectrum using short-time, fast
Fourier transform (FFT) method

Library Transforms

Description The Short-Time FFT block computes a nonparametric estimate of the
spectrum. The block buffers, applies a window, and zero pads the input
signal. Then, the block takes the FFT of the signal, transforming it
into the frequency domain.

Connect your sample-based or frame-based, single-channel analysis
window to the w(n) port. For the Analysis window length parameter,
enter the length of the analysis window, W. When your analysis window
is a sample-based signal, the block buffers it into a frame-based signal
with frame length W. When your analysis window is a frame-based
signal and its frame length is not W, the block buffers the signal so
that its frame length is W.

Connect your sample-based or frame-based, single-channel or
multichannel input signal to the x(n) port. After the block buffers
and windows this signal, it zero-pads the signal before computing the
FFT. For the FFT length parameter, enter the length to which the
block pads the input signal. For the Overlap between consecutive
windows (in samples) parameter, enter the number of samples to
overlap each frame of the input signal.

The complex-valued, sample-based, single-channel or multichannel
short-time FFT is output at port X(n,k).

The Short-Time FFT block supports real and complex floating-point and
fixed-point signals.

Fixed-Point Data Types

The following diagram shows the data types used within the Short-Time
FFT subsystem block for fixed-point signals.

10-942

Short-Time FFT

The settings for the fixed-point parameters of the Matrix Scaling block
in the diagram above are as follows:

• Round integer calculations toward: Floor

• Saturate on integer overflow – unchecked

• Scaling vector – Same word length as input

• Product output – Inherit via internal rule

• Accumulator – Inherit via internal rule

• Output – Same as first input

The settings for the fixed-point parameters of the FFT block in the
diagram above are as follows:

• Round integer calculations toward: Floor

• Saturate on integer overflow – unchecked

• Sine table – Same word length as input

• Product output – Inherit via internal rule

• Accumulator – Inherit via internal rule

• Output – Inherit via internal rule

Refer to the FFT and Matrix Scaling block reference pages for more
information.

10-943

Short-Time FFT

Examples The dspstsa_win32 demo illustrates how to use the Short-Time FFT
and Inverse Short-Time FFT blocks to remove the background noise
from a speech signal.

Dialog
Box

Analysis window length
Enter the frame length of the analysis window.

Overlap between consecutive windows (in samples)
Enter the number of samples of overlap for each frame of the
input signal.

FFT length
Enter the length to which the block pads the input signal.

References Quatieri, Thomas E. Discrete-Time Speech Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 2001.

10-944

Short-Time FFT

Supported
Data
Types

Port Supported Data Types

x(n) • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

w(n) • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

X(n,k) • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Burg Method Signal Processing Blockset

Inverse Short-Time FFT Signal Processing Blockset

Magnitude FFT Signal Processing Blockset

Periodogram Signal Processing Blockset

Spectrum Scope Signal Processing Blockset

Window Function Signal Processing Blockset

10-945

Short-Time FFT

Yule-Walker Method Signal Processing Blockset

pwelch Signal Processing Toolbox

See “Power Spectrum Estimation” on page 6-6 for related information.

10-946

Signal From Workspace

Purpose Import signal from MATLAB workspace

Library Signal Processing Sources

Description The Signal From Workspace block imports a signal from the MATLAB
workspace into the Simulink model. The Signal parameter specifies the
name of a MATLAB workspace variable containing the signal to import,
or any valid MATLAB expression defining a matrix or 3-D array.

When the Signal parameter specifies an M-by-N matrix (M≠1), each
of the N columns is treated as a distinct channel. You specify the
frame size in the Samples per frame parameter, Mo, and the output
is an Mo-by-N matrix containing Mo consecutive samples from each
signal channel. You specify the output sample period in the Sample
time parameter, Ts, and the output frame period is Mo*Ts. For Mo=1,
the output is sample based; otherwise the output is frame based. For
convenience, an imported row vector (M=1) is treated as a single
channel, so the output dimension is Mo-by-1.

When the Signal parameter specifies an M-by-N-by-P array, each of the
P pages (an M-by-N matrix) is output in sequence with period Ts. The
Samples per frame parameter must be set to 1, and the output is
always sample based.

Initial and Final Conditions

Unlike the Simulink From Workspace block, the Signal From Workspace
block holds the output value constant between successive output frames
(that is, no linear interpolation takes place). Additionally, the initial
signal values are always produced immediately at t=0.

When the block has output all of the available signal samples, it can
start again at the beginning of the signal, or simply repeat the final
value or generate zeros until the end of the simulation. (The block does
not extrapolate the imported signal beyond the last sample.) The Form
output after final data value by parameter controls this behavior:

10-947

Signal From Workspace

• When you specify Setting To Zero, the block generates zero-valued
outputs for the duration of the simulation after generating the last
frame of the signal.

• When you specify Holding Final Value, the block repeats the final
sample for the duration of the simulation after generating the last
frame of the signal.

• When you specify Cyclic Repetition, the block repeats the signal
from the beginning after it reaches the last sample in the signal. If
the frame size you specify in the Samples per frame parameter
does not evenly divide the input length, a buffer block is inserted
into the Signal From Workspace subsystem, and the model becomes
multirate. If you do not want your model to become multirate, make
sure the frame size evenly divides the input signal length.

Select the Warn when frame size does not evenly divide input
length parameter to be alerted when the input length is not an
integer multiple of the frame size and your model will become
multirate. Use the Model Explorer to turn these warnings on or off
model-wide:

a Select Model Explorer from the View menu in your model.

b In the Search bar of the Model Explorer, search by Property
Name for the ignoreOrWarnInputAndFrameLengths property. Each
block with the Warn when frame size does not evenly divide
input length check box appears in the list in the Contents pane.

c Select each of the blocks for which you wish to toggle the
warning parameter, and select or deselect the check box in the
ignoreOrWarnInputAndFrameLengths column.

Examples Example 1

In the first model below, the Signal From Workspace imports a
two-channel signal from the workspace matrix A. The Sample time is
set to 1 and the Samples per frame is set to 4, so the output is frame
based with a frame size of 4 and a frame period of 4 seconds. The Form

10-948

Signal From Workspace

output after final data value by parameter specifies Setting To
Zero, so all outputs after the third frame (at t=8) are zero.

Example 2

In the second model below, the Signal From Workspace block imports a
sample-based matrix signal from the 3-D workspace array A. Again, the
Form output after final data value by parameter specifies Setting
To Zero, so all outputs after the third (at t=2) are zero.

The Samples per frame parameter is set to 1 for 3-D input.

10-949

Signal From Workspace

Dialog
Box

Signal
The name of the MATLAB workspace variable from which to
import the signal, or a valid MATLAB expression specifying the
signal.

Sample time
The sample period, Ts, of the output. The output frame period is
Mo*Ts.

Samples per frame
The number of samples, Mo, to buffer into each output frame.
This value must be 1 when you specify a 3-D array in the Signal
parameter.

Form output after final data value by
Specifies the output after all of the specified signal samples have
been generated. The block can output zeros for the duration of
the simulation (Setting to zero), repeat the final data sample

10-950

Signal From Workspace

(Holding Final Value) or repeat the entire signal from the
beginning (Cyclic Repetition).

Warn when frame size does not evenly divide input length
Select this parameter to be alerted when the input length is not
an integer multiple of the frame size and your model will become
multirate. For more information, refer to “Initial and Final
Conditions” on page 10-947.

This parameter is only visible when Cyclic Repetition is
selected for the Form output after final data value by
parameter.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

From Wave Device Signal Processing Blockset

From Wave File Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

From Workspace Simulink

To Workspace Simulink

Triggered Signal From
Workspace

Signal Processing Blockset

10-951

Signal From Workspace

See the sections below for related information:

• “Creating Sample-Based Signals” on page 1-19

• “Creating Frame-Based Signals” on page 1-25

• “Importing and Exporting Sample-Based Signals” on page 1-55

• “Importing and Exporting Frame-Based Signals” on page 1-66

10-952

Signal To Workspace

Purpose Write simulation data to array in MATLAB workspace

Library Signal Processing Sinks

Description The Signal To Workspace block writes data from your simulation into
an array in the MATLAB main workspace. The output array can be
2-D or 3-D, depending on whether the data is 1-D, sample based, or
frame based. The Signal To Workspace block and the Simulink To
Workspace block can output the same arrays when their parameters
are set appropriately.

For more information on the Signal To Workspace block, see the
following sections of this reference page:

• “Parameter Descriptions” on page 10-953

• “Output Dimension Summary” on page 10-955

• “Matching the Outputs of Signal To Workspace and To Workspace
Blocks” on page 10-955

• “Examples” on page 10-956

Parameter Descriptions

The Variable name parameter is the name of the array in the
MATLAB workspace into which the block logs the simulation data.
The array is created in the workspace only after the simulation stops
running. When you enter the name of an existing workspace variable,
the block overwrites the variable with an array of simulation data after
the simulation stops running.

When the block input is sample based or 1-D, the Limit data points
to last parameter indicates how many samples of data to save. When
the block input is frame based, this parameter indicates how many
frames of data to save. When the simulation generates more than the
specified maximum number of samples or frames, the simulation saves
only the most recently generated data. To capture all data, set Limit
data points to last to inf.

10-953

Signal To Workspace

The Decimation parameter is the decimation factor. It can be set to
any positive integer d, and allows you to write data at every dth sample.
The default decimation, 1, writes data at every time step.

The Frames parameter sets the dimension of the output array to 2-D or
3-D for frame-based inputs. The block ignores this parameter for 1-D
and sample-based inputs. The Frames parameter has the following
two settings:

• Log frames separately (3-D array): Given an M-by-N
frame-based input signal, the block outputs an M-by-N-by-K array,
where K is the number of frames logged by the end of the simulation.
(K is bounded above by the Limit data points to last parameter.)
Each input frame is an element of the 3-D array. (See “Example 2:
Frame-Based Inputs” on page 10-957.)

• Concatenate frames (2-D array): Given an M-by-N frame-based
input signal with frame size f, the block outputs a (K*f)-by-N matrix,
where K*f is the number of samples acquired by the end of the
simulation. Each input frame is vertically concatenated to the
previous frame to produce the 2-D array output. (See “Example 2:
Frame-Based Inputs” on page 10-957.)

Signal to Workspace always logs sample-based input data as 3-D
arrays, regardless of the Frame parameter setting. Given an M-by-N
sample-based signal, the block outputs an M-by-N-by-L array, where
L is the number of samples logged by the end of the simulation (L is
bounded above by the Limit data points to last parameter). Each
sample-based matrix is an element of the 3-D array. (See “Example 1:
Sample-Based Inputs” on page 10-956.)

For 1-D vector inputs, the block outputs a 2-D matrix regardless of the
setting of Frame. For a length-N 1-D vector input, the block outputs
an L-by-N matrix. Each input vector is a row of the output matrix,
vertically concatenated to the previous vector.

10-954

Signal To Workspace

Output Dimension Summary

The following table summarizes the output array dimensions for various
block inputs. In the table, f is the frame size of the input, K is the
number of frames acquired by the end of the simulation, and L is the
number of samples acquired by the end of the simulation (K and L are
bounded above by the Limit data points to last parameter).

Input Signal Type
Signal To Workspace Output
Dimension

Sample-based M-by-N matrix M-by-N-by-L array

Length-N 1-D vector L-by-N matrix

Frame-based M-by-N matrix;
Frame set to Log frames
separately (3-D array)

M-by-N-by-K array

Frame-based M-by-N matrix;
Frame set to Concatenate
frames (2-D array)

(K*f)-by-N matrix

K*f is the number of samples
acquired by the end of the
simulation.

Matching the Outputs of Signal To Workspace and To
Workspace Blocks

The To Workspace block in the Simulink Sinks Library and the Signal
To Workspace block can output the same array when they are given
the same inputs. To match the blocks’ outputs, set their parameters
as follows.

10-955

Signal To Workspace

Block Parameters
Signal To
Workspace To Workspace

Limit data points
to last

x (any positive integer
or inf)

x

Decimation y (any positive
integer, not inf)

y

Sample Time No such parameter -1

Save format No such parameter Array

Frames Concatenate frames
(2-D array)

No such parameter

Examples Example 1: Sample-Based Inputs

In the following model, the input to the Signal To Workspace block is a
2-by-2 sample-based matrix signal with a sample time of 1 (generated
by a Signal From Workspace block). The Signal To Workspace block logs
11 samples by the end of the simulation, and creates a 2-by-2-by-11
array, A, in the MATLAB workspace.

The block settings are as follows.

10-956

Signal To Workspace

Signal To Workspace Block Parameters

Variable name yout

Limit data points to last inf

Decimation 1

Frames ignored since block input is not
frame based

Configuration Dialog Box Parameters

Start time 0

Stop time 10

Signal From Workspace Parameters (provides Signal To
Workspace input)

Signal input1 (defined below)

Sample time 1

Samples per frame 1

Form output after final data
value by

Setting to zero

input1 = cat(3, [1 1; -1 0], [2 1; -2 0],...,[11 1; -11 0])

Example 2: Frame-Based Inputs

In the following model, the input to the Signal To Workspace block is a
2-by-4 frame-based matrix signal with a frame period of 1 (generated by
a Signal From Workspace block). The block logs 11 frames (two samples
per frame) by the end of the simulation. The frames are concatenated to
create a 22-by-4 matrix, A, in the MATLAB workspace.

The block settings for the following model are similar to the settings
used in Example 1, except Frames is set to Concatenate frames (2-D
array) and the Signal From Workspace parameter, Signal, is set to
input2, where

10-957

Signal To Workspace

input2 = [1 -1 1 0; 2 -2 1 0; 3 -3 1 0;...; 22 -22 1 0]

In the 2-D output, there is no indication of where one frame ends and
another begins. By setting Frames to Log frames separately (3-D
array) in this model, you can easily see each frame in the MATLAB
workspace, as illustrated in the following model. Each of the 11 frames
is logged separately to create a 2-by-4-by-11 array, A, in the MATLAB
workspace.

10-958

Signal To Workspace

Dialog
Box

Variable name
The name of the array that holds the input data. Nontunable.

Limit data points to last
The maximum number of input samples (for sample-based inputs)
or input frames (for frame-based inputs) to be saved. Nontunable.

Decimation
The decimation factor, d. Data is written at every dth sample.
Nontunable.

Frames
The output dimensionality for frame-based inputs. Frames can
be set to Concatenate frames (2-D array) or Log frames
separately (3-D array). This parameter is ignored when
inputs are not frame based. Nontunable.

Log fixed-point data as a fi object
Select to log fixed-point data to the MATLAB workspace as a fi
object of the Fixed-Point Toolbox. Otherwise, fixed-point data is
logged to the workspace as double.

10-959

Signal To Workspace

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Triggered To Workspace Signal Processing Blockset

To Workspace Simulink

10-960

Sine Wave

Purpose Generate continuous or discrete sine wave

Library Signal Processing Sources

Description The Sine Wave block generates a multichannel real or complex
sinusoidal signal, with independent amplitude, frequency, and phase
in each output channel. A real sinusoidal signal is generated when
the Output complexity parameter is set to Real, and is defined by
an expression of the type

where you specify A in the Amplitude parameter, f in hertz in the
Frequency parameter, and [[PHI]] in radians in the Phase offset
parameter. A complex exponential signal is generated when the
Output complexity parameter is set to Complex, and is defined by
an expression of the type

Sections of This Reference Page

• “Generating Multichannel Outputs” on page 10-962

• “Output Sample Time and Samples Per Frame” on page 10-962

• “Sample Mode” on page 10-962

• “Discrete Computational Methods” on page 10-963

• “Examples” on page 10-965

• “Dialog Box” on page 10-966

• “Supported Data Types” on page 10-971

• “See Also” on page 10-971

10-961

Sine Wave

Generating Multichannel Outputs

For both real and complex sinusoids, the Amplitude, Frequency,
and Phase offset parameter values (A, f, and [[PHI]]) can be scalars
or length-N vectors, where N is the desired number of channels in the
output. When you specify at least one of these parameters as a length-N
vector, scalar values specified for the other parameters are applied to
every channel.

For example, to generate the three-channel output containing the
real sinusoids below, set Output complexity to Real and the other
parameters as follows:

• Amplitude = [1 2 3]

• Frequency = [1000 500 250]

• Phase offset = [0 0 pi/2]

Output Sample Time and Samples Per Frame

In all discrete modes, the block buffers the sampled sinusoids into
frames of size M, where you specify M in the Samples per frame
parameter. The output is a frame-based M-by-N matrix with frame
period M*Ts, where you specify Ts in the Sample time parameter. For
M=1, the output is sample based.

Sample Mode

The Sample mode parameter specifies the block’s sampling property,
which can be Continuous or Discrete:

10-962

Sine Wave

• Continuous

In continuous mode, the sinusoid in the ith channel, yi, is computed
as a continuous function,

or

and the block’s output is continuous. In this mode, the block’s
operation is the same as that of a Simulink Sine Wave block with
Sample time set to 0. This mode offers high accuracy, but requires
trigonometric function evaluations at each simulation step, which is
computationally expensive. Additionally, because this method tracks
absolute simulation time, a discontinuity will eventually occur when
the time value reaches its maximum limit.

Note also that many blocks in the Signal Processing Blockset do not
accept continuous-time inputs.

• Discrete

In discrete mode, the block’s discrete-time output can be generated
by directly evaluating the trigonometric function, by table lookup, or
by a differential method. The three options are explained below.

Discrete Computational Methods

When you select Discrete from the Sample mode parameter, the
secondary Computation method parameter provides three options for
generating the discrete sinusoid:

• Trigonometric Fcn

• Table Lookup

• Differential

10-963

Sine Wave

Trigonometric Fcn

The trigonometric function method computes the sinusoid in the ith
channel, yi, by sampling the continuous function

or

with a period of Ts, where you specify Ts in the Sample time parameter.
This mode of operation shares the same benefits and liabilities as the
Continuous sample mode described above.

At each sample time, the block evaluates the sine function at the
appropriate time value within the first cycle of the sinusoid. By
constraining trigonometric evaluations to the first cycle of each
sinusoid, the block avoids the imprecision of computing the sine of very
large numbers, and eliminates the possibility of discontinuity during
extended operations (when an absolute time variable might overflow).
This method therefore avoids the memory demands of the table lookup
method at the expense of many more floating-point operations.

Table Lookup

The table lookup method precomputes the unique samples of every
output sinusoid at the start of the simulation, and recalls the samples
from memory as needed. Because a table of finite length can only be
constructed when all output sequences repeat, the method requires that
the period of every sinusoid in the output be evenly divisible by the
sample period. That is, 1/(fiTs) = ki must be an integer value for every
channel i = 1, 2, ..., N. When the Optimize table for parameter is set
to Speed, the table constructed for each channel contains ki elements.
When the Optimize table for parameter is set to Memory, the table
constructed for each channel contains ki/4 elements.

For long output sequences, the table lookup method requires far
fewer floating-point operations than any of the other methods, but
can demand considerably more memory, especially for high sample

10-964

Sine Wave

rates (long tables). This is the recommended method for models that
are intended to emulate or generate code for DSP hardware, and that
therefore need to be optimized for execution speed.

Differential

The differential method uses an incremental algorithm. This algorithm
computes the output samples based on the output values computed at
the previous sample time (and precomputed update terms) by making
use of the following identities.

The update equations for the sinusoid in the ith channel, yi, can
therefore be written in matrix form as

where you specify Ts in the Sample time parameter. Since Ts is
constant, the right-hand matrix is a constant and can be computed once
at the start of the simulation. The value of Aisin[2πfi(t+Ts)+[[PHI]]i]
is then computed from the values of sin(2πfit+[[PHI]]i) and
cos(2πfit+[[PHI]]i) by a simple matrix multiplication at each time step.

This mode offers reduced computational load, but is subject to drift
over time due to cumulative quantization error. Because the method
is not contingent on an absolute time value, there is no danger of
discontinuity during extended operations (when an absolute time
variable might overflow).

Examples The dspsinecomp demo provides a comparison of all the available sine
generation methods.

10-965

Sine Wave

Dialog
Box

The Main pane of the Sine Wave block dialog appears as follows:

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Amplitude
A length-N vector containing the amplitudes of the sine waves
in each of N output channels, or a scalar to be applied to all N
channels. The vector length must be the same as that specified
for the Frequency and Phase offset parameters. Tunable
(when Computation method is not set to Table lookup); the

10-966

Sine Wave

amplitude values can be altered while a simulation is running,
but the vector length must remain the same.

Frequency
A length-N vector containing frequencies, in rad/s, of the sine
waves in each of N output channels, or a scalar to be applied
to all N channels. The vector length must be the same as that
specified for the Amplitude and Phase offset parameters. You
can specify positive, zero, or negative frequencies. Tunable (when
Computation method is not set to Table lookup); the frequency
values can be altered while a simulation is running, but the vector
length must remain the same. This parameter is not tunable in
the Simulink external mode when using the differential method.

Phase offset
A length-N vector containing the phase offsets, in radians, of the
sine waves in each of N output channels, or a scalar to be applied
to all N channels. The vector length must be the same as that
specified for the Amplitude and Frequency parameters. This
parameter is tunable when Computation method is not set to
Table lookup; the phase values can be altered while a simulation
is running, but the vector length must remain the same. This
parameter is not tunable in the Simulink external mode when
using the differential method.

Sample mode
The block’s sampling behavior, Continuous or Discrete. This
parameter is not tunable.

Output complexity
The type of waveform to generate: Real specifies a real sine wave,
Complex specifies a complex exponential. This parameter is not
tunable.

Computation method
The method by which discrete-time sinusoids are generated:
Trigonometric fcn, Table lookup, or Differential. This
parameter is not tunable. This parameter is disabled when

10-967

Sine Wave

you select Continuous from the Sample mode parameter. For
details, see “Discrete Computational Methods” on page 10-963.

Optimize table for
Optimizes the table of sine values for Speed or Memory (this
parameter is only visible when the Computation method
parameter is set to Table lookup). When optimized for speed,
the table contains k elements, and when optimized for memory,
the table contains k/4 elements, where k is the number of input
samples in one full period of the sine wave.

Sample time
The period with which the sine wave is sampled, Ts. The block’s
output frame period is M*Ts, where you specify M in the Samples
per frame parameter. This parameter is disabled when you
select Continuous from the Sample mode parameter. This
parameter is not tunable.

Samples per frame
The number of consecutive samples from each sinusoid to buffer
into the output frame, M. This parameter is disabled when
you select Continuous from the Sample mode parameter.
Nontunable.

Resetting states when re-enabled
This parameter only applies when the Sine Wave block is located
inside an enabled subsystem and the States when enabling
parameter of the Enable block is set to reset. This parameter
determines the behavior of the Sine Wave block when the
subsystem is re-enabled. The block can either reset itself to its
starting state (Restart at time zero), or resume generating
the sinusoid based on the current simulation time (Catch up to
simulation time). This parameter is disabled when you select
Continuous from the Sample mode parameter.

The Data types pane of the Sine Wave block dialog appears as follows:

10-968

Sine Wave

Output data type
Specify the output data type in out of the following ways:

Choose one of the built-in data types from the list.

Choose Fixed-point to specify the output data type and scaling
in the Word length, Set fraction length in output to, and
Fraction length parameters.

10-969

Sine Wave

Choose User-defined to specify the output data type and scaling
in the User-defined data type, Set fraction length in output
to, and Fraction length parameters.

Choose Inherit via back propagation to set the output data
type and scaling to match the next block downstream.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

Choose Best precision to have the output scaling automatically
set such that the output signal has the best possible precision.

Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible when you select Fixed-point
for the Output data type parameter, or when you select
User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for

10-970

Sine Wave

the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Chirp Signal Processing Blockset

Complex Exponential Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

Signal Generator Simulink

Sine Wave Simulink

sin MATLAB

10-971

Singular Value Decomposition

Purpose Factor matrix using singular value decomposition

Library Math Functions / Matrices and Linear Algebra / Matrix Factorizations

Description The Singular Value Decomposition block factors the M-by-N input
matrix A such that

where U is an M-by-P matrix, V is an N-by-P matrix, S is a length-P
vector, and P is defined as min(M,N).

When M = N, U and V are both M-by-M unitary matrices. When M > N,
V is an N-by-N unitary matrix, and U is an M-by-N matrix whose
columns are the first N columns of a unitary matrix. When N > M, U is
an M-by-M unitary matrix, and V is an M-by-N matrix whose columns
are the first N columns of a unitary matrix. In all cases, S is a 1-D
vector of positive singular values having length P. The output is always
sample based.

Length-N row inputs are treated as length-N columns.

[U,S,V] = svd(A,0) % Equivalent MATLAB code for M > N

Note that the first (maximum) element of output S is equal to the
2-norm of the matrix A.

You can enable the U and V output ports by selecting the Output the
singular vectors parameter.

10-972

Singular Value Decomposition

Dialog
Box

Output the singular vectors
Enables the U and V output ports when selected.

References Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Factorization Signal Processing Blockset

LDL Factorization Signal Processing Blockset

LU Inverse Signal Processing Blockset

Pseudoinverse Signal Processing Blockset

QR Factorization Signal Processing Blockset

10-973

Singular Value Decomposition

SVD Solver Signal Processing Blockset

svd MATLAB

See “Factoring Matrices” on page 6-9 for related information.

10-974

Sort

Purpose Sort input elements by value

Library Statistics

Description The Sort block ranks the values of the input elements using either a
quick sort or an insertion sort algorithm. The quick sort algorithm
uses a recursive sort method and is faster at sorting more than 32
elements. The insertion sort algorithm uses a non-recursive method
and is faster at sorting less than 32 elements. You should also always
use the insertion sort algorithm when you are generating code from the
Sort block if you do not want recursive function calls in your code. To
specify the sort method, use the Sort algorithm parameter.

The Mode parameter specifies the block’s mode of operation, and can
be set to Value, Index, or Value and index.

The Sort block supports real and complex floating-point and fixed-point
inputs. Signed and unsigned fixed-point signals are supported. The
block output has the same signedness as the input.

Value Mode

When Mode is set to Value, the block sorts the elements in each column
of the M-by-N input matrix u in order of ascending or descending value,
as specified by the Sort order parameter.

val = sort(u)
val = flipud(sort(u))

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, val, is an M-by-N matrix containing
the sorted columns of u. The output has the same frame status as the
input.

Complex inputs are sorted by magnitude squared. For complex value
u = a + bi, the magnitude squared is a2 + b2.

10-975

Sort

Index Mode

When Mode is set to Index, the block sorts the elements in each column
of the M-by-N input matrix u,

[val,idx] = sort(u)
[val,idx] = flipud(sort(u))

and outputs the sample-based M-by-N index matrix, idx. The jth
column of idx is an index vector that permutes the jth column of u to
the desired sorting order.

val(:,j) = u(idx(:,j),j)

The index value outputs are always 32-bit unsigned integer values.

As in Value mode, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

Value and Index Mode

When Mode is set to Value and index, the block outputs both the
sorted matrix, val, and the index matrix, idx.

Fixed-Point Data Types

The parameters on the Fixed-point pane are only used for complex
fixed-point inputs. Complex fixed-point inputs are sorted by magnitude
squared. The sum of the squares of the real and imaginary parts of
such an input are formed before a comparison is made, as described in
“Value Mode” on page 10-975. The results of the squares of the real
and imaginary parts are placed into the product output data type. The
result of the sum of the squares is placed into the accumulator data
type. These parameters are ignored for other types of inputs.

10-976

Sort

Dialog
Box

The Main pane of the Sort block dialog appears as follows:

Mode
Specify the block’s mode of operation: Output the sorted matrix
(Value), the index matrix (Index), or both (Value and index).

Sort order
Specify the order in which to sort the training points, Descending
or Ascending. Tunable, except in the Simulink external mode.

Sort algorithm
Specify whether the elements of the input are sorted using a
Quick sort or an Insertion sort algorithm.

The Fixed-point pane of the Sort block dialog appears as follows:

10-977

Sort

Note The parameters on the Fixed-point pane are only used for
complex fixed-point inputs. The sum of the squares of the real and
imaginary parts of such an input are formed before a comparison is
made, as described in “Value Mode” on page 10-975. The results of the
squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

10-978

Sort

Product output
Use this parameter to specify how you would like to designate
the product output word and fraction lengths resulting from
a complex-complex multiplication in the block. Refer to
“Multiplication Data Types” on page 8-16 for more information:

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter the
word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of zero.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block. Refer to “Multiplication Data Types” on page 8-16 for more
information:

When you select Same as product output, these characteristics
will match those of the product output

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter the
word length and the fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of zero.

10-979

Sort

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, 32-, and 128-bit unsigned integers

• 8-, 16-, 32-, and 128-bit signed integers

Val • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, 32-, and 128-bit unsigned integers

• 8-, 16-, 32-, and 128-bit signed integers

Idx • 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Histogram Signal Processing Blockset

Median Signal Processing Blockset

sort MATLAB

10-980

Spectrum Scope

Purpose Compute and display the periodogram of each input signal

Library Signal Processing Sinks

Description The Spectrum Scope block computes and displays the periodogram of
the input. The input can be a 1-D vector or a 2-D matrix of any frame
status.

Scope Properties Pane

When the block input is a 1-by-N sample-based vector or M-by-N
sample-based matrix, you must select the Buffer input check box.
Each of the N vector elements (or M*N matrix elements) is then treated
as an independent channel, and the block buffers and displays the data
in each channel independently.

When the input is frame based, you can leave the input as is, or rebuffer
data by selecting the Buffer input check box and specifying the new
buffer size. In the latter case, you can also specify an optional Buffer
overlap parameter.

Buffering 1-D vector inputs is recommended. In this case, the block
buffers the inputs into frames (the length of which are specified in the
Buffer size parameter), where each 1-D input vector becomes a row in
the buffered outcome. If 1-D vector input is left unbuffered, you will get
a warning because the block is computing the FFT of a scalar. Though
the scope window appears, it is unlikely you will see the plot. The block
also displays a warning on the scope itself.

Use the Buffer size parameter, Mo to specify the number of input
samples that the block buffers before computing and displaying the
magnitude FFT. Use the Buffer overlap parameter, L, to specify the
number of samples from the previous buffer to include in the current
buffer. The number of new input samples the block acquires before
computing and displaying the magnitude FFT is the difference between
the buffer size and buffer overlap, Mo-L.

The display update period is (Mo-L)*Ts, where Ts is the input sample
period. The display update period is equal to the input sample period
when the Buffer overlap is Mo-1. For negative buffer overlap values,

10-981

Spectrum Scope

the block discards the appropriate number of input samples after the
buffer fills, and updates the scope display at a slower rate than the
zero-overlap case.

The Window type and Window sampling parameters apply to the
specification of the window function; see the Window Function block
reference page for more details on these parameters.

If you clear the Specify FFT length check box and the input is
buffered, the block uses the buffer size as the FFT size. If you clear
the check box and the input is not buffered, the block uses the input
size as the FFT size. When you select the check box, the FFT length
parameter, Nfft, appears on the dialog box. Enter the number of samples
on which you want the block to perform the FFT. The block zero pads or
truncates every channel’s buffer to Nfft before computing the FFT.

The number of spectra to average is set by the Number of spectral
averages parameter. Setting this parameter to 1 effectively disables
averaging; see the Periodogram block reference page for more
information.

Display Properties Pane

For information about these parameters, see “Display Properties Pane”
on page 10-1192 of the Vector Scope block reference page.

Axis Properties Pane

The Frequency units parameter specifies whether the frequency axis
values should be in units of Hertz or rad/s. When the Frequency
units parameter specifies Hertz, the spacing between frequency points
is 1/(NfftTs). For Frequency units of rad/sec, the spacing between
frequency points is 2π/(NfftTs).

The Frequency range parameter specifies the range of frequencies
over which the magnitudes in the input should be plotted. The available
options are [0..Fs/2], [-Fs/2..Fs/2], and [0..Fs], where Fs is
the original time-domain signal’s sample frequency.

Note that all of the FFT-based blocks in the Signal Processing Blockset,
including those in the Power Spectrum Estimation library, compute

10-982

Spectrum Scope

the FFT at frequencies in the range [0,Fs). The Frequency range
parameter controls only the displayed range of the signal.

If you select the Inherit sample increment from input check box,
the block computes the frequency data from the sample period of the
input to the block. This is valid when the following conditions hold:

• The input to the block is the original signal, with no samples added
or deleted (by insertion of zeros, for example).

• The sample period of the time-domain signal in the simulation is
equal to the period with which the physical signal was originally
sampled.

In cases where not all of these conditions hold, you should specify
the appropriate value for the Sample time of original time-series
parameter.

To correctly scale the horizontal (frequency) axis for frequency-domain
signals, the block needs to know the actual sample period of the
time-domain input. You specify this in the Sample time of original
time series parameter, Ts.

The Amplitude scaling parameter allows you to select Magnitude or
dB scaling along the y-axis.

Minimum Y-limit and Maximum Y-limit parameters set the range
of the vertical axis.

The Y-axis title is the text to be displayed to the left of the y-axis.

Line Properties Pane

For information about these parameters, see “Line Properties Pane” on
page 10-1196 of the Vector Scope block reference page.

10-983

Spectrum Scope

Dialog
Box

Scope Properties Pane

Buffer input
Select this check box to rebuffer the input data.

Buffer size
The number of signal samples to include in each buffer. This
parameter is visible if you select the Buffer input check box.

Buffer overlap
The number of samples by which consecutive buffers overlap. This
parameter is visible if you select the Buffer input check box.

Window type
Enter the type of window to apply. See the Window Function block
reference page for more details. Tunable.

10-984

Spectrum Scope

Stopband attenuation in dB
Enter the level, in dB, of stopband attenuation, Rs, for the
Chebyshev window. This parameter is visible if, for the Window
type parameter, you choose Chebyshev. Tunable.

Beta
Enter the β parameter for the Kaiser window. This parameter is
visible if, for the Window type parameter, you chose Kaiser.
Increasing Beta widens the mainlobe and decreases the amplitude
of the window sidelobes in the window’s frequency magnitude
response. Tunable.

Window sampling
From the list, choose Symmetric or Periodic. This parameter is
visible if, for the Window type parameter, you choose Blackman,
Hamming, Hann, or Hanning. Tunable.

Specify FFT length
Select this check box to enter the FFT length.

FFT length
The number of samples on which to perform the FFT. When the
FFT length differs from the buffer size, the data is zero-padded
or truncated as needed. This parameter is visible if you select the
Specify FFT length check box.

Number of spectral averages
The number of spectra to average. Setting this parameter
to 1 effectively disables averaging. See the Periodogram block
reference page for more information.

10-985

Spectrum Scope

Display Properties Pane

Show grid
Toggle the scope grid on and off. Tunable.

Persistence
Select this check box to maintain successive displays. That is, the
scope does not erase the display after each frame (or collection of
frames), but overlays successive input frames in the scope display.
Tunable.

Frame number
If you select this check box, the number of the current frame in
the input sequence appears in the Vector Scope window. Tunable.

Channel legend
Toggles the legend on and off. Tunable.

10-986

Spectrum Scope

Compact display
Resizes the scope to fill the window. Tunable.

Open scope at start of simulation
Select this check box to open the scope at the start of the
simulation. When this parameter is cleared, the scope will not
open automatically during the simulation. Tunable.

Open scope immediately
If the scope is not open during simulation, select this check box
to open it. This parameter is visible only while the simulation
is running.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower-left
corner of the display. Tunable.

10-987

Spectrum Scope

Axis Properties Pane

Frequency units
Choose the frequency units for the horizontal axis, Hertz or
rad/sec. Tunable.

Frequency range
Specify the frequency range over which to plot the data. Tunable.

Inherit sample increment from input
If you select this check box, the block computes the time-domain
sample period from the frame period and frame size of the
frequency-domain input. Use this parameter only when the
length of each frame of frequency-domain data is the same as
the length of the frame of time-domain data from which it was
generated. Tunable.

10-988

Spectrum Scope

Sample time of original time series
Enter the sample period of the original time-domain signal.
Tunable.

Amplitude scaling
Choose the scaling for the y-axis, dB or Magnitude. Tunable.

Minimum Y-limit
The minimum value of the y-axis. Tunable.

Maximum Y-limit
The maximum value of the y-axis. Tunable.

Y-axis title
The text to be displayed to the left of the y-axis. Tunable.

Line Properties Pane

10-989

Spectrum Scope

Line visibilities
Enter on or off to specify the visibility of the various channels’
scope traces. Separate your choices for each channel with by a
pipe (|) symbol. Tunable.

Line styles
Enter the line styles of the various channels’ scope traces using
the MATLAB line function LineStyle formats. Separate your
choices for each channel with by a pipe (|) symbol. Tunable.

Line markers
Enter the line markers of the various channels’ scope traces
using the MATLAB line function Marker formats. Separate your
choices for each channel with by a pipe (|) symbol. Tunable.

Line colors
Enter the colors of the various channels’ scope traces using the
MATLAB ColorSpec formats. Separate your choices for each
channel with by a pipe (|) symbol. Tunable.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-990

Spectrum Scope

See Also

FFT Signal Processing Blockset

Periodogram Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Vector Scope Signal Processing Blockset

10-991

Stack

Purpose Store inputs into LIFO register.

Library Signal Management / Buffers

Description The Stack block stores a sequence of input samples in a last in, first
out (LIFO) register. The register capacity is set by the Stack depth
parameter, and inputs can be scalars, vectors, or matrices.

The block pushes the input at the In port onto the top of the stack when
a trigger event is received at the Push port. When a trigger event is
received at the Pop port, the block pops the top element off the stack
and holds the Out port at that value. The last input to be pushed onto
the stack is always the first to be popped off.

A trigger event at the optional Clr port (enabled by the Clear input
check box) empties the stack contents. When you select Clear output
port on reset, then a trigger event at the Clr port empties the stack
and sets the value at the Out port to zero. This setting also applies
when a disabled subsystem containing the Stack block is reenabled; the

10-992

Stack

Out port value is only reset to zero in this case when you select Clear
output port on reset.

When two or more of the control input ports are triggered at the same
time step, the operations are executed in the following order:

1 Clr

2 Push

3 Pop

The rate of the trigger signal must be the same as the rate of the data
signal input. You specify the triggering event for the Push, Pop, and Clr
ports in the Trigger type pop-up menu:

• Rising edge – Triggers execution of the block when the trigger input
does one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

• Falling edge – Triggers execution of the block when the trigger
input does one of the following:

- Falls from a positive value to a negative value or zero

10-993

Stack

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge – Triggers execution of the block when the trigger input
is a Rising edge or Falling edge (as described above).

• Non-zero sample – Triggers execution of the block at each sample
time that the trigger input is not zero.

Note When running simulations in the Simulink MultiTasking
mode, sample-based trigger signals have a one-sample latency, and
frame-based trigger signals have one frame of latency. Thus, there
is a one-sample or one-frame delay between the time the block
detects a trigger event, and when it applies the trigger. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

The Push full stack parameter specifies the block’s behavior when a
trigger is received at the Push port but the register is full. The Pop
empty stack parameter specifies the block’s behavior when a trigger is
received at the Pop port but the register is empty. The following options
are available for both cases:

10-994

Stack

• Ignore – Ignore the trigger event, and continue the simulation.

• Warning – Ignore the trigger event, but display a warning message in
the MATLAB command window.

• Error – Display an error dialog box and terminate the simulation.

Note The Push full stack and Pop empty stack parameters
are diagnostic parameters. Like all diagnostic parameters on the
Configuration Parameters dialog box, they are set to Ignore in the
Real-Time Workshop code generated for this block.

The Push full stack parameter additionally offers the Dynamic
reallocation option, which dynamically resizes the register to accept
as many additional inputs as memory permits. To find out how many
elements are on the stack at a given time, enable the Num output port by
selecting the Output number of stack entries option.

Examples Example 1

The table below illustrates the Stack block’s operation for a Stack
depth of 4, Trigger type of Either edge, and Clear output port on
reset enabled. Because the block triggers on both rising and falling
edges in this example, each transition from 1 to 0 or 0 to 1 in the Push,
Pop, and Clr columns below represents a distinct trigger event. A 1
in the Empty column indicates an empty buffer, while a 1 in the Full
column indicates a full buffer.

In Push Pop Clr Stack Out Empty Full Num

1 0 0 0 0 1 0 0

2 1 0 0 0 0 0 1

3 0 0 0 0 0 0 2

10-995

Stack

In Push Pop Clr Stack Out Empty Full Num

4 1 0 0 0 0 0 3

5 0 0 0 0 0 1 4

6 0 1 0 5 0 0 3

7 0 0 0 4 0 0 2

8 0 1 0 3 0 0 1

9 0 0 0 2 1 0 0

10 1 0 0 2 0 0 1

11 0 0 0 2 0 0 2

12 1 0 1 0 0 0 1

Note that at the last step shown, the Push and Clr ports are triggered
simultaneously. The Clr trigger takes precedence, and the stack is first
cleared and then pushed.

Example 2

The dspqdemo demo provides an example of the related Queue block.

10-996

Stack

Dialog
Box

Stack depth
The number of entries that the LIFO register can hold.

Trigger type
The type of event that triggers the block’s execution. The rate of
the trigger signal must be the same as the rate of the data signal
input. Tunable.

Push full stack
Response to a trigger received at the Push port when the register
is full. Inputs to this port must have the same built-in data type
as inputs to the Pop and Clr input ports.

Pop empty stack
Response to a trigger received at the Pop port when the register is
empty. Inputs to this port must have the same built-in data type
as inputs to the Push and Clr input ports. Tunable.

10-997

Stack

Empty stack output
Enable the Empty output port, which is high (1) when the stack is
empty, and low (0) otherwise.

Full stack output
Enable the Full output port, which is high (1) when the stack
is full, and low (0) otherwise. The Full port remains low when
you select Dynamic reallocation from the Push full stack
parameter.

Output number of stack entries
Enable the Num output port, which tracks the number of
entries currently on the stack. When inputs to the In port
are double-precision values, the outputs from the Num port are
double-precision values. Otherwise, the outputs from the Num port
are 32-bit unsigned integer values.

Clear input
Enable the Clr input port, which empties the stack when the
trigger specified by the Trigger type is received. Inputs to this
port must have the same built-in data type as inputs to the Push
and Pop input ports.

Clear output port on reset
Reset the Out port to zero (in addition to clearing the stack) when
a trigger is received at the Clr input port. Tunable.

10-998

Stack

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Push • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type
as inputs to the Pop and Clr input ports

10-999

Stack

Port Supported Data Types

Pop • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type
as inputs to the Push and Clr input ports.

Clr • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type
as inputs to the Push and Pop input ports.

10-1000

Stack

Port Supported Data Types

Out • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Empty • Double-precision floating point

• Boolean

The block outputs Boolean values at this port when
Boolean support is enabled, as described in “Effects of
Enabling and Disabling Boolean Support” on page 7-17.
To learn how to disable Boolean output support, see
“Steps to Disabling Boolean Support” on page 7-18

Full • Double-precision floating point

• Boolean

The block outputs Boolean values at this port when
Boolean support is enabled, as described in “Effects of
Enabling and Disabling Boolean Support” on page 7-17.
To learn how to disable Boolean output support, see
“Steps to Disabling Boolean Support” on page 7-18

Num • Double-precision floating point

The block outputs a double-precision floating-point
value at this port when the data type of the In port is
double-precision floating-point.

• 32-bit unsigned integers

10-1001

Stack

Port Supported Data Types

The block outputs a 32-bit unsigned integer value at this
port when the data type of the In port is anything other
than double-precision floating-point.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Delay Line Signal Processing Blockset

Queue Signal Processing Blockset

10-1002

Standard Deviation

Purpose Find standard deviation of an input or sequence of inputs

Library Statistics

Description The Standard Deviation block computes the standard deviation of each
column in the input, or tracks the standard deviation of a sequence
of inputs over a period of time. The Running standard deviation
parameter selects between basic operation and running operation.

Basic Operation

When you do not select the Running standard deviation check box,
the block computes the standard deviation of each column in M-by-N
input matrix u independently at each sample time.

y = std(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.
(A scalar input generates a zero-valued output.)

The output at each sample time, y, is a 1-by-N vector containing the
standard deviation for each column in u. For purely real or purely
imaginary inputs, the standard deviation of the jth column is the square
root of the variance

where µj is the mean of jth column. For complex inputs, the output is
the total standard deviation for each column in u, which is the square
root of the total variance for that column.

10-1003

Standard Deviation

Note that the total standard deviation is not equal to the sum of the
real and imaginary standard deviations. The frame status of the output
is the same as that of the input.

Running Operation

When you select the Running standard deviation check box, the
block tracks the standard deviation of each channel in a time-sequence of
M-by-N inputs. For sample-based inputs, the output is a sample-based
M-by-N matrix with each element yij containing the standard deviation
of element uij over all inputs since the last reset. For frame-based
inputs, the output is a frame-based M-by-N matrix with each element
yij containing the standard deviation of the jth column over all inputs
since the last reset, up to and including element uij of the current input.

As in basic operation, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Standard Deviation

The block resets the running standard deviation whenever a reset event
is detected at the optional Rst port. The reset signal rate must be a
positive integer multiple of the rate of the data signal input.

You specify the reset event in the Reset port parameter:

• None disables the Rst port.

• Rising edge – Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

10-1004

Standard Deviation

• Falling edge – Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge – Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above).

• Non-zero sample – Triggers a reset operation at each sample time
that the Rst input is not zero.

10-1005

Standard Deviation

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when
the block detects a reset event, there is a one-sample delay at
the reset port rate before the block applies the reset. For more
information on latency and the Simulink tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” on page 2-56 and “Models with
Multiple Sample Rates” in the Real-Time Workshop User’s Guide
documentation.

Examples The Standard Deviation block in the model below calculates the running
standard deviation of a frame-based 3-by-2 (two-channel) matrix
input, u. The running standard deviation is reset at t=2 by an impulse
to the block’s Rst port.

The Standard Deviation block has the following settings:

• Running standard deviation =

• Reset port = Non-zero sample

The Signal From Workspace block has the following settings:

• Signal = u

• Sample time = 1/3

• Samples per frame = 3

10-1006

Standard Deviation

where

u = [6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'

The Discrete Impulse block has the following settings:

• Delay (samples) = 2

• Sample time = 1

• Samples per frame = 1

The block’s operation is shown in the figure below.

10-1007

Standard Deviation

Dialog
Box

Running standard deviation
Enables running operation when selected.

Reset port
Determines the reset event that causes the block to reset the
running standard deviation. The reset signal rate must be a
positive integer multiple of the rate of the data signal input. This
parameter is enabled only when you select Running standard
deviation. For more information, see “Resetting the Running
Standard Deviation” on page 10-1004.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Boolean – The block accepts Boolean inputs to the Rst port.

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

10-1008

Standard Deviation

See Also

Mean Signal Processing Blockset

RMS Signal Processing Blockset

Variance Signal Processing Blockset

std MATLAB

10-1009

Submatrix

Purpose Select subset of elements (submatrix) from matrix input

Library • Math Functions / Matrices and Linear Algebra / Matrix Operations

• Signal Management / Indexing

Description The Submatrix block extracts a contiguous submatrix from the M-by-N
input matrix u. A length-M 1-D vector input is treated as an M-by-1
matrix. The Row span parameter provides three options for specifying
the range of rows in u to be retained in submatrix output y:

• All rows

Specifies that y contains all M rows of u.

• One row

Specifies that y contains only one row from u. The Starting row
parameter (described below) is enabled to allow selection of the
desired row.

• Range of rows

Specifies that y contains one or more rows from u. The Row and
Ending row parameters (described below) are enabled to allow
selection of the desired range of rows.

The Column span parameter contains a corresponding set of three
options for specifying the range of columns in u to be retained in
submatrix y: All columns, One column, or Range of columns. The One
column option enables the Column parameter, and Range of columns
options enable the Starting column and Ending column parameters.

The output has the same frame status as the input.

Range Specification Options

When you select One row or Range of rows from the Row span
parameter, you specify the desired row or range of rows in the Row
parameter, or the Starting row and Ending row parameters.
Similarly, when you select One column or Range of columns from the

10-1010

Submatrix

Column span parameter, you specify the desired column or range
of columns in the Column parameter, or the Starting column and
Ending column parameters.

The Row, Column, Starting row or Starting column can be
specified in six ways:

• First

For rows, this specifies that the first row of u should be used as the
first row of y. When all columns are to be included, this is equivalent
to y(1,:) = u(1,:).

For columns, this specifies that the first column of u should be used
as the first column of y. When all rows are to be included, this is
equivalent to y(:,1) = u(:,1).

• Index

For rows, this specifies that the row of u, firstrow, forward-indexed
by the Row index parameter or the Starting row index parameter,
should be used as the first row of y. When all columns are to be
included, this is equivalent to y(1,:) = u(firstrow,:).

For columns, this specifies that the column of u, forward-indexed
by the Column index parameter or the Starting column
index parameter, firstcol, should be used as the first column
of y. When all rows are to be included, this is equivalent to
y(:,1) = u(:,firstcol).

• Offset from last

For rows, this specifies that the row of u offset from row M by the
Row offset or Starting row offset parameter, firstrow, should be
used as the first row of y. When all columns are to be included, this is
equivalent to y(1,:) = u(M-firstrow,:).

For columns, this specifies that the column of u offset from column N
by the Column offset or Starting column offset parameter,
firstcol, should be used as the first column of y. When all rows are
to be included, this is equivalent to y(:,1) = u(:,N-firstcol).

10-1011

Submatrix

• Last

For rows, this specifies that the last row of u should be used as the
only row of y. When all columns are to be included, this is equivalent
to y = u(M,:).

For columns, this specifies that the last column of u should be used
as the only column of y. When all rows are to be included, this is
equivalent to y = u(:,N).

• Offset from middle

For rows, this specifies that the row of u offset from row M/2 by the
Starting row offset parameter, firstrow, should be used as the
first row of y. When all columns are to be included, this is equivalent
to y(1,:) = u(M/2-firstrow,:).

For columns, this specifies that the column of u offset from
column N/2 by the Starting column offset parameter, firstcol,
should be used as the first column of y. When all rows are to be
included, this is equivalent to y(:,1) = u(:,N/2-firstcol).

• Middle

For rows, this specifies that the middle row of u should be used as the
only row of y. When all columns are to be included, this is equivalent
to y = u(M/2,:).

For columns, this specifies that the middle column of u should be
used as the only column of y. When all rows are to be included, this
is equivalent to y = u(:,N/2).

The Ending row or Ending column can similarly be specified in five
ways:

• Index

For rows, this specifies that the row of u forward-indexed by the
Ending row index parameter, lastrow, should be used as the last
row of y. When all columns are to be included, this is equivalent
to y(end,:) = u(lastrow,:).

10-1012

Submatrix

For columns, this specifies that the column of u forward-indexed by
the Ending column index parameter, lastcol, should be used
as the last column of y. When all rows are to be included, this is
equivalent to y(:,end) = u(:,lastcol).

• Offset from last

For rows, this specifies that the row of u offset from row M by the
Ending row offset parameter, lastrow, should be used as the last
row of y. When all columns are to be included, this is equivalent to
y(end,:) = u(M-lastrow,:).

For columns, this specifies that the column of u offset from column N
by the Ending column offset parameter, lastcol, should be used
as the last column of y. When all rows are to be included, this is
equivalent to y(:,end) = u(:,N-lastcol).

• Last

For rows, this specifies that the last row of u should be used as the
last row of y. When all columns are to be included, this is equivalent
to y(end,:) = u(M,:).

For columns, this specifies that the last column of u should be used
as the last column of y. When all rows are to be included, this is
equivalent to y(:,end) = u(:,N).

• Offset from middle

For rows, this specifies that the row of u offset from row M/2 by the
Ending row offset parameter, lastrow, should be used as the last
row of y. When all columns are to be included, this is equivalent to
y(end,:) = u(M/2-lastrow,:).

For columns, this specifies that the column of u offset from
column N/2 by the Ending column offset parameter, lastcol,
should be used as the last column of y. When all rows are to be
included, this is equivalent to y(:,end) = u(:,N/2-lastcol).

• Middle

10-1013

Submatrix

For rows, this specifies that the middle row of u should be used as the
last row of y. When all columns are to be included, this is equivalent
to y(end,:) = u(M/2,:).

For columns, this specifies that the middle column of u should be
used as the last column of y. When all rows are to be included, this is
equivalent to y(:,end) = u(:,N/2).

This block supports Simulink virtual buses.

Examples To extract the lower-right 3-by-2 submatrix from a 5-by-7 input matrix,
enter the following set of parameters:

• Row span = Range of rows

• Starting row = Index

• Starting row index = 3

• Ending row = Last

• Column span = Range of columns

• Starting column = Offset from last

• Starting column offset = 1

• Ending column = Last

The figure below shows the operation for a 5-by-7 matrix with random
integer elements, randint(5,7,10).

There are often several possible parameter combinations that select the
same submatrix from the input. For example, instead of specifying Last
for Ending column, you could select the same submatrix by specifying

10-1014

Submatrix

• Ending column = Index

• Ending column index = 7

Dialog
Box

The parameters displayed in the dialog box vary for different menu
combinations. Only some of the parameters listed below are visible
in the dialog box at any one time.

Row span
The range of input rows to be retained in the output. Options are
All rows, One row, or Range of rows.

10-1015

Submatrix

Row/Starting row
The input row to be used as the first row of the output. Row is
enabled when you select One row from Row span, and Starting
row when you select Range of rows from Row span.

Row index/Starting row index
The index of the input row to be used as the first row of the output.
Row index is enabled when you select Index from Row, and
Starting row index when you select Index from Starting row.

Row offset/Starting row offset
The offset of the input row to be used as the first row of the output.
Row offset is enabled when you select Offset from middle or
Offset from last from Row, and Starting row offset is enabled
when you select Offset from middle or Offset from last from
Starting row.

Ending row
The input row to be used as the last row of the output. This
parameter is enabled when you select Range of rows from Row
span and you select any option but Last from Starting row.

Ending row index
The index of the input row to be used as the last row of the
output. This parameter is enabled when you select Index from
Ending row.

Ending row offset
The offset of the input row to be used as the last row of the output.
This parameter is enabled when you select Offset from middle
or Offset from last from Ending row.

Column span
The range of input columns to be retained in the output. Options
are All columns, One column, or Range of columns.

Column/Starting column
The input column to be used as the first column of the output.
Column is enabled when you select One column from Column

10-1016

Submatrix

span, and Starting column is enabled when you select Range
of columns from Column span.

Column index/Starting column index
The index of the input column to be used as the first column of the
output. Column index is enabled when you select Index from
Column, and Starting column index is enabled when you select
Index from Starting column.

Column offset/Starting column offset
The offset of the input column to be used as the first column of the
output. Column offset is enabled when you select Offset from
middle or Offset from last from Column. Starting column
offset is enabled when you select Offset from middle or Offset
from last from Starting column.

Ending column
The input column to be used as the last column of the output.
This parameter is enabled when you select Range of columns
from Column span and you select any option but Last from
Starting column.

Ending column index
The index of the input column to be used as the last column of the
output. This parameter is enabled when you select Index from
Ending column.

Ending column offset
The offset of the input column to be used as the last column of the
output. This parameter is enabled when you select Offset from
middle or Offset from last from Ending column.

10-1017

Submatrix

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Reshape Simulink

Selector Simulink

Variable Selector Signal Processing Blockset

reshape MATLAB

10-1018

Submatrix

See “Splitting Multichannel Sample-Based Signals into Several
Multichannel Signals” on page 1-43 for related information.

10-1019

SVD Solver

Purpose Solve AX=B using singular value decomposition

Library Math Functions / Matrices and Linear Algebra / Linear System Solvers

Description The SVD Solver block solves the linear system AX=B, which can be
overdetermined, underdetermined, or exactly determined. The system
is solved by applying singular value decomposition (SVD) factorization
to the M-by-N matrix, A, at the A port. The input to the B port is the
right side M-by-L matrix, B. A length-M 1-D vector input at either port
is treated as an M-by-1 matrix.

The output at the x port is the N-by-L matrix, X. X is always sample
based, and is chosen to minimize the sum of the squares of the elements
of B-AX. When B is a vector, this solution minimizes the vector 2-norm
of the residual (B-AX is the residual). When B is a matrix, this solution
minimizes the matrix Frobenius norm of the residual. In this case, the
columns of X are the solutions to the L corresponding systems AXk=Bk,
where Bk is the kth column of B, and Xk is the kth column of X.

X is known as the minimum-norm-residual solution to AX=B. The
minimum-norm-residual solution is unique for overdetermined
and exactly determined linear systems, but it is not unique for
underdetermined linear systems. Thus when the SVD Solver block is
applied to an underdetermined system, the output X is chosen such that
the number of nonzero entries in X is minimized.

Dialog
Box

10-1020

SVD Solver

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Autocorrelation LPC Signal Processing Blockset

Cholesky Solver Signal Processing Blockset

LDL Solver Signal Processing Blockset

Levinson-Durbin Signal Processing Blockset

LU Inverse Signal Processing Blockset

Pseudoinverse Signal Processing Blockset

QR Solver Signal Processing Blockset

Singular Value
Decomposition

Signal Processing Blockset

See “Solving Linear Systems” on page 6-7 for related information.

10-1021

Time Scope

Purpose Display signals generated during simulation

Library Signal Processing Sinks

The Time Scope block is the same as the Scope block in Simulink. To
learn how to use the Time Scope block, see the Scope block reference
page in the Simulink documentation.

Supported
Data
Types

Port Supported Data Types

Input • Any data type supported by the Scope block

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Scope Simulink

10-1022

Time-Varying Direct-Form II Transpose Filter

Purpose Apply a variable IIR filter to the input.

Library dspobslib

Description
Note The Time-Varying Direct-Form II Transpose Filter block is still
supported but is likely to be obsoleted in a future release. We strongly
recommend replacing this block with the Digital Filter block.

The Time-Varying Direct-Form II Transpose Filter block is a version of
the Direct-Form II Transpose Filter block whose filter coefficients can
be updated during the simulation. The block applies a direct-form II
transposed IIR filter to the top input (In).

This is a canonical form that has the minimum number of delay
elements. The filter order is max(m,n)-1.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The block’s two lower inputs (Num and Den) specify the filter’s transfer
function,

10-1023

Time-Varying Direct-Form II Transpose Filter

By default the filter coefficients are normalized by a1. To prevent
normalization by a1, deselect the Support non-normalized filters
check box.

Filter Type

The Filter type parameter specifies whether the filter is an all-zero
(FIR or MA) filter, all-pole (AR) filter, or pole-zero (IIR or ARMA) filter:

• Pole-zero

The block accepts inputs for both the numerator (Num) and
denominator (Den) vectors.

Input Num is a vector of numerator coefficients,

[b(1) b(2) ... b(m)]

and input Den is a vector of denominator coefficients,

[a(1) a(2) ... a(n)]

• All-zero

The block accepts only the numerator vector (Num). The denominator
of the all-zero filter is 1.

• All-pole

The block accepts only the denominator vector (Den). The numerator
of the all-pole filter is 1.

For any of these designs, the coefficient vector inputs can change over
time to alter the filter’s response characteristics during the simulation.

Initial Conditions

In its default form, the filter initializes the internal filter states to
zero, which is equivalent to assuming past inputs and outputs are
zero. The block also accepts optional nonzero initial conditions for the
filter delays. Note that the number of filter states (delay elements)
per input channel is

10-1024

Time-Varying Direct-Form II Transpose Filter

max(m,n)-1

The Initial conditions parameter may take one of four forms:

• Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied
to all delay elements in each filter channel.

• Scalar

The scalar value is copied to all delay elements in each filter
channel. Note that a value of zero is equivalent to setting the Initial
conditions parameter to the empty matrix, [].

• Vector

The vector has a length equal to the number of delay elements in each
filter channel, max(m,n)-1, and specifies a unique initial condition
for each delay element in the filter channel. This vector of initial
conditions is applied to each filter channel.

• Matrix

The matrix specifies a unique initial condition for each delay element,
and can specify different initial conditions for each filter channel.
The matrix must have the same number of rows as the number of
delay elements in the filter, max(m,n)-1, and must have one column
per filter channel.

Filter Update Rate

In frame-based operation, the Filter update rate parameter
determines how frequently the block updates the filter coefficients
(i.e., how often it checks the Num and Den inputs). There are two
available options:

• One filter per sample time

The block updates the filter coefficients (from inputs Num and Den)
for each individual scalar sample in the frame-based input. This

10-1025

Time-Varying Direct-Form II Transpose Filter

means that each output sample could potentially be computed by
a different filter (assuming that Num and Den inputs are updated
frequently enough).

• One filter per frame time

The block updates the filter coefficients (from inputs Num and Den)
for each new input frame, rather than at each sample in the frame.
This means that each output sample in a given frame is a result
of an identical filtering process.

Dialog
Box

Filter type
The type of filter to apply: Pole-Zero (IIR), All-Zero (FIR),
or All-Pole (AR). The Num and Den input ports are enabled or
disabled as appropriate.

Initial conditions
The filter’s initial conditions, a scalar, vector, or matrix.

Support non-normalized filters
Normalizes the filter by a1 when selected.

10-1026

Time-Varying Direct-Form II Transpose Filter

Filter update rate
The frequency with which the block updates the filter coefficients;
once per sample, or once per frame.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-1027

Time-Varying Lattice Filter

Purpose Apply a variable lattice filter to the input.

Library dspobslib

Description
Note The Time-Varying Lattice Filter block is still supported but is
likely to be obsoleted in a future release. We strongly recommend
replacing this block with the Digital Filter block.

The Time-Varying Lattice Filter block applies a moving average (MA)
or autoregressive (AR) lattice filter to the top input (In). The filter
reflection coefficients are specified by the vector input to the MA or AR
port, and can vary with time.

An M-by-N sample-based matrix input to the In port is treated as M*N
independent channels, and an M-by-N frame-based matrix input is
treated as N independent channels. In both cases, the block filters each
channel independently over time, and the output has the same size and
frame status as the input.

Filter Type

The Filter type parameter specifies whether the filter is an all-zero
(FIR or MA) filter or all-pole (AR) filter.

• All-zero

The block constructs an nth order MA filter using the n reflection
coefficients contained in the vector input to the MA port.

k = [k(1) k(2) ... k(n)]

• All-pole

The block constructs an nth order AR filter using the n reflection
coefficients contained in the vector input to the AR port.

k = [k(1) k(2) ... k(n)]

10-1028

Time-Varying Lattice Filter

For both designs, the coefficient vector inputs can change over time to
alter the filter’s response characteristics during the simulation.

Initial Conditions

In its default form, the filter initializes the internal filter states to
zero, which is equivalent to assuming past inputs and outputs are
zero. The block also accepts optional nonzero initial conditions for the
filter delays. Note that the number of filter states (delay elements)
per input channel is

length(k)

The Initial conditions parameter may take one of four forms:

• Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied
to all delay elements in each filter channel.

• Scalar

The scalar value is copied to all delay elements in each filter
channel. Note that a value of zero is equivalent to setting the Initial
conditions parameter to the empty matrix.

• Vector

The vector has a length equal to the number of delay elements in each
filter channel, length(k), and specifies a unique initial condition
for each delay element in the filter channel. This vector of initial
conditions is applied to each filter channel.

• Matrix

The matrix specifies a unique initial condition for each delay element,
and can specify different initial conditions for each filter channel.
The matrix must have the same number of rows as the number of
delay elements in the filter, length(k), and must have one column
per filter channel.

10-1029

Time-Varying Lattice Filter

Filter Update Rate

In frame-based operation, the Filter update rate parameter
determines how frequently the block updates the filter coefficients
(i.e., how often it checks the MA or AR input). There are two available
options:

• One filter per sample time

The block updates the filter coefficients (from input MA or AR) for each
individual scalar sample in the framed input. This means that each
output sample could potentially be computed by a different filter
(assuming that the MA or AR input is updated frequently enough).

• One filter per frame time

The block updates the filter coefficients (from input MA or AR) for each
new input frame, rather than at each sample in the frame. This
means that each output sample in a given frame is a result of an
identical filtering process.

Dialog
Box

10-1030

Time-Varying Lattice Filter

Filter type
The type of filter to apply: MA or AR. The MA or AR input port is
enabled or disabled appropriately.

Initial conditions
The filter’s initial conditions.

Filter update rate
The frequency with which the block updates the filter coefficients;
once per sample, or once per frame.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-1031

Toeplitz

Purpose Generate matrix with Toeplitz symmetry

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Toeplitz block generates a Toeplitz matrix from inputs defining the
first column and first row. The top input (Col) is a vector containing the
values to be placed in the first column of the matrix, and the bottom
input (Row) is a vector containing the values to be placed in the first
row of the matrix.

y = toeplitz(Col,Row) % Equivalent MATLAB code

The other elements of the matrix obey the relationship

y(i,j) = y(i-1,j-1)

and the output has dimension [length(Col) length(Row)]. The y(1,1)
element is inherited from the Col input. For example, the following
inputs

Col = [1 2 3 4 5]
Row = [7 7 3 3 2 1 3]

produce the Toeplitz matrix

When both of the inputs are sample based, the output is sample based.
Otherwise, the output is frame based.

When you select the Symmetric check box, the block generates a
symmetric (Hermitian) Toeplitz matrix from a single input, u, defining
both the first row and first column of the matrix.

10-1032

Toeplitz

y = toeplitz(u) % Equivalent MATLAB code

The output has dimension [length(u) length(u)]. For example, the
Toeplitz matrix generated from the input vector [1 2 3 4] is

The output has the same frame status as the input.

The Toeplitz block supports real and complex floating-point and
fixed-point inputs.

Dialog
Box

Symmetric
When selected, enables the single-input configuration for
symmetric Toeplitz matrix output.

Saturate on integer overflow
When you generate a symmetric Toeplitz matrix with this block, if
the input vector is complex, the output is a symmetric Hermitian
matrix whose elements satisfy the relationship

10-1033

Toeplitz

For fixed-point signals the conjugate operation could result in an
overflow. When you select this parameter, overflows saturate.
This parameter is only visible with the Symmetric parameter is
selected. This parameter is ignored for floating-point signals.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers (real signals only)

Toep
Col

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

10-1034

Toeplitz

Port Supported Data Types

Toep
Row

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Constant Diagonal Matrix Signal Processing Blockset

toeplitz MATLAB

10-1035

To Multimedia File

Purpose Write video frames and/or audio samples to multimedia file

Library Platform-specific I/O / Windows (WIN32)

Description The To Multimedia File block writes video frames and/or audio samples
to a multimedia (.avi) file. Video processing requires the Video and
Image Processing Blockset.

You can also compress the video frames or audio samples by selecting a
compression algorithm. You can connect as many of the input ports as
you want. Therefore, you can control what type of video and/or audio is
sent to the multimedia file.

Note This block supports code generation and is only supported on
32-bit Windows platforms. This block performs best on platforms with
DirectX Version 9.0 or later and Windows Media Version 9.0 or later.

10-1036

To Multimedia File

Port Input
Supported Data
Types

Supports Complex
Values?

R, G, B Matrix that
represents one plane
of the RGB video
stream. Inputs to
the R, G, or B port
must have the same
dimensions and data
type.

• Double-precision
floating point

• Single-precision
floating point

• Boolean

• 8-, 16- 32-bit
signed integers

• 8-, 16- 32-bit
unsigned integers

No

Audio Vector of audio data • Double-precision
floating point

• Single-precision
floating point

• 16-bit signed
integers

• 8-bit unsigned
integers

No

For the block to display video data properly, double- and single-precision
floating-point pixel values must be between 0 and 1. For any other data
type, the pixel values must be between the minimum and maximum
values supported by their data type.

Use the Output file name parameter to specify the name of the
multimedia file to which to write. This file is saved in your current
directory. To specify a different directory, use the Browse button, and
then enter the filename, or enter the complete path and filename in
the edit box.

10-1037

To Multimedia File

Use the Write parameter to specify whether the block writes video
frames and/or audio samples to the multimedia file. The choices are
Video and audio, Video only, or Audio only.

Use the Video compressor parameter to specify the type of
compression algorithm to use to compress the video data. This
compression reduces the size of the multimedia file. Choose None
(uncompressed) to save uncompressed video data to the multimedia
file. The other items available in this parameter list are the video
compression algorithms installed on your system. For information
about a specific video compressor, refer to its documentation.

Use the Audio compressor parameter to specify the type of
compression algorithm to use to compress the audio data. This
compression reduces the size of the multimedia file. Choose None
(uncompressed) to save uncompressed audio data to the multimedia
file. The other items available in this parameter list are the audio
compression algorithms installed on your system. For information
about a specific audio compressor, refer to its documentation.

Dialog
Box

10-1038

To Multimedia File

Output file name
Specify the name of the multimedia file to which to write. This file
is saved in your current directory. To specify a different directory,
use the Browse button, and then enter the filename.

Write
Specify whether the block writes video frames and/or audio
samples to the multimedia file. The choices are Video and audio,
Video only, or Audio only.

Video compressor
Select the type of compression algorithm to use to compress the
video data.

Audio compressor
Select the type of compression algorithm to use to compress the
audio data.

See Also

From Multimedia File Signal Processing Blockset

To Wave File Signal Processing Blockset

Frame Rate Display Video and Image Processing Blockset

To Video Display Video and Image Processing Blockset

Video To Workspace Video and Image Processing Blockset

Video Viewer Video and Image Processing Blockset

10-1039

To Wave Device

Purpose Send audio data to standard audio device in real-time (32-bit Windows
operating systems only)

Library Platform-specific I/O / Windows (WIN32)

Description The To Wave Device block sends audio data to a standard Windows
audio device in real time. It is compatible with most popular Windows
hardware, including Sound Blaster cards. (Models that contain both this
block and the From Wave Device block require a duplex-capable sound
card.) The data is sent to the hardware in uncompressed pulse code
modulation (PCM) format, and should typically be sampled at one of the
standard Windows audio device rates: 8000, 11025, 22050, or 44100 Hz.
Some hardware might support other rates in addition to these.

The Use default audio device check box allows the block to detect
and use the system’s default audio hardware. This option should be
selected on systems that have a single sound device installed, or when
the default sound device on a multiple-device system is the desired
target. In cases when the default sound device is not the desired output
device, clear Use default audio device, and set the desired audio
device in the Audio device parameter, which lists the names of the
installed audio device drivers.

The input to the block, u, can contain audio data from a mono or stereo
signal. A mono signal is represented as either a sample-based scalar or
frame-based length-M vector, while a stereo signal is represented as a
sample-based length-2 vector or frame-based M-by-2 matrix. When the
input data type is uint8, the block conveys the signal samples to the
audio device using 8 bits. When the input data type is double, single,
or int16, the block conveys the signal samples to the audio device using
16 bits by default. For inputs of data type double and single, you can
also set the block to convey the signal samples using 24 bits by selecting
the Enable 24-bit output for double and single precision input
signals check box.

sound(u,Fs,bits) % Equivalent MATLAB code

10-1040

To Wave Device

Note that the block does not support uint16 or int8 data types. The
16-bit sample width requires more memory but in general yields better
fidelity. The amplitude of the input must be in a valid range that
depends on the input data type (see the following table). Amplitudes
outside the valid range are clipped to the nearest allowable value.

Input Data Type Valid Input Amplitude Range

double ±1

single ±1

int16 -32768 to 32767 (-215 to 215 - 1)

uint8 0 to 255

Buffering

Because the audio device generates real-time audio output, Simulink
must maintain a continuous flow of data to the device throughout the
simulation. Delays in passing data to the audio hardware can result
in hardware errors or distortion of the output. This means that the To
Wave Device block must in principle supply data to the audio hardware
as quickly as the hardware reads the data. However, the To Wave Device
block often cannot match the throughput rate of the audio hardware,
especially when the simulation is running from within Simulink rather
than as generated code. (Simulink execution speed routinely varies
during the simulation as the host operating system services other
processes.) The block must therefore rely on a buffering strategy to
ensure that signal data is accessible to the hardware on demand.

At the start of the simulation, the To Wave Device block writes Td
seconds worth of signal data to the device (hardware) buffer, where
you specify Td in the Initial output delay parameter. When this
initial data is loaded into the buffer, the audio device begins processing
the buffered data, and continues at a constant rate until the buffer
empties. You specify the size of the buffer, Tb, in the Queue duration
parameter. As the audio device reads data from the front of the buffer,

10-1041

To Wave Device

the To Wave Device block continues appending inputs to the back of the
buffer at the rate they are received.

The following figure shows an audio signal with eight samples per
frame. The buffer of the sound board has a five-frame capacity, not
fully used at the instant shown. (If the signal sample rate was 8 kHz,
for instance, this small buffer could hold approximately 0.005 second
of data.)

When the simulation throughput rate is higher than the hardware
throughput rate, the buffer remains at a constant level throughout the
simulation. If necessary, the To Wave Device block buffers inputs until
space becomes available in the hardware buffer (that is, data is not
thrown away). More typically, the hardware throughput rate is higher
than the simulation throughput rate, and the buffer tends to empty
over the duration of the simulation.

Under normal operation, an empty buffer indicates that the simulation
is finished, and the entire length of the audio signal has been processed.
However, when the buffer size is too small in relation to the simulation
throughput rate, the buffer might also empty before the entire length of
signal is processed. This usually results in a device error or undesired
device output.

When the device fails to process the entire signal length because the
buffer prematurely empties, you can choose to either increase the buffer
size or the simulation throughput rate.

• Increase the buffer size. The Queue duration parameter specifies
the length of signal, Tb (in real-time seconds), to buffer to the audio

10-1042

To Wave Device

device during the simulation. The number of frames buffered is
approximately

where Fs is the sample rate of the signal and Mo is the number of
samples per frame. The optimal buffer size for a given signal depends
on the signal length, the frame size, and the speed of the simulation.
The maximum number of frames that can be buffered is 1024.

• Increase the simulation throughput rate. Two useful methods for
improving simulation throughput rates are increasing the signal
frame size and compiling the simulation into native code.

- Increase frame sizes (and convert sample-based signals to
frame-based signals) throughout the model to reduce the amount
of block-to-block communication overhead. This can drastically
increase throughput rates in many cases. However, larger frame
sizes generally result in greater model latency due to initial
buffering operations. (Note that increasing the audio signal
frame size does not affect the number of samples buffered to the
hardware since the Queue duration is specified in seconds.)

- Generate executable code with Real-Time Workshop. Native
code runs much faster than Simulink, and should provide rates
adequate for real-time audio processing.

Audio problems at startup can often be corrected by entering a larger
value for the Initial output delay parameter, which allows a greater
portion of the signal to be preloaded into the hardware buffer. A value
of 0 for the Initial output delay parameter specifies the smallest
possible initial delay, which is one frame.

More general ways to improve throughput rates include simplifying the
model, and running the simulation on a faster PC processor. See the
“Simulink” documentation and “Delay and Latency” on page 2-48 for
other ideas on improving simulation performance.

10-1043

To Wave Device

Dialog
Box

Queue duration (seconds)
The length of signal (in seconds) to buffer to the hardware at the
start of the simulation.

Initial output delay (seconds)
The amount of time by which to delay the initial output to the
audio device. A value of 0 specifies the smallest possible initial
delay, a single frame.

Use default audio device
Directs audio output to the system’s default audio device when
selected. Clear to enable the Audio device parameter and select
a device.

Audio device
The name of the audio device to receive the audio output (lists
the names of the installed audio device drivers). Select Use
default audio device when the system has only a single audio
card installed.

10-1044

To Wave Device

Enable 24-bit output for double and single precision input
signals

Select to output 24-bit data when inputs are double- or
single-precision. Otherwise, the block outputs 16-bit data for
double- and single-precision inputs.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• 16-bit signed integer

• 8-bit unsigned integer

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

From Wave Device Signal Processing Blockset

To Wave File Signal Processing Blockset

audioplayer MATLAB

sound MATLAB

10-1045

To Wave File

Purpose Write audio data to file in Microsoft Wave (.wav) format (32-bit Windows
operating systems only)

Library Platform-specific I/O / Windows (WIN32)

Description The To Wave File block writes audio data to a Microsoft Wave (.wav)
file in the uncompressed pulse code modulation (PCM) format. For
compatibility reasons, the sample rate of the discrete-time input
signal should typically be one of the standard Windows audio device
rates (8000, 11025, 22050, or 44100 Hz), although the block supports
arbitrary rates.

The input to the block, u, can contain audio data from a mono or stereo
signal. A mono signal is represented as either a sample-based scalar
or frame-based length-M vector, while a stereo signal is represented as
a sample-based length-2 vector or frame-based M-by-2 matrix. The
amplitude of the input should be in the range ±1. Values outside this
range are clipped to the nearest allowable value.

wavwrite(u,Fs,bits,'filename') % Equivalent MATLAB code

The Sample Width (bits) parameter specifies the number of bits used
to represent the signal samples in the file. These settings are available:

• 8 – allocates 8 bits to each sample, allowing a resolution of 256 levels

• 16 – allocates 16 bits to each sample, allowing a resolution of
65536 levels

• 24 – allocates 24 bits to each sample, allowing a resolution of
16777216 levels

• 32 – allocates 32 bits to each sample, allowing a resolution of 232
levels ranging from -1 to 1

The higher sample width settings require more memory but yield better
fidelity for double- and single-precision inputs.

10-1046

To Wave File

The File name parameter can specify an absolute or relative path to
the file. You do not need to specify the.wav extension. To reduce the
required number of file accesses, the block writes L consecutive samples
to the file during each access, where you specify L in the Minimum
number of samples for each write to file parameter (L ≥M). For
L <M, the block instead writes M consecutive samples during each
access. Larger values of L result in fewer file accesses, which reduces
run-time overhead.

Dialog
Box

File name
The path and name of the file to write. Paths can be relative or
absolute.

Sample width (bits)
The number of bits used to represent each signal sample.

Minimum number of samples for each write to file
The number of consecutive samples to write with each file
access, L.

10-1047

To Wave File

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• 16-bit signed integer

• 8-bit unsigned integer

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

From Wave File Signal Processing Blockset

To Wave Device Signal Processing Blockset

To Workspace Simulink

wavwrite MATLAB

10-1048

Transpose

Purpose Compute matrix transpose

Library Math Functions / Matrices and Linear Algebra / Matrix Operations

Description The Transpose block transposes the M-by-N input matrix to size
N-by-M. When you select the Hermitian check box, the block performs
the Hermitian (complex conjugate) transpose.

y = u' % Equivalent MATLAB code

When you do not select the Hermitian check box, the block performs
the nonconjugate transpose.

y = u.' % Equivalent MATLAB code

A length-M 1-D vector input is treated as an M-by-1 matrix. The output
is always sample based.

The Transpose block supports real and complex floating-point and
fixed-point inputs.

This block also supports Simulink virtual buses.

10-1049

Transpose

Dialog
Box

Hermitian
When selected, specifies the complex conjugate transpose.
Tunable.

Saturate on integer overflow
This parameter is only visible when the Hermitian parameter is
selected because overflows can occur when computing the complex
conjugate of complex fixed-point signals. When you select this
parameter, such overflows saturate. This parameter is ignored for
floating-point signals and for real-valued fixed-point signals.

10-1050

Transpose

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers (if Hermitian, real
signals only)

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Permute Matrix Signal Processing Blockset

Reshape Simulink

Submatrix Signal Processing Blockset

10-1051

Triggered Delay Line

Purpose Buffer sequence of inputs into frame-based output

Library Signal Management / Buffers

Description The Triggered Delay Line block acquires a collection of Mo input
samples into a frame, where you specify Mo in the Delay line size
parameter. The block buffers a single sample from input 1 whenever
it is triggered by the control signal at input 2 (). When the next
triggering event occurs, the newly acquired input sample is appended to
the output frame so that the new output overlaps the previous output
by Mo-1 samples. Between triggering events the block ignores input 1
and holds the output at its last value.

You specify the triggering event at input 2 in the Trigger type pop-up
menu:

• Rising edge triggers execution of the block when the trigger input
rises from a negative value to zero or a positive value, or from zero
to a positive value.

• Falling edge triggers execution of the block when the trigger input
falls from a positive value to zero or a negative value, or from zero
to a negative value.

• Either edge triggers execution of the block when either a rising or
falling edge (as described above) occurs.

The Triggered Delay Line block has zero latency, so the new input
appears at the output in the same simulation time step. The output
frame period is the same as the input sample period, Tfo=Tsi.

Sample-Based Operation

In sample-based operation, the Triggered Delay Line block buffers a
sequence of sample-based length-N vector inputs (1-D, row, or column)
into a sequence of overlapping sample-based Mo-by-N matrix outputs,
where you specify Mo in the Delay line size parameter (Mo>1). That
is, each input vector becomes a row in the sample-based output matrix.
When Mo=1, the input is simply passed through to the output, and

10-1052

Triggered Delay Line

retains the same dimension. Sample-based full-dimension matrix
inputs are not accepted.

Frame-Based Operation

In frame-based operation, the Triggered Delay Line block rebuffers a
sequence of frame-based Mi-by-N matrix inputs into an sequence of
overlapping frame-based Mo-by-N matrix outputs, where Mo is the
output frame size specified by the Delay line size parameter (that
is, the number of consecutive samples from the input frame to rebuffer
into the output frame). Mo can be greater or less than the input frame
size, Mi. Each of the N input channels is rebuffered independently.

Initial Conditions

The Triggered Delay Line block’s buffer is initialized to the value
specified by the Initial condition parameter. The block always outputs
this buffer at the first simulation step (t=0). When the block’s output
is a vector, the Initial condition can be a vector of the same size, or
a scalar value to be repeated across all elements of the initial output.
When the block’s output is a matrix, the Initial condition can be a
matrix of the same size, a vector (of length equal to the number of
matrix rows) to be repeated across all columns of the initial output, or a
scalar to be repeated across all elements of the initial output.

Examples In the following three examples, the pulse width of the triggering signal
is one sample long, and the delay line size is two. The initial conditions
are zero. You can see the difference in results with a rising edge, falling
edge, or either edge trigger.

Example 1: Rising Edge Trigger

Open the following model by typing doc_triggereddelay_ref1 at the
MATLAB command line.

10-1053

Triggered Delay Line

The following shows the input value and Triggered Delay Line output at
each time step:

• At t = 0, there are no initial conditions and no trigger.

• At t = 1, there is no trigger.

• At t = 2, there is a rising edge trigger. The output is [0 0] because
there were no initial conditions, and the input value at this time,
3, is buffered.

• At t = 3, there is no trigger.

• At t = 4, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [0 3]. Also, the input value at this
time, 5, is buffered.

• At t = 5, there is no trigger.

• At t = 6, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [3 5]. Also, the input value at this
time, 7, is buffered.

10-1054

Triggered Delay Line

• At t = 7, there is no trigger.

• At t = 8, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [5 7]. Also, the input value at this
time, 9, is buffered.

• At t = 9, there is no trigger.

• At t = 10, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [7 9]. Also, the input value at this
time, 11, is buffered.

Run the model and look at the output y1 at the MATLAB command line
to confirm these results. Remember that when there is no block output,
Simulink holds the last value on the line.

Example 2: Falling Edge Trigger

Open the following model by typing doc_triggereddelay_ref2 at the
MATLAB command line.

The following shows the input value and Triggered Delay Line output at
each time step:

10-1055

Triggered Delay Line

• At t = 0, there are no initial conditions and no trigger.

• At t = 1, there is a falling edge trigger. The output is [0 0] because
there were no initial conditions, and the input value at this time,
2, is buffered.

• At t = 2, there is no trigger.

• At t = 3, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [0 2]. Also, the input value at this
time, 4, is buffered.

• At t = 4, there is no trigger.

• At t = 5, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [2 4]. Also, the input value at this
time, 6, is buffered.

• At t = 6, there is no trigger.

• At t = 7, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [4 6]. Also, the input value at this
time, 8, is buffered.

• At t = 8, there is no trigger.

• At t = 9, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [6 8]. Also, the input value at this
time, 10, is buffered.

• At t = 10, there is no trigger.

10-1056

Triggered Delay Line

Run the model and look at the output y2 at the MATLAB command line
to confirm these results. Remember that when there is no block output,
Simulink holds the last value on the line.

Example 3: Either Edge Trigger

Open the following model by typing doc_triggereddelay_ref3 at the
MATLAB command line.

The following shows the input value and Triggered Delay Line output at
each time step:

• At t = 0, there are no initial conditions and no trigger.

• At t = 1, there is a falling edge trigger. The output is [0 0], and the
input value at this time, 2, is buffered.

• At t = 2, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [0 2]. Also, the input value at this
time, 3, is buffered.

10-1057

Triggered Delay Line

• At t = 3, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [2 3]. Also, the input value at this
time, 4, is buffered.

• At t = 4, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [3 4]. Also, the input value at this
time, 5, is buffered.

• At t = 5, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [4 5]. Also, the input value at this
time, 6, is buffered.

• At t = 6, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [5 6]. Also, the input value at this
time, 7, is buffered.

• At t = 7, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [6 7]. Also, the input value at this
time, 8, is buffered.

• At t = 8, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [7 8]. Also, the input value at this
time, 9, is buffered.

• At t = 9, there is a falling edge trigger. The last buffered value moves
into the delay line, which is now [8 9]. Also, the input value at this
time, 10, is buffered.

• At t = 10, there is a rising edge trigger. The last buffered value moves
into the delay line, which is now [9 10]. Also, the input value at this
time, 11, is buffered.

Run the model and look at the output y3 at the MATLAB command line
to confirm these results. Remember that when there is no block output,
Simulink holds the last value on the line.

10-1058

Triggered Delay Line

Dialog
Box

Trigger type
The type of event that triggers the block’s execution.

Delay line size
The length of the output frame (number of rows in output matrix),
Mo.

Initial condition
The value of the block’s initial output, a scalar, vector, or matrix.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

10-1059

Triggered Delay Line

Port Supported Data Types

Trigger • Any data type supported by the Trigger block

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

Delay Line Signal Processing Blockset

Unbuffer Signal Processing Blockset

10-1060

Triggered Signal From Workspace

Purpose Import signal samples from MATLAB workspace when triggered

Library Signal Operations

Description The Triggered Signal From Workspace block imports signal samples
from the MATLAB workspace into the Simulink model when triggered
by the control signal at the input port (). The Signal parameter
specifies the name of a MATLAB workspace variable containing the
signal to import, or any valid MATLAB expression defining a matrix
or 3-D array.

When the Signal parameter specifies an M-by-N matrix (M≠1), each of
the N columns is treated as a distinct channel. You specify the frame
size in the Samples per frame parameter, Mo, and the output when
triggered is an Mo-by-N matrix containing Mo consecutive samples from
each signal channel. For Mo=1, the output is sample based; otherwise
the output is frame based. For convenience, an imported row vector
(M=1) is treated as a single channel, so the output dimension is Mo-by-1.

When the Signal parameter specifies an M-by-N-by-P array, the block
generates a single page of the array (an M-by-N matrix) at each trigger
time. The Samples per frame parameter must be set to 1, and the
output is always sample based.

Trigger Event

You specify the triggering event at the input port in the Trigger type
pop-up menu:

• Rising edge triggers execution of the block when the trigger input
rises from a negative value to zero or a positive value, or from zero
to a positive value.

• Falling edge triggers execution of the block when the trigger input
falls from a positive value to zero or a negative value, or from zero
to a negative value.

• Either edge triggers execution of the block when either a rising or
falling edge (as described above) occurs.

10-1061

Triggered Signal From Workspace

Initial and Final Conditions

The Initial output parameter specifies the output of the block
from the start of the simulation until the first trigger event arrives.
Between trigger events, the block holds the output value constant at
its most recent value (that is, no linear interpolation takes place). For
single-channel signals, the Initial output parameter value can be a
vector of length Mo or a scalar to repeat across the Mo elements of the
initial output frames. For matrix outputs (Mo-by-N or M-by-N), the
Initial output parameter value can be a vector of length N to repeat
across all rows of the initial outputs, or a scalar to repeat across all
elements of the initial matrix outputs.

When the block has output all of the available signal samples, it can
start again at the beginning of the signal, or simply repeat the final
value or generate zeros until the end of the simulation. (The block does
not extrapolate the imported signal beyond the last sample.) The Form
output after final data value by parameter controls this behavior:

• When you specify Setting To Zero, the block generates zero-valued
outputs for the duration of the simulation after generating the last
frame of the signal.

• When you specify Holding Final Value, the block repeats the final
sample for the duration of the simulation after generating the last
frame of the signal.

• When you specify Cyclic Repetition, the block repeats the signal
from the beginning after generating the last frame. When there are
not enough samples at the end of the signal to fill the final frame,
the block zero-pads the final frame as necessary to ensure that the
output for each cycle is identical (for example, the ith frame of one
cycle contains the same samples as the ith frame of any other cycle).

10-1062

Triggered Signal From Workspace

Dialog
Box

Signal
The name of the MATLAB workspace variable from which to
import the signal, or a valid MATLAB expression specifying the
signal.

Trigger type
The type of event that triggers the block’s execution.

Initial output
The value to output until the first trigger event is received.

Samples per frame
The number of samples, Mo, to buffer into each output frame.
This value must be 1 when you specify a 3-D array in the Signal
parameter.

Form output after final data value by
Specifies the output after all of the specified signal samples have
been generated. The block can output zeros for the duration of

10-1063

Triggered Signal From Workspace

the simulation (Setting to zero), repeat the final data sample
(Holding Final Value) or repeat the entire signal from the
beginning (Cyclic Repetition).

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

From Wave Device Signal Processing Blockset

From Wave File Signal Processing Blockset

Signal To Workspace Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

Triggered To Workspace Signal Processing Blockset

10-1064

Triggered To Workspace

Purpose Write input sample to MATLAB workspace when triggered

Library Signal Processing Sinks

Description The Triggered To Workspace block creates a matrix or array variable
in the MATLAB workspace, where it stores the acquired inputs at the
end of a simulation. The block overwrites an existing variable with
the same name.

For an M-by-N frame-based input, the block creates an N-column
workspace matrix in which each group of M rows represents a single
input frame from each of N channels (the most recent frame occupying
the last M rows). The maximum size of this workspace variable
is limited to P-by-N, where P is the Maximum number of rows
parameter. (When the simulation progresses long enough for the
block to acquire more than P samples, it stores only the most recent P
samples.) The Decimation factor, D, allows you to store only every
Dth input frame.

For an M-by-N sample-based input, the block creates a
three-dimensional array in which each M-by-N page represents a single
sample from each of M*N channels (the most recent input matrix
occupying the last page). The maximum size of this variable is limited
to M-by-N-by-P, where P is the Maximum number of rows parameter.
(When the simulation progresses long enough for the block to acquire
more than P inputs, it stores only the last P inputs.) The Decimation
factor, D, allows you to store only every Dth input matrix.

The block acquires and buffers a single frame from input 1 whenever
it is triggered by the control signal at input 2 (). At all other times,
the block ignores input 1. You specify the triggering event at input 2 in
the Trigger type pop-up menu:

• Rising edge triggers execution of the block when the trigger input
rises from a negative value to zero or a positive value, or from zero
to a positive value.

10-1065

Triggered To Workspace

• Falling edge triggers execution of the block when the trigger input
falls from a positive value to zero or a negative value, or from zero
to a negative value.

• Either edge triggers execution of the block when either a rising or
falling edge (as described above) occurs.

To save a record of the sample time corresponding to each sample value,
open the Configuration Parameters dialog box. In the Select pane,
click Data Import/Export. In the Save to workspace section, select
the Time check box.

The nontriggered version of this block is the Simulink To Workspace
block.

Dialog
Box

Trigger type
The type of event that triggers the block’s execution.

Variable name
The name of the workspace matrix in which to store the data.

10-1066

Triggered To Workspace

Maximum number of rows
The maximum number of rows (one row per time step) to be
saved, P.

Decimation
The decimation factor, D.

Log fixed-point data as a fi object
Select to log fixed-point data to the MATLAB workspace as a fi
object of the Fixed-Point Toolbox. Otherwise, fixed-point data is
logged to the workspace as double.

Supported
Data
Types

Port Supported Data Types

Input • Any data type supported by the To Workspace block

Trigger • Any data type supported by the Trigger block

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Signal From Workspace Signal Processing Blockset

To Workspace Simulink

10-1067

Two-Channel Analysis Subband Filter

Purpose Decompose signal into a high-frequency subband and a low-frequency
subband

Library Filtering / Multirate Filters

Description The Two-Channel Analysis Subband Filter block decomposes the input
into a high-frequency subband and a low-frequency subband, each with
half the bandwidth and half the sample rate of the input.

The block filters the input with a pair of highpass and lowpass FIR
filters, and then downsamples the results by 2, as illustrated in the
following figure.

Note that the block implements the FIR filtering and downsampling
steps together using a polyphase filter structure, which is more efficient
than the straightforward filter-then-decimate algorithm illustrated
above. Each subband is the first phase of the respective polyphase filter.

You must provide the vector of filter coefficients for the two filters. Each
filter should be a half-band filter that passes the frequency band that
the other filter stops. For frame-based inputs, you also need to specify
whether the change in the sample rate of the output gets reflected by
a change in the frame size, or the frame rate.

Note By connecting many copies of this block, you can implement
a multilevel dyadic analysis filter bank. In some cases, it is more
efficient to use the Dyadic Analysis Filter Bank block instead. For more
information, see “Creating Multilevel Dyadic Analysis Filter Banks”
on page 10-1072.

10-1068

Two-Channel Analysis Subband Filter

Sections of This Reference Page

• “Specifying the FIR Filters” on page 10-1069

• “Sample-Based Operation” on page 10-1070

• “Frame-Based Operation” on page 10-1070

• “Latency” on page 10-1071

• “Creating Multilevel Dyadic Analysis Filter Banks” on page 10-1072

• “Fixed-Point Data Types” on page 10-1073

• “Examples” on page 10-1074

• “Dialog Box” on page 10-1075

• “References” on page 10-1082

• “Supported Data Types” on page 10-1082

• “See Also” on page 10-1082

Specifying the FIR Filters

You must provide the vector of numerator coefficients for the lowpass
and highpass filters in the Lowpass FIR filter coefficients and
Highpass FIR filter coefficients parameters.

For example, to specify a filter with the following transfer function,
enter the vector [b(1) b(2) ... b(m)].

Each filter should be a half-band filter that passes the frequency band
that the other filter stops. When you plan to use the Two-Channel
Synthesis Subband Filter block to reconstruct the input to this block,
you will need to design perfect reconstruction filters to use in the
synthesis subband filter.

The best way to design perfect reconstruction filters is to use the
wfilters function in the Wavelet Toolbox to design both the filters

10-1069

Two-Channel Analysis Subband Filter

both in this block and in the Two-Channel Synthesis Subband Filter
block. You can also use functions from the Filter Design Toolbox and
Signal Processing Toolbox. To learn how to design your own perfect
reconstruction filters, see “References” on page 10-1082.

The block initializes all filter states to zero.

Sample-Based Operation

• “Valid Sample-Based Inputs” on page 10-1070

• “Sample-Based Outputs” on page 10-1070

Valid Sample-Based Inputs

The block accepts all M-by-N sample-based matrix inputs. The block
treats such inputs as independent channels, and decomposes each
channel over time.

Sample-Based Outputs

Given a sample-based M-by-N input, the block outputs two M-by-N
sample-based matrices whose sample rates are half the input sample
rate. Each output matrix element is the high- or low-frequency subband
output of the corresponding input matrix element. Depending on the
Simulink configuration parameters, some sample-based outputs can
have one sample of latency, as described in “Latency” on page 10-1071.

Frame-Based Operation

• “Valid Frame-Based Inputs” on page 10-1070

• “Frame-Based Outputs” on page 10-1071

Valid Frame-Based Inputs

The block accepts M-by-N frame-based matrix inputs where M is
a multiple of two. The block treats such inputs as N independent
channels, and decomposes each channel over time.

10-1070

Two-Channel Analysis Subband Filter

Frame-Based Outputs

Given a valid frame-based input, the block outputs two frame-based
matrices. Each output column is the high- or low-frequency subband of
the corresponding input column.

The sample rate of the outputs are half that of the input. The Framing
parameter sets whether the block halves the sample rate by halving the
output frame size, or halving the output frame rate:

• Maintain input frame size – The input and output frame sizes
are the same, but the frame rate of the outputs are half that of the
input. So, the overall sample rate of the output is half that of the
input. This setting causes the block to have one frame of latency, as
described in “Latency” on page 10-1071.

• Maintain input frame rate – The input and output frame rates
are the same, but the frame size of the outputs are half that of the
input (the input frame size must be a multiple of two). So, the overall
sample rate of the output is half that of the input.

Latency

In some cases, the block has nonzero tasking latency, which means that
there is a constant delay between the time that the block receives an
input, and produces the corresponding output, as summarized below
and in the following table:

• For sample-based inputs, there are cases where the block exhibits
one-sample latency. In such cases, when the block receives the nth
input sample, it produces the outputs corresponding to the n-1th
input sample. When the block receives the first input sample, the
block outputs an initial value of zero in each output channel.

• For frame-based inputs, there are cases where the block exhibits
one-frame latency. In such cases, when the block receives the nth
input frame, it produces the outputs corresponding to the n-1th input
frame. When the block receives the first input frame, the block
outputs a frame of zeros.

10-1071

Two-Channel Analysis Subband Filter

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page
2-56 and “Models with Multiple Sample Rates” in the Real-Time
Workshop User’s Guide documentation.

Amount of Block Latency for All Possible Block Settings

Input Latency No Latency

Sample based One sample of latency when the
Tasking mode for periodic
sample times parameter is set
to MultiTasking or Auto in the
Solver pane of the Configuration
Parameters dialog box. The first
output sample of each channel is
always 0.

The Tasking mode for periodic
sample times parameter is set to
SingleTasking in the Solver pane
of the Configuration Parameters
dialog box.

Frame based One frame of latency when the
Framing parameter is set to
Maintain input frame size. The
first output frame is always all
zeros.

The Framing parameter is set to
Maintain input frame rate.

Creating Multilevel Dyadic Analysis Filter Banks

The Two-Channel Analysis Subband Filter block is the basic unit of a
dyadic analysis filter bank. You can connect several of these blocks to
implement an n-level filter bank, as illustrated in the following figure.
For a review of dyadic analysis filter banks, see the Dyadic Analysis
Filter Bank block reference page.

When you create a filter bank by connecting multiple copies of this
block, the output values of the filter bank differ depending on whether
there is latency. See the previous table,

For instance, for frame-based inputs, the filter bank output values differ
depending on whether you set the Framing parameter to Maintain

10-1072

Two-Channel Analysis Subband Filter

input frame rate (no latency), or Maintain input frame size (one
frame of latency for every block). Though the output values differ, both
sets of values are valid; the difference arises from changes in latency.

In some cases, rather than connecting several Two-Channel Analysis
Subband Filter blocks, it is faster and requires less memory to use
the Dyadic Analysis Filter Bank block. In particular, use the Dyadic
Analysis Filter Bank block when you want to decompose a frame-based
signal with frame size a multiple of 2n into n+1 or 2n subbands. In
all other cases, use Two-Channel Analysis Subband Filter blocks to
implement your filter banks.

The Dyadic Analysis Filter Bank block allows you to specify the filter
bank filters by providing vectors of filter coefficients, just as this block
does. The Dyadic Analysis Filter Bank block provides an additional
option of using wavelet-based filters that the block designs by using a
wavelet you specify.

Fixed-Point Data Types

The Two-Channel Analysis Subband Filter block is comprised of two
FIR Decimation blocks as shown in the following diagram.

10-1073

Two-Channel Analysis Subband Filter

For fixed-point signals, you can set the coefficient, product output,
accumulator, and output data types of the FIR Decimation blocks as
discussed in “Dialog Box” on page 10-1075. For a diagram showing the
usage of these data types, refer to the FIR Decimation block reference
page.

Examples See the following Signal Processing Blockset demos, which use the
Two-Channel Analysis Subband Filter block:

• Multilevel PR filter bank

• Denoising

• Wavelet transmultiplexer (WTM)

Note By default, the demos open the versions using the Two-Channel
Analysis Subband Filter block. You can also see the version of the
demos that use the Dyadic Analysis Filter Bank block by clicking the
Frame-Based Demo button in the demos.

10-1074

Two-Channel Analysis Subband Filter

Dialog
Box

The Main pane of the Two-Channel Analysis Subband Filter block
dialog appears as follows:

Lowpass FIR filter coefficients
Specify a vector of lowpass FIR filter coefficients, in descending
powers of z. The lowpass filter should be a half-band filter that
passes the frequency band stopped by the filter specified in the
Highpass FIR filter coefficients parameter. The default

10-1075

Two-Channel Analysis Subband Filter

values of this parameter specify a filter based on a 3rd-order
Daubechies wavelet. When you use the Two-Channel Synthesis
Subband Filter block to reconstruct the input to this block, you
need to design perfect reconstruction filters to use in the synthesis
subband filter. For more information, see “Specifying the FIR
Filters” on page 10-1069.

Highpass FIR filter coefficients
Specify a vector of highpass FIR filter coefficients, in descending
powers of z. The highpass filter should be a half-band filter
that passes the frequency band stopped by the filter specified in
the Lowpass FIR filter coefficients parameter. The default
values of this parameter specify a filter based on a 3rd-order
Daubechies wavelet. When you use the Two-Channel Synthesis
Subband Filter block to reconstruct the input to this block, you
need to design perfect reconstruction filters to use in the synthesis
subband filter. For more information, see “Specifying the FIR
Filters” on page 10-1069.

Framing
Specify the method by which to implement the decimation for
frame-based inputs:

Select Maintain input frame size to halve the output frame
rate

Select Maintain input frame rate to halve the output frame
size

For more information, see “Frame-Based Operation” on page
10-1070. Some settings of this parameter causes the block to have
nonzero latency, as described in “Latency” on page 10-1071.

The Fixed-point pane of the Two-Channel Analysis Subband Filter
block dialog appears as follows:

10-1076

Two-Channel Analysis Subband Filter

Rounding mode
Select the rounding mode for fixed-point operations. The filter
coefficients do not obey this parameter; they always round to
Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The filter
coefficients do not obey this parameter; they are always saturated.

10-1077

Two-Channel Analysis Subband Filter

Coefficients
Choose how you will specify the word length and the fraction
length of the FIR filter coefficients:

When you select Same word length as input, the word length of
the filter coefficients will match that of the input to the block. In
this mode, the fraction length of the coefficients is automatically
set to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
coefficients.

When you select Specify word length, you are able to enter the
word length of the coefficients, in bits. In this mode, the fraction
length of the coefficients is automatically set to the binary-point
only scaling that provides you with the best precision possible
given the value and word length of the coefficients.

When you select Binary point scaling, you are able to enter
the word length and the fraction length of the coefficients, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the coefficients. This
block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-430 of the FIR Decimation reference page
and “Multiplication Data Types” on page 8-16 for illustrations
depicting the use of the product output data type in the FIR
Decimation blocks of this block:

10-1078

Two-Channel Analysis Subband Filter

When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter the
word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of zero.

Accumulator

10-1079

Two-Channel Analysis Subband Filter

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and
fraction lengths resulting from a complex-complex multiplication
in the FIR Decimation blocks in this block. Refer to “Multiplication
Data Types” on page 8-16 for more information:

When you select Inherit via internal rule, the accumulator
word length and fraction length are automatically set according to
the following equations:

where the number of accumulations is given by

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

When you select Same as product output, these characteristics
will match those of the product output

10-1080

Two-Channel Analysis Subband Filter

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter the
word length and the fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length of the FIR Decimation blocks, as well as of the final overall
filter output:

When you select Same as accumulator, these characteristics will
match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and block inputs and coefficients are
complex. In that case, the output word length will be one less
than the accumulator word length.

When you select Same as product output, these characteristics
will match those of the product output

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of zero.

10-1081

Two-Channel Analysis Subband Filter

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press, 1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1993.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Dyadic Analysis Filter Bank Signal Processing Blockset

FIR Decimation Signal Processing Blockset

Two-Channel Synthesis
Subband Filter

Signal Processing Blockset

fir1 Signal Processing Toolbox

fir2 Signal Processing Toolbox

firls Signal Processing Toolbox

wfilters Wavelet Toolbox

For related information, see “Multirate Filters” on page 3-66.

10-1082

Two-Channel Synthesis Subband Filter

Purpose Reconstruct signal from a high-frequency subband and a low-frequency
subband

Library Filtering / Multirate Filters

Description The Two-Channel Synthesis Subband Filter block reconstructs a signal
from its high-frequency subband and low-frequency subband, each with
half the bandwidth and half the sample rate of the original signal.
Use this block to reconstruct signals decomposed by the Two-Channel
Analysis Subband Filter block.

The block upsamples the high- and low-frequency subbands by 2, and
then filters the results with a pair of highpass and lowpass FIR filters,
as illustrated in the following figure.

Note that the block implements the FIR filtering and downsampling
steps together using a polyphase filter structure, which is more efficient
than the straightforward interpolate-then-filter algorithm illustrated
above.

You must provide the vector of filter coefficients for the two filters. Each
filter should be a half-band filter that passes the frequency band that
the other filter stops. To use this block to reconstruct the output of a
Two-Channel Analysis Subband Filter block, the filters in this block
must be designed to perfectly reconstruct the outputs of the analysis
filters.

10-1083

Two-Channel Synthesis Subband Filter

Note By connecting many copies of this block, you can implement
a multilevel dyadic synthesis filter bank. In some cases, it is more
efficient to use the Dyadic Synthesis Filter Bank block instead. For
more information, see “Creating Multilevel Dyadic Synthesis Filter
Banks” on page 10-1088.

Sections of This Reference Page

• “Specifying the FIR Filters” on page 10-1084

• “Sample-Based Operation” on page 10-1085

• “Frame-Based Operation” on page 10-1086

• “Latency” on page 10-1086

• “Creating Multilevel Dyadic Synthesis Filter Banks” on page 10-1088

• “Fixed-Point Data Types” on page 10-1089

• “Examples” on page 10-1090

• “Dialog Box” on page 10-1091

• “References” on page 10-1098

• “Supported Data Types” on page 10-1098

• “See Also” on page 10-1098

Specifying the FIR Filters

You must provide the vector of numerator coefficients for the lowpass
and highpass filters in the Lowpass FIR filter coefficients and
Highpass FIR filter coefficients parameters.

For example, to specify a filter with the following transfer function,
enter the vector [b(1) b(2) ... b(m)].

10-1084

Two-Channel Synthesis Subband Filter

Each filter should be a half-band filter that passes the frequency band
that the other filter stops. To use this block to reconstruct the output of
a Two-Channel Analysis Subband Filter block, the filters in this block
must be designed to perfectly reconstruct the outputs of the analysis
filters.

The best way to design perfect reconstruction filters is to use the
wfilters function in the Wavelet Toolbox for the filters in both this
block and in the corresponding Two-Channel Analysis Subband Filter
block. You can also use functions from the Filter Design Toolbox and
Signal Processing Toolbox. To learn how to design your own perfect
reconstruction filters, see “References” on page 10-1098.

The block initializes all filter states to zero.

Sample-Based Operation

• “Valid Sample-Based Inputs” on page 10-1085

• “Sample-Based Outputs” on page 10-1085

Valid Sample-Based Inputs

The block accepts any two M-by-N sample-based matrices with the
same sample rates. The block treats each M-by-N matrix as MxN
independent subbands, where MxN is the product of the matrix
dimensions. Each matrix element is the high- or low-frequency subband
of the corresponding channel in the output matrix. The input to the
topmost input port should contain the high-frequency subbands.

Sample-Based Outputs

Given valid sample-based inputs, the block outputs one sample-based
matrix with the same dimensions as the inputs. The output sample
rate is twice that of the input. Each element of the output is a single
channel, reconstructed from the corresponding elements in each input
matrix. Depending on the Simulink configuration parameters, some
sample-based outputs can have one sample of latency, as described in
“Latency” on page 10-1086.

10-1085

Two-Channel Synthesis Subband Filter

Frame-Based Operation

• “Valid Frame-Based Inputs” on page 10-1086

• “Frame-Based Outputs” on page 10-1086

Valid Frame-Based Inputs

The block accepts any two M-by-N frame-based matrices with the
same frame rates. The block treats each input column as the high- or
low-frequency subbands of the corresponding output channel. The input
to the topmost input port should contain the high-frequency subbands.

Frame-Based Outputs

Given valid frame-based inputs, the block outputs a frame-based
matrix. Each output column is a single channel, reconstructed from the
corresponding columns in each input matrix.

The sample rate of the output is twice that of the input. The Framing
parameter sets whether the block doubles the sample rate by doubling
the output frame size, or doubling the output frame rate:

• Maintain input frame size – The input and output frame sizes
are the same, but the frame rate of the output is twice that of the
input. So, the overall sample rate of the output is twice that of the
input. This setting causes the block to have one frame of latency, as
described in “Latency” on page 10-1071.

• Maintain input frame rate – The input and output frame rates are
the same, but the frame size of the output is twice that of the input.
So, the overall sample rate of the output is twice that of the input.

Latency

In some cases, the block has nonzero tasking latency, which means that
there is a constant delay between the time that the block receives an
input, and produces the corresponding output, as summarized below
and in the following table:

10-1086

Two-Channel Synthesis Subband Filter

• For sample-based inputs, there are cases where the block exhibits
one-sample latency. In such cases, when the block receives the nth
input sample, it produces the outputs corresponding to the n-1th
input sample. When the block receives the first input sample, the
block outputs an initial value of zero in each output channel.

• For frame-based inputs, there are cases where the block exhibits
one-frame latency. In such cases, when the block receives the nth
input frame, it produces the outputs corresponding to the n-1th input
frame. When the block receives the first input frame, the block
outputs a frame of zeros.

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page
2-56 and “Models with Multiple Sample Rates” in the Real-Time
Workshop User’s Guide documentation.

Amount of Block Latency for All Possible Block Settings

Input Latency No Latency

Sample based One sample of latency when the
Tasking mode for periodic
sample times parameter is
set to MultiTasking or Auto
in the Solver pane of the
Configuration Parameters
dialog box. The first output
sample of each channel is always
0.

The Tasking mode
for periodic sample
times parameter is set to
SingleTasking in the Solver
pane of the Configuration
Parameters dialog box.

Frame based One frame of latency when the
Framing parameter is set to
Maintain input frame size.
The first output frame is always
all zeros.

The Framing parameter is
set to Maintain input frame
rate.

10-1087

Two-Channel Synthesis Subband Filter

Creating Multilevel Dyadic Synthesis Filter Banks

The Two-Channel Synthesis Subband Filter block is the basic unit of a
dyadic synthesis filter bank. You can connect several of these blocks to
implement an n-level filter bank, as illustrated in the following figure.
For a review of dyadic synthesis filter banks, see the Dyadic Synthesis
Filter Bank block reference page.

When you create a filter bank by connecting multiple copies of this
block, the output values of the filter bank differ depending on whether
there is latency. See the previous table, Amount of Block Latency for
All Possible Block Settings on page 10-1087.

For instance, for frame-based inputs, the filter bank output values differ
depending on whether you set the Framing parameter to Maintain
input frame rate (no latency), or Maintain input frame size (one
frame of latency for every block). Though the output values differ, both
sets of values are valid; the difference arises from changes in latency.

In some cases, rather than connecting several Two-Channel Synthesis
Subband Filter blocks, it is faster and requires less memory to use
the Dyadic Synthesis Filter Bank block. In particular, use the Dyadic
Synthesis Filter Bank block to reconstruct a frame-based signal (with
frame size a multiple of 2n) from 2n or n+1 subbands whose properties
match those of the Dyadic Analysis Filter Bank block’s outputs. These
properties are described in the Dyadic Analysis Filter Bank reference
page.

10-1088

Two-Channel Synthesis Subband Filter

The Dyadic Synthesis Filter Bank block allows you to specify the filter
bank filters by providing vectors of filter coefficients, just as this block
does. The Dyadic Synthesis Filter Bank block provides an additional
option of using wavelet-based filters that the block designs by using a
wavelet you specify.

Fixed-Point Data Types

The Two-Channel Synthesis Subband Filter block is comprised of two
FIR Interpolation blocks as shown in the following diagram.

For fixed-point signals, you can set the coefficient, product output,
accumulator, and output data types used in the FIR Interpolation blocks
as discussed in “Dialog Box” on page 10-1091 below. For a diagram
showing the usage of these data types within the FIR blocks, refer to
the FIR Interpolation block reference page.

10-1089

Two-Channel Synthesis Subband Filter

In addition, the inputs to the Sum block in the diagram above are
accumulated using the accumulator data type. The output of the Sum
block is then cast from the accumulator data type to the output data
type. Therefore the output of the Two-Channel Synthesis Subband
Filter block is in the output data type. You also set these data types in
the block dialog as discussed in “Dialog Box” on page 10-1091 below.

Examples See the following Signal Processing Blockset demos, which use the
Two-Channel Synthesis Subband Filter block:

• Multilevel PR filter bank

• Denoising

• Wavelet transmultiplexer (WTM)

Note By default, the demos open the versions using the Two-Channel
Synthesis Subband Filter block. You can also see the version of the
demos that use the Dyadic Synthesis Filter Bank block by clicking the
Frame-Based Demo button in the demos.

10-1090

Two-Channel Synthesis Subband Filter

Dialog
Box

The Main pane of the Two-Channel Synthesis Subband Filter block
dialog appears as follows:

Lowpass FIR filter coefficients
A vector of lowpass FIR filter coefficients, in descending
powers of z. The lowpass filter should be a half-band filter
that passes the frequency band stopped by the filter specified
in the Highpass FIR filter coefficients parameter. To use

10-1091

Two-Channel Synthesis Subband Filter

this block to reconstruct the output of a Two-Channel Analysis
Subband Filter block, you must design the filters in this block to
perfectly reconstruct the outputs of the analysis filters. For more
information, see “Specifying the FIR Filters” on page 10-1084.

Highpass FIR filter coefficients
A vector of highpass FIR filter coefficients, in descending
powers of z. The highpass filter should be a half-band filter
that passes the frequency band stopped by the filter specified
in the Lowpass FIR filter coefficients parameter. To use
this block to reconstruct the output of a Two-Channel Analysis
Subband Filter block, you must design the filters in this block to
perfectly reconstruct the outputs of the analysis filters. For more
information, see “Specifying the FIR Filters” on page 10-1084.

Framing
Select the method by which to implement the interpolation for
frame-based inputs:

Select Maintain input frame size to double the output frame
rate

Select Maintain input frame rate to double the output frame
size

For more information, see “Frame-Based Operation” on page
10-1070. Some settings of this parameter causes the block to have
nonzero latency, as described in “Latency” on page 10-1071.

The Fixed-point pane of the Two-Channel Synthesis Subband Filter
block dialog appears as follows:

10-1092

Two-Channel Synthesis Subband Filter

Round mode
Select the rounding mode for fixed-point operations. The filter
coefficients do not obey this parameter; they always round to
Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The filter
coefficients do not obey this parameter; they are always saturated.

10-1093

Two-Channel Synthesis Subband Filter

Coefficients
Choose how you will specify the word length and the fraction
length of the FIR filter coefficients:

When you select Same word length as input, the word length of
the filter coefficients will match that of the input to the block. In
this mode, the fraction length of the coefficients is automatically
set to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
coefficients.

When you select Specify word length, you are able to enter the
word length of the coefficients, in bits. In this mode, the fraction
length of the coefficients is automatically set to the binary-point
only scaling that provides you with the best precision possible
given the value and word length of the coefficients.

When you select Binary point scaling, you are able to enter
the word length and the fraction length of the coefficients, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the coefficients. This
block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the
Overflow mode parameters; they are always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate
the product output word and fraction lengths. Refer to
“Fixed-Point Data Types” on page 10-446 of the FIR Interpolation
reference page and “Multiplication Data Types” on page 8-16 for
illustrations depicting the use of the product output data type in
the FIR Interpolation blocks of this block:

10-1094

Two-Channel Synthesis Subband Filter

When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter the
word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of zero.

Accumulator

10-1095

Two-Channel Synthesis Subband Filter

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator
word and fraction lengths resulting from a complex-complex
multiplication in the FIR Interpolation blocks in this block. Refer
to “Multiplication Data Types” on page 8-16 for more information:

When you select Inherit via internal rule, the accumulator
word length and fraction length are automatically set according to
the following equations:

where the number of accumulations is given by

Note The actual accumulator word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

When you select Same as product output, these characteristics
will match those of the product output

10-1096

Two-Channel Synthesis Subband Filter

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter the
word length and the fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length of the FIR Interpolation blocks, as well as of the final
overall filter output:

When you select Same as accumulator, these characteristics will
match those of the accumulator.

A special case occurs when Inherit via internal rule is
specified for Accumulator, and block inputs and coefficients are
complex. In that case, the output word length will be one less
than the accumulator word length.

When you select Same as product output, these characteristics
will match those of the product output

When you select Same as input, these characteristics will match
those of the input to the block.

When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of zero.

10-1097

Two-Channel Synthesis Subband Filter

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press, 1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1993.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Dyadic Synthesis Filter
Bank

Signal Processing Blockset

FIR Interpolation Signal Processing Blockset

Two-Channel Analysis
Subband Filter

Signal Processing Blockset

fir1 Signal Processing Toolbox

fir2 Signal Processing Toolbox

firls Signal Processing Toolbox

wfilters Wavelet Toolbox

For related information, see “Multirate Filters” on page 3-66.

10-1098

Unbuffer

Purpose Unbuffer input frame into sequence of scalar outputs

Library Signal Management / Buffers

Description The Unbuffer block unbuffers an Mi-by-N frame-based input into a
1-by-N sample-based output. That is, inputs are unbuffered row-wise
so that each matrix row becomes an independent time-sample in the
output. The rate at which the block receives inputs is generally less
than the rate at which the block produces outputs.

The block adjusts the output rate so that the sample period is the same
at both the input and output, Tso=Tsi. Therefore, the output sample
period for an input of frame size Mi and frame period Tfi is Tfi/Mi,
which represents a rate Mi times higher than the input frame rate.
In the example above, the block receives inputs only once every three
sample periods, but produces an output once every sample period. To
rebuffer frame-based inputs to a larger or smaller frame size, use the
Buffer block.

In the model below, the block unbuffers a four-channel frame-based
input with frame size 3. The Initial conditions parameter is set
to zero and the tasking mode is set to multitasking, so the first three
outputs are zero vectors.

10-1099

Unbuffer

Zero Latency

The Unbuffer block has zero tasking latency in the Simulink
single-tasking mode. Zero tasking latency means that the first input
sample (received at t=0) appears as the first output sample.

Nonzero Latency

For multitasking operation, the Unbuffer block’s buffer is initialized
with the value specified by the Initial condition parameter, and the
block begins unbuffering this frame at the start of the simulation.
Inputs to the block are therefore delayed by one buffer length, or
Mi samples.

The Initial condition parameter can be one of the following:

• A scalar to be repeated for the first Mi output samples of every
channel

10-1100

Unbuffer

• A length-Mi vector containing the values of the first Mi output
samples for every channel

• An Mi-by-N matrix containing the values of the first Mi output
samples in each of N channels

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page
2-56 and “Models with Multiple Sample Rates” in the Real-Time
Workshop User’s Guide documentation.

Dialog
Box

Initial conditions
The value of the block’s initial output for cases of nonzero latency;
a scalar, vector, or matrix.

10-1101

Unbuffer

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Buffer Signal Processing Blockset

See “Unbuffering Frame-Based Signals into Sample-Based Signals” on
page 2-43 for related information.

10-1102

Uniform Decoder

Purpose Decode integer input into floating-point output

Library Quantizers

Description The Uniform Decoder block performs the inverse operation of the
Uniform Encoder block, and reconstructs quantized floating-point
values from encoded integer input. The block adheres to the definition
for uniform decoding specified in ITU-T Recommendation G.701.

Inputs can be real or complex values of the following six integer data
types: uint8, uint16, uint32, int8, int16, or int32.

The block first casts the integer input values to floating-point values,
and then uniquely maps (decodes) them to one of 2B uniformly spaced
floating-point values in the range [-V, (1-21-B)V], where you specify
B in the Bits parameter (as an integer between 2 and 32) and V is a
floating-point value specified by the Peak parameter. The smallest
input value representable by B bits (0 for an unsigned input data type;
-2B-1 for a signed input data type) is mapped to the value -V. The largest
input value representable by B bits (2B-1 for an unsigned input data
type; 2B-1-1 for a signed input data type) is mapped to the value (1-21-B)V.
Intermediate input values are linearly mapped to the intermediate
values in the range [-V, (1-21-B)V].

To correctly decode values encoded by the Uniform Encoder block, the
Bits and Peak parameters of the Uniform Decoder block should be set
to the same values as the Bits and Peak parameters of the Uniform
Encoder block. The Overflow mode parameter specifies the Uniform
Decoder block’s behavior when the integer input is outside the range
representable by B bits. When you select Saturate, unsigned input
values greater than 2B-1 saturate at 2B-1; signed input values greater
than 2B-1-1 or less than -2B-1 saturate at those limits. The real and
imaginary components of complex inputs saturate independently.

When you select Wrap, unsigned input values, u, greater than 2B-1 are
wrapped back into the range [0, 2B-1] using mod-2B arithmetic.

u = mod(u,2^B) % Equivalent MATLAB code

10-1103

Uniform Decoder

Signed input values, u, greater than 2B-1-1 or less than -2B-1 are wrapped
back into that range using mod-2B arithmetic.

u = (mod(u+2^B/2,2^B)-(2^B/2)) % Equivalent MATLAB code

The real and imaginary components of complex inputs wrap
independently.

The Output type parameter specifies whether the decoded
floating-point output is single or double precision. Either level of output
precision can be used with any of the six integer input data types.

Examples Consider a Uniform Decoder block with the following parameter
settings:

• Peak = 2

• Bits = 3

The input to the block is the uint8 output of a Uniform Encoder
block with comparable settings: Peak = 2, Bits = 3, and
Output type = Unsigned. (Comparable settings ensure that inputs to
the Uniform Decoder block do not saturate or wrap. See the example
on the Uniform Encoder block reference page for more about these
settings.)

The real and complex components of each input are independently
mapped to one of 23 distinct levels in the range [-2.0,1.5].

0 is mapped to -2.0
1 is mapped to -1.5
2 is mapped to -1.0
3 is mapped to -0.5
4 is mapped to 0.0
5 is mapped to 0.5
6 is mapped to 1.0
7 is mapped to 1.5

10-1104

Uniform Decoder

Dialog
Box

Peak
The largest amplitude represented in the encoded input. To
correctly decode values encoded with the Uniform Encoder block,
set the Peak parameters in both blocks to the same value.

Bits
The number of input bits, B, used to encode the data. (This can be
less than the total number of bits supplied by the input data type.)
To correctly decode values encoded with the Uniform Encoder
block, set the Bits parameters in both blocks to the same value.

Overflow mode
The block’s behavior when the integer input is outside the range
representable by B bits. Out-of-range inputs can either saturate
at the extreme value, or wrap back into range.

Output type
The precision of the floating-point output, single or double.

References General Aspects of Digital Transmission Systems: Vocabulary of
Digital Transmission and Multiplexing, and Pulse Code Modulation
(PCM) Terms, International Telecommunication Union, ITU-T
Recommendation G.701, March, 1993

10-1105

Uniform Decoder

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Data Type Conversion Simulink

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

udecode Signal Processing Toolbox

uencode Signal Processing Toolbox

10-1106

Uniform Encoder

Purpose Quantize and encode floating-point input into integer output

Library Quantizers

Description The Uniform Encoder block performs the following two operations on
each floating-point sample in the input vector or matrix:

1 Quantizes the value using the same precision

2 Encodes the quantized floating-point value to an integer value

In the first step, the block quantizes an input value to one of 2B

uniformly spaced levels in the range [-V, (1-21-B)V], where you specify
B in the Bits parameter and you specify V in the Peak parameter.
The quantization process rounds both positive and negative inputs
downward to the nearest quantization level, with the exception of those
that fall exactly on a quantization boundary. The real and imaginary
components of complex inputs are quantized independently.

The number of bits, B, can be any integer value between 2 and 32,
inclusive. Inputs greater than (1-21-B)V or less than -V saturate at those
respective values. The real and imaginary components of complex
inputs saturate independently.

In the second step, the quantized floating-point value is uniquely
mapped (encoded) to one of 2B integer values. When the Output type
is set to Unsigned integer, the smallest quantized floating-point
value, -V, is mapped to the integer 0, and the largest quantized
floating-point value, (1-21-B)V, is mapped to the integer 2B-1.
Intermediate quantized floating-point values are linearly (uniformly)
mapped to the intermediate integers in the range [0, 2B-1]. For
efficiency, the block automatically selects an unsigned output data type
(uint8, uint16, or uint32) with the minimum number of bits equal
to or greater than B.

When the Output type is set to Signed integer, the smallest
quantized floating-point value, -V, is mapped to the integer -2B-1, and
the largest quantized floating-point value, (1-21-B)V, is mapped to the

10-1107

Uniform Encoder

integer 2B-1-1. Intermediate quantized floating-point values are linearly
mapped to the intermediate integers in the range [-2B-1, 2B-1-1]. The
block automatically selects a signed output data type (int8, int16, or
int32) with the minimum number of bits equal to or greater than B.

Inputs can be real or complex, double or single precision. The output
data types that the block uses are shown in the table below. Note
that most of the blocks in the Signal Processing Blockset accept only
double-precision inputs. Use the Simulink Data Type Conversion
block to convert integer data types to double precision. See “Working
with Data Types” in the Simulink documentation for a complete
discussion of data types, as well as a list of Simulink blocks capable
of reduced-precision operations.

Bits Unsigned Integer Signed Integer

2 to 8 uint8 int8

9 to 16 uint16 int16

17 to 32 uint32 int32

The Uniform Encoder block operations adhere to the definition for
uniform encoding specified in ITU-T Recommendation G.701.

Examples The following figure illustrates uniform encoding with the following
parameter settings:

• Peak = 2

• Bits = 3

• Output type = Unsigned

10-1108

Uniform Encoder

The real and complex components of each input (horizontal axis)
are independently quantized to one of 23 distinct levels in the
range [-2,1.5] and then mapped to one of 23 integer values in the
range [0,7].

-2.0 is mapped to 0
-1.5 is mapped to 1
-1.0 is mapped to 2
-0.5 is mapped to 3
0.0 is mapped to 4
0.5 is mapped to 5
1.0 is mapped to 6
1.5 is mapped to 7

The table below shows the results for a few particular inputs.

Input
Quantized
Input Output Notes

1.6 1.5+0.0i 7+4i

-0.4 -0.5+0.0i 3+4i

10-1109

Uniform Encoder

Input
Quantized
Input Output Notes

-3.2 -2.0+0.0i 4i Saturation
(real)

0.4-1.2i 0.0-1.5i 4+i

0.4-6.0i 0.0-2.0i 4 Saturation
(imaginary)

-4.2+3.5i -2.0+2.0i 7i Saturation
(real and
imaginary)

The output data type is automatically set to uint8, the most efficient
format for this input range.

Dialog
Box

Peak
The largest input amplitude to be encoded, V. Real or imaginary
input values greater than (1-21-B)V or less than -V saturate
(independently for complex inputs) at those limits.

10-1110

Uniform Encoder

Bits
The number of levels at which to quantize the floating-point input.
(Also the number of bits needed to represent the integer output.)

Output type
The data type of the block’s output, Unsigned integer or Signed
integer. Unsigned outputs are uint8, uint16, or uint32, while
signed outputs are int8, int16, or int32.

References General Aspects of Digital Transmission Systems: Vocabulary of
Digital Transmission and Multiplexing, and Pulse Code Modulation
(PCM) Terms, International Telecommunication Union, ITU-T
Recommendation G.701, March, 1993

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Data Type Conversion Simulink

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

udecode Signal Processing Toolbox

uencode Signal Processing Toolbox

10-1111

Unwrap

Purpose Unwrap signal phase

Library Signal Operations

Description The Unwrap block unwraps each input channel by adding or subtracting
appropriate multiples of to each channel element. The input can
be any matrix or 1-D vector, and must have radian phase entries. The
block recognizes phase discontinuities larger than the Tolerance
parameter setting.

The block preserves the input size, dimension, and frame status, and
the output port rate equals the input port rate. For a detailed discussion
of the Unwrap block, see other sections of this reference page.

Sections of This Reference Page

• “Acceptable Inputs and Corresponding Output Characteristics” on
page 10-1112

• “The Two Unwrap Modes” on page 10-1114

• “Unwrap Method” on page 10-1117

• “Definition of Phase Unwrap” on page 10-1118

Acceptable Inputs and Corresponding Output Characteristics

The Unwrap block preserves the input size, dimension, and frame
status, and the output port rate equals the input port rate.

10-1112

Unwrap

Characteristics of Valid Input
Characteristics of
Corresponding Output

Input elements must be phase
values in radians.

Sample- or frame-based

M-by-N 2-D matrix or a 1-D vector

Output elements are phase values
in radians.

Same frame status as input

Same size and dimension as input

Output port rate = input port rate

10-1113

Unwrap

The Two Unwrap Modes

You must specify the unwrap mode by setting the parameter, Do not
unwrap phase discontinuities between successive frames. The
unwrap modes are summarized in the next table.

Two Unwrap Modes

In both unwrap modes, the block adds to each input channel’s elements,
where it updates k at each phase discontinuity. (For more on the updating of k,
see “Unwrap Method” on page 10-1117.) The number of times that k is reset
to 0 depends on the unwrap mode.

Default Unwrap Mode: Initialize k to 0
for Only the First Input Frame

Nondefault Unwrap Mode: Set k to
0 for Each Successive Input Matrix or
Input Vector

In this mode, k is initialized to 0 for only
the first input matrix or input vector. As
k gets updated, the value of k is retained
between successive input matrices or
input vectors. That is, the block unwraps
each input’s channel by considering phase
discontinuities in all previous frames and
the current frame.

In this mode, k is reset to 0 for each
successive input matrix or input vector.
As k gets updated, the value of k is only
retained within the current input matrix
or vector. That is, the block unwraps
each input’s channel by considering phase
discontinuities in the current input matrix
or input vector only, ignoring discontinuities
in previous inputs.

10-1114

Unwrap

Two Unwrap Modes

In both unwrap modes, the block adds to each input channel’s elements,
where it updates k at each phase discontinuity. (For more on the updating of k,
see “Unwrap Method” on page 10-1117.) The number of times that k is reset
to 0 depends on the unwrap mode.

Default Unwrap Mode: Initialize k to 0
for Only the First Input Frame

Nondefault Unwrap Mode: Set k to
0 for Each Successive Input Matrix or
Input Vector

In this mode, the block unwraps the columns
or each individual element of the input:

• Frame-based inputs – unwrap columns

• Sample-based inputs – unwrap each
element of the input.

• 1-D vector inputs – treat as frame-based
column

In this mode, the block unwraps the columns
or rows of the input:

• Frame-based inputs – unwrap columns

• Sample-based nonrow inputs – unwrap
columns

• Sample-based row vector inputs – unwrap
the row.

• 1-D vector inputs – treat as frame-based
column

See the following diagrams. See the following diagrams.

The following diagrams illustrate how the two unwrap modes operate
on various inputs.

10-1115

Unwrap

10-1116

Unwrap

Unwrap Method

The Unwrap block unwraps each channel of its input matrix or input
vector by adding to each successive channel element, and updating
k at each phase jump. See the following steps to the unwrap method
for details.

10-1117

Unwrap

Relevant Unwrap Terms:

• ui – ith element of the input channel on which the algorithm
operates

• – Tolerance parameter value

• Phase jump or phase discontinuity – difference between phase
values of two adjacent channel entries that exceeds . The
diagram in the next section indicates phase jumps with red arrows.

Steps to the Unwrap Method:

1 Set k to 0 (See “The Two Unwrap Modes” on page 10-1114 for more
on how often this step occurs.)

2 Check for a phase jump between adjacent channel elements ui and
ui+1:

• When there is no phase jump between ui and ui+1

, add to ui, and then repeat step 2 to
continue checking for phase jumps.

• When there is a phase jump between ui and ui+1 ,
add to ui, and then go to step 3 to update k.

3 Update k as follows when there is a phase jump between ui and
ui+1. Then go back to step 2 to add the updated value to ui+1
and succeeding channel elements until the next phase jump:

• When (phase jump is negative), increment k.

• When (phase jump is positive), decrement k.

Definition of Phase Unwrap

Algorithms that compute the phase of a signal often only output phases
between and . For instance, such algorithms compute the phase
of to be 3, since , and since the actual

10-1118

Unwrap

phase, , is not between and . Such algorithms compute the
phases of and to be 3 as well.

Phase unwrap or unwrap is a process often used to reconstruct a signal’s
original phase. Unwrap algorithms add appropriate multiples of to
each phase input to restore original phase values, as illustrated in the
following diagram. For more on phase unwrap, see the previous section,
“Unwrap Method” on page 10-1117.

10-1119

Unwrap

Dialog
Box

Do not unwrap phase discontinuities between successive frames
When this parameter is cleared, the block unwraps each input’s
channels (the input channels are the columns of frame-based
inputs and each element of sample-based inputs). When you select
this parameter, the block unwraps each row of sample-based
row vector inputs, and unwraps the columns of all other inputs,
where each input matrix or input vector is treated as completely
unrelated to the other input matrices or input vectors. 1-D vector

10-1120

Unwrap

inputs are always treated as frame-based column vectors. See
“The Two Unwrap Modes” on page 10-1114.

Tolerance
The jump size that the block recognizes as a true phase
discontinuity. The default is set to π (rather than a smaller value)
to avoid altering legitimate signal features. To increase the block’s
sensitivity, set Tolerance to a value slightly less than π.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

unwrap MATLAB

10-1121

Upsample

Purpose Resample input at higher rate by inserting zeros

Library Signal Operations

Description The Upsample block resamples each channel of the Mi-by-N input at
a rate L times higher than the input sample rate by inserting L-1
zeros between consecutive samples. You specify the integer L in the
Upsample factor parameter. The Sample offset parameter delays
the output samples by an integer number of sample periods D, where
0 ≤D < (L-1), so that any of the L possible output phases can be selected.

This block supports triggered subsystems if, for Frame-based mode,
you select Maintain input frame rate.

Sample-Based Operation

When the input is sample based, the block treats each of the M*N
matrix elements as an independent channel, and upsamples each
channel over time. The Frame-based mode parameter must be set
to Maintain input frame size. The output sample rate is L times
higher than the input sample rate (Tso = Tsi/L), and the input and output
sizes are identical.

Frame-Based Operation

When the input is frame based, the block treats each of the N input
columns as a frame containing Mi sequential time samples from an
independent channel. The block upsamples each channel independently
by inserting L-1 rows of zeros between each row in the input matrix.
The Frame-based mode parameter determines how the block adjusts
the rate at the output to accommodate the added rows. There are two
available options:

• Maintain input frame size

The block generates the output at the faster (upsampled) rate by
using a proportionally shorter frame period at the output port than
at the input port. For upsampling by a factor of L, the output frame
period is L times shorter than the input frame period (Tfo = Tfi/L), but
the input and output frame sizes are equal.

10-1122

Upsample

The model below shows a single-channel input with a frame period
of 1 second being upsampled by a factor of 4 to a frame period of
0.25 second. The input and output frame sizes are identical.

• Maintain input frame rate

The block generates the output at the faster (upsampled) rate
by using a proportionally larger frame size than the input. For
upsampling by a factor of L, the output frame size is L times larger
than the input frame size (Mo = Mi*L), but the input and output
frame rates are equal.

The model below shows a single-channel input of frame size 16 being
upsampled by a factor of 4 to a frame size of 64. The input and output
frame rates are identical.

Zero Latency

The Upsample block has zero tasking latency for all single-rate
operations. The block is single-rate for the particular combinations of
sampling mode and parameter settings shown in the table below.

10-1123

Upsample

Sampling Mode Parameter Settings

Sample based Upsample factor parameter, L,
is 1.

Frame based Upsample factor parameter, L,
is 1, or

Frame-based mode parameter
is Maintain input frame rate.

The block also has zero latency for all multirate operations in the
Simulink single-tasking mode.

Zero tasking latency means that the block propagates the first input
(received at t=0) immediately following the D consecutive zeros specified
by the Sample offset parameter. This output (D+1) is followed in
turn by the L-1 inserted zeros and the next input sample. The Initial
condition parameter value is not used.

Nonzero Latency

The Upsample block has tasking latency only for multirate operation in
the Simulink multitasking mode:

• In sample-based mode, the initial condition for each channel appears
as output sample D+1, and is followed by L-1 inserted zeros. The
channel’s first input appears as output sample D+L+1. The Initial
condition value can be an Mi-by-N matrix containing one value for
each channel, or a scalar to be applied to all signal channels.

• In frame-based mode, the first row of the initial condition matrix
appears as output sample D+1, and is followed by L-1 inserted
rows of zeros, the second row of the initial condition matrix, and so
on. The first row of the first input matrix appears in the output as
sample MiL+D+1. The Initial condition value can be an Mi-by-N
matrix, or a scalar to be repeated across all elements of the Mi-by-N
matrix. See the example below for an illustration of this case.

10-1124

Upsample

Note For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” on page
2-56 and “Models with Multiple Sample Rates” in the Real-Time
Workshop User’s Guide documentation.

Examples Construct the frame-based model shown below.

Adjust the block parameters as follows:

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents
an output frame period of 1 (0.25*4). The first channel should contain
the positive ramp signal 1, 2, ..., 100, and the second channel should
contain the negative ramp signal -1, -2, ..., -100.

- Signal = [(1:100)' (-1:-1:-100)']

- Sample time = 0.25

- Samples per frame = 4

• Configure the Upsample block to upsample the two-channel input by
increasing the output frame rate by a factor of 2 relative to the input
frame rate. Set a sample offset of 1, and an initial condition matrix of

10-1125

Upsample

- Upsample factor = 2

- Sample offset = 1

- Initial condition = [11 -11;12 -12;13 -13;14 -14]

- Frame-based mode = Maintain input frame size

• Configure the Probe blocks by clearing the Probe width and Probe
complex signal check boxes (if desired).

This model is multirate because there are at least two distinct frame
rates, as shown by the two Probe blocks. To run this model in the
Simulink multitasking mode, open the Configuration Parameters
dialog box. In the Select pane, click Solver. From the Type list,
select Fixed-step, and from the Solver list, select discrete (no
continuous states). From the Tasking mode for periodic sample
times list, select MultiTasking. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples
of each channel are shown below.

yout =

0 0
11 -11
0 0

12 -12
0 0

13 -13
0 0

14 -14
0 0
1 -1
0 0

10-1126

Upsample

2 -2
0 0
3 -3
0 0
4 -4
0 0
5 -5
0 0

Since we ran this frame-based multirate model in multitasking mode,
the first row of the initial condition matrix appears as output sample 2
(that is, sample D+1, where D is the Sample offset value). It is
followed by the other three initial condition rows, each separated by
L-1 inserted rows of zeros, where L is the Upsample factor value
of 2. The first row of the first input matrix appears in the output as
sample 10 (that is, sample MiL+D+1, where Mi is the input frame size).

Dialog
Box

Upsample factor
The integer factor, L, by which to increase the input sample rate.

10-1127

Upsample

Sample offset
The sample offset, D, which must be an integer in the
range [0,L-1].

Initial condition
The value with which the block is initialized for cases of nonzero
latency, a scalar or matrix. This value (first row in frame-based
mode) appears in the output as sample D+1.

Frame-based mode
For frame-based operation, the method by which to implement the
upsampling: Maintain input frame size (that is, increase the
frame rate), or Maintain input frame rate (that is, increase the
frame size). The Framing parameter must be set to Maintain
input frame size for sample-base inputs.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

10-1128

Upsample

Port Supported Data Types

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Downsample Signal Processing Blockset

FIR Interpolation Signal Processing Blockset

FIR Rate Conversion Signal Processing Blockset

Repeat Signal Processing Blockset

10-1129

Variable Fractional Delay

Purpose Delay input by time-varying fractional number of sample periods

Library Signal Operations

Description The Variable Fractional Delay block delays each channel of the Mi-by-N
input matrix, u, by a variable (possibly noninteger) number of sample
intervals.

The block computes the value for each channel of the output based on
the stored samples in memory most closely indexed by the Delay input,
v, and the interpolation method specified by the Mode parameter. In
Linear Interpolation mode, the block stores the D+1 most recent
samples received at the In port for each channel, where D is the
Maximum delay. In FIR Interpolation mode, the block stores the
D+P+1 most recent samples received at the In port for each channel,
where P is the Interpolation filter half-length.

See the Variable Integer Delay block for further discussion of how input
samples are stored in the block’s memory. The Variable Fractional Delay
block differs only in the way that these stored sample are accessed; a
fractional delay requires the computation of a value by interpolation
from the nearby samples in memory.

Sample-Based Operation

When the input is sample based, the block treats each of the Mi*N
matrix elements as an independent channel. The input to the Delay
port, v, can be an Mi-by-N matrix of floating-point values in the range
0≤ v ≤ D that specifies the number of sample intervals to delay each
channel of the input. It can also be a scalar floating-point value, 0≤ v ≤
D, by which to equally delay all channels.

A 1-D vector input is treated as an Mi-by-1 matrix, and the output is 1-D.

The Initial conditions parameter specifies the values in the block’s
memory at the start of the simulation in the same manner as the
Variable Integer Delay block. See the Variable Integer Delay block
reference page for more information.

10-1130

Variable Fractional Delay

Frame-Based Operation

When the input is frame based, the block treats each of the N input
columns as a frame containing Mi sequential time samples from an
independent channel.

The input to the Delay port, v, contains floating-point values in the
range 0≤ v ≤ D specifying the number of sample intervals to delay the
current input. The input to the Delay port can be

• A scalar value by which to equally delay all channels

• An Mi-by-N matrix containing the number of sample intervals to
delay each sample in each channel of the current input

• An Mi-by-1 matrix containing the number of sample intervals to
delay each sample in every channel of the current input

• A 1-by-N matrix containing the number of sample intervals to delay
every sample in each channel of the current input

For example, if v is the Mi-by-1 matrix [v(1) v(2) ... v(Mi)]',
the earliest sample in the current frame is delayed by v(1) fractional
sample intervals, the following sample in the frame is delayed by v(2)
fractional sample intervals, and so on. The set of fractional delays
contained in v is applied identically to every channel of a multichannel
input.

The Initial conditions parameter specifies the values in the block’s
memory at the start of the simulation in the same manner as the
Variable Integer Delay block. See the Variable Integer Delay block
reference page for more information.

Interpolation Modes

The delay value specified at the Delay port is used as an index into the
block’s memory, U, which stores the D+1 most recent samples received
at the In port for each channel. For example, an integer delay of 5 on
a scalar input sequence retrieves and outputs the fifth most recent
input sample from the block’s memory, U(6). Fractional delays are

10-1131

Variable Fractional Delay

computed by interpolating between stored samples; the two available
interpolation modes are described below.

Linear Interpolation Mode

For noninteger delays, at each sample time the Linear Interpolation
mode uses the two samples in memory nearest to the specified delay
to compute a value for the sample at that time. If v is the specified
fractional delay for a scalar input, the output sample, y, is computed
as follows.

vi = floor(v) % vi = integer delay
vf = v-vi % vf = fractional delay
y = (1-vf)*U(vi) + vf*U(vi+1)

Delay values less than 0 are clipped to 0, and delay values greater than
D are clipped to D, where D is the Maximum delay. Note that a delay
value of 0 causes the block to pass through the current input sample,
U(1), in the same simulation step that it is received.

FIR Interpolation Mode

In FIR Interpolation mode, the block computes a value for the
sample at the desired delay by applying an FIR filter of order 2P to
the stored samples on either side of the desired delay, where P is the
Interpolation filter half-length. For periodic signals, a larger value
of P (that is, a higher order filter) yields a better estimate of the sample
at the specified delay. A value between 4 and 6 for this parameter (that
is, a 7th to 11th order filter) is usually adequate.

A vector of 2P filter tap weights is precomputed at the start of the
simulation for each of Q-1 discrete points between input samples,
where you specify Q in the Interpolation points per input sample
parameter. For a delay corresponding to one of the Q interpolation
points, the unique filter computed for that interpolation point is applied
to obtain a value for the sample at the specified delay. For delay times
that fall between interpolation points, the value computed at the
nearest interpolation point is used. Since Q controls the number of
locations where a unique interpolation filter is designed, a larger value
results in a better estimate of the sample at a given delay.

10-1132

Variable Fractional Delay

Note that increasing the Interpolation filter half length (P)
increases the number of computations performed per input sample, as
well as the amount of memory needed to store the filter coefficients.
Increasing the Interpolation points per input sample (Q) increases
the simulation’s memory requirements but does not affect the
computational load per sample.

The Normalized input bandwidth parameter allows you to take
advantage of the bandlimited frequency content of the input. For
example, if you know that the input signal does not have frequency
content above Fs/4, you can specify a value of 0.5 for the Normalized
input bandwidth to constrain the frequency content of the output to
that range.

(Each of the Q interpolation filters can be considered to correspond to
one output phase of an "upsample-by-Q" FIR filter. In this view, the
Normalized input bandwidth value is used to improve the stopband
in critical regions, and to relax the stopband requirements in frequency
regions where there is no signal energy.)

For delay values less than P/2-1, the output is computed using linear
interpolation. Delay values greater than D are clipped to D, where D
is the Maximum delay.

The block uses the intfilt function in the Signal Processing Toolbox
to compute the FIR filters.

Note When the Variable Fractional Delay block is used in a feedback
loop, at least one block with nonzero delay (for example, a Delay block
with Delay > 0) should be included in the loop as well. This prevents
the occurrence of an algebraic loop when the delay of the Variable
Fractional Delay block is driven to zero.

Examples The dspafxf demo illustrates an audio flanger system built around the
Variable Fractional Delay block.

10-1133

Variable Fractional Delay

Dialog
Box

Mode
The method by which to interpolate between adjacent stored
samples to obtain a value for the sample indexed by the input
at the Delay port.

Maximum delay
The maximum delay that the block can produce, D. Delay input
values exceeding this maximum are clipped at the maximum.

Interpolation filter half-length
Half the number of input samples to use in the FIR interpolation
filter.

Interpolation points per input sample
The number of points per input sample, Q, at which a unique FIR
interpolation filter is computed.

10-1134

Variable Fractional Delay

Normalized input bandwidth
The bandwidth to which the interpolated output samples should
be constrained. A value of 1 specifies half the sample frequency.

Initial conditions
The values with which the block’s memory is initialized. See the
Variable Integer Delay block for more information.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Delay Signal Processing Blockset

Unit Delay Simulink

Variable Integer Delay Signal Processing Blockset

10-1135

Variable Integer Delay

Purpose Delay input by time-varying integer number of sample periods

Library Signal Operations

Description The Variable Integer Delay block delays the discrete-time input at the
In port by the integer number of sample intervals specified by the input
to the Delay port. The sample rate of the input signal at the Delay
port must be the same as the sample rate of the input signal at the In
port. When these sample rates are not the same, you need to insert a
Zero-Order Hold or Rate Transition block in order to make the sample
rates identical. The delay for a sample-based input sequence is a scalar
value to uniformly delay every channel. The delay for a frame-based
input sequence can be a scalar value to uniformly delay every sample in
every channel, a vector containing one delay value for each sample in
the input frame, or a vector containing one delay value for each channel
in the input frame.

The delay values should be in the range of 0 to D, where D is the
Maximum delay. Delay values greater than D or less than 0 are
clipped to those respective values and noninteger delays are rounded to
the nearest integer value.

The Variable Integer Delay block differs from the Delay block in the
following ways.

Variable Integer Delay Block Delay Block

The delay is provided as an input
to the Delay port.

You specify the delay as a
parameter setting in the dialog
box.

Delay can vary with time; for
example, for a frame-based input,
the nth element’s delay in the
first input frame can differ from
the nth element’s delay in the
second input frame.

Delay cannot vary with time; for
example, for a frame-based input,
the nth element’s delay is the
same for every input frame.

10-1136

Variable Integer Delay

Sample-Based Operation

When the input is an M-by-N sample-based matrix, the block treats
each of the M*N matrix elements as an independent channel, and
applies the delay at the Delay port to each channel.

The Variable Integer Delay block stores the D+1 most recent samples
received at the In port for each channel. At each sample time the block
outputs the stored sample(s) indexed by the input to the Delay port.

For example, when the input to the In port, u, is a scalar signal, the
block stores a vector, U, of the D+1 most recent signal samples. When
the current input sample is U(1), the previous input sample is U(2),
and so on, then the block’s output is

y = U(v+1); % Equivalent MATLAB code

where v is the input to the Delay port. Note that a delay value of 0 (v=0)
causes the block to pass through the sample at the In port in the same
simulation step that it is received. The block’s memory is initialized to
the Initial conditions value at the start of the simulation (see below).

The figure below shows the block output for a scalar ramp sequence at
the In port, a Maximum delay of 5, an Initial conditions of 0, and a
variety of different delays at the Delay port.

10-1137

Variable Integer Delay

Note that the current input at each time-step is immediately stored in
memory as U(1). This allows the current input to be available at the
output for a delay of 0 (v=0).

The Initial conditions parameter specifies the values in the block’s
memory at the start of the simulation. Unlike the Delay block, the
Variable Integer Delay block does not have a fixed initial delay period
during which the initial conditions appear at the output. Instead, the
initial conditions are propagated to the output only when they are
indexed in memory by the value at the Delay port. Both fixed and
time-varying initial conditions can be specified in a variety of ways to
suit the dimensions of the input sequence.

Fixed Initial Conditions

The settings shown below specify fixed initial conditions. For a fixed
initial condition, the block initializes each of D samples in memory to
the value entered in the Initial conditions parameter. A fixed initial
condition in sample-based mode can be specified in one of the following
ways:

10-1138

Variable Integer Delay

• Scalar value with which to initialize every sample of every channel
in memory. For a general M-by-N input and the parameter settings
below,

the block initializes 100 M-by-N matrices in memory with zeros.

• Array of size M-by-N-by-D. In this case, you can specify different
fixed initial conditions for each channel. See the Array bullet in
“Time-Varying Initial Conditions” on page 10-1139 below for details.

Initial conditions cannot be specified by full matrices.

Time-Varying Initial Conditions

The following settings specify time-varying initial conditions. For a
time-varying initial condition, the block initializes each of D samples
in memory to one of the values entered in the Initial conditions
parameter. This allows you to specify a unique output value for each
sample in memory. A time-varying initial condition in sample-based
mode can be specified in one of the following ways:

• Vector containing D elements with which to initialize memory
samples U(2:D+1), where D is the Maximum delay. For a scalar
input and the parameters shown below, the block initializes U(2:6)
with values [-1, -1, -1, 0, 1].

• Array of dimension M-by-N-by-D with which to initialize memory
samples U(2:D+1), where D is the Maximum delay and M and
N are the number of rows and columns, respectively, in the input

10-1139

Variable Integer Delay

matrix. For a 2-by-3 input and the parameters below, the block
initializes memory locations U(2:5) with values

An array initial condition can only be used with matrix inputs.

Initial conditions cannot be specified by full matrices.

Frame-Based Operation

When the input is an M-by-N frame-based matrix, the block treats each
of the N input columns as a frame containing Msequential time samples
from an independent channel.

In frame-based mode, the input at the Delay port can be a scalar
value to uniformly delay every sample in every channel. It can also be
a length- vector, v = [v(1) v(2) ... v(M)], containing one delay
for each sample in the input frame(s). The set of delays contained in
vector v is applied identically to every channel of a multichannel input.
The Delay port entry can also be a length- vector, containing one delay
for each channel.

Vector v does not specify when the samples in the current input frame
will appear in the output. Rather, v indicates which previous input
samples (stored in memory) should be included in the current output
frame. The first sample in the current output frame is the input sample
v(1) intervals earlier in the sequence, the second sample in the current
output frame is the input sample v(2) intervals earlier in the sequence,
and so on.

The illustration below shows how this works for an input with a sample
period of 1 and frame size of 4. The Maximum delay (Dmax) is 5, and

10-1140

Variable Integer Delay

the Initial conditions parameter is set to -1. The delay input changes
from [1 3 0 5] to [2 0 0 2] after the second input frame. Note that
the samples in each output frame are the values in memory indexed
by the elements of v.

y(1) = U(v(1)+1)
y(2) = U(v(2)+1)
y(3) = U(v(3)+1)
y(4) = U(v(4)+1)

The Initial conditions parameter specifies the values in the block’s
memory at the start of the simulation. Both fixed and time-varying
initial conditions can be specified.

10-1141

Variable Integer Delay

Fixed Initial Conditions

The settings shown below specify fixed initial conditions. For a fixed
initial condition, the block initializes each of D samples in memory to
the value entered in the Initial conditions parameter. A fixed initial
condition in frame-based mode can be one of the following:

• Scalar value with which to initialize every sample of every channel
in memory. For a general M-by-N input with the parameter settings
below, the block initializes five samples in memory with zeros.

• Array of size 1-by-N-by-D. In this case, you can specify different
fixed initial conditions for each channel. See the Array bullet in
“Time-Varying Initial Conditions” on page 10-1142 below for details.

Initial conditions cannot be specified by full matrices.

Time-Varying Initial Conditions

The following setting specifies a time-varying initial condition. For a
time-varying initial condition, the block initializes each of D samples
in memory to one of the values entered in the Initial conditions
parameter. This allows you to specify a unique output value for each
sample in memory. A time-varying initial condition in frame-based
mode can be specified in the following ways:

• Vector of dimensions 1-by-D. In this case, all channels have the same
set of time-varying initial conditions specified by the entries of the
vector. For the ramp input [100; 100]' with a frame size of 4,
delay of 5, and the parameter settings below, the block outputs the
following sequence of frames at the start of the simulation.

10-1142

Variable Integer Delay

• Array of size 1-by-N-by-D. In this case, you can specify different
time-varying initial conditions for each channel. For the ramp input
[100; 100]' with a frame size of 4, delay of 5, and the parameter
settings below, the block outputs the following sequence of frames at
the start of the simulation.

Note that by specifying a 1-by-N-by-D initial condition array such
that each 1-by-N vector entry is identical, you can implement
different fixed initial conditions for each channel.

Initial conditions cannot be specified by full matrices.

10-1143

Variable Integer Delay

Dialog
Box

Maximum delay
The maximum delay that the block can produce for any sample.
Delay input values exceeding this maximum are clipped at the
maximum.

Initial conditions
The values with which the block’s memory is initialized.

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

10-1144

Variable Integer Delay

Port Supported Data Types

Delay • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Delay Signal Processing Blockset

Variable Fractional Delay Signal Processing Blockset

10-1145

Variable Selector

Purpose Select subset of rows or columns from input

Library Signal Management / Indexing

Description The Variable Selector block extracts a subset of rows or columns from
the M-by-N input matrix u at each input port. You specify the number
of input and output ports in the Number of input signals parameter.

When the Select parameter is set to Rows, the Variable Selector block
extracts rows from each input matrix, while if the Select parameter
is set to Columns, the block extracts columns.

When the Selector mode parameter is set to Variable, the length-L
vector input to the Idx port selects L rows or columns of each input to
pass through to the output. The elements of the indexing vector can be
updated at each sample time, but the vector length must remain the
same throughout the simulation.

When the Selector mode parameter is set to Fixed, the Idx port is
disabled, and the length-L vector specified in the Elements parameter
selects L rows or columns of each input to pass through to the output.
The Elements parameter is tunable, so you can change the values
of the indexing vector elements at any time during the simulation;
however, the vector length must remain the same.

For both variable and fixed indexing modes, the row selection operation
is equivalent to

y = u(idx,:) % Equivalent MATLAB code

and the column selection operation is equivalent to

y = u(:,idx) % Equivalent MATLAB code

where idx is the length-L indexing vector. The row selection output size
is L-by-N and the column selection output size is M-by-L. Input rows or
columns can appear any number of times in the output, or not at all.

10-1146

Variable Selector

When the input is a 1-D vector, the Select parameter is ignored; the
output is a 1-D vector of length L containing those elements specified
by the length-L indexing vector.

When an element of the indexing vector references a nonexistent row or
column of the input, the block reacts with the behavior specified by the
Invalid index parameter. The following options are available:

• Clip index — Clip the index to the nearest valid value, and do
not issue an alert. Example: For a 64-by-N input, an index of 72 is
clipped to 64; an index of -2 is clipped to 1.

• Clip and warn — Display a warning message in the MATLAB
Command Window, and clip as above.

• Generate error — Display an error dialog box and terminate the
simulation.

When the indexing vector elements are of Boolean data type, the block
performs logical indexing. Select Fill empty spaces in outputs (for
logical indexing) to access the Fill values parameter. These values
are appended to the output to make it as long as the input elements.

Note The Variable Selector block always copies the selected input rows
to a contiguous block of memory (unlike the Simulink Selector block).

10-1147

Variable Selector

Dialog
Box

Number of input signals
Specify the number of input signals. An input port is created on
the block for each input signal.

Select
The dimension of the input to select, Rows or Columns.

Selector mode
The type of indexing operation to perform, Variable or Fixed.
Variable indexing uses the input at the Idx port to select rows or
columns from the input at the In port. Fixed indexing uses the
Elements parameter value to select rows from the input at the In
port, and disables the Idx port.

10-1148

Variable Selector

Elements
A vector containing the indices of the input rows or columns that
will appear in the output matrix. This parameter is only visible
when you select Fixed for the Selector mode parameter.

Index mode
When set to One-based, an index value of 1 refers to the first row
or column of the input. When set to Zero-based, an index value of
0 refers to the first row or column of the input.

Invalid index
Response to an invalid index value. Tunable.

Fill empty spaces in outputs (for logical indexing)
When the indexing vector elements are of Boolean data type, the
block performs logical indexing. This can cause empty spaces
in the output. Select this parameter to designate values to be
appended to the output in the Fill values parameter.

Fill values
Specify the fill values when the block performs logical indexing.
This parameter is only visible when the Fill empty spaces in
outputs (for logical indexing) parameter is selected.

Supported
Data
Types

Port Supported Data Types

In • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

10-1149

Variable Selector

Port Supported Data Types

Idx • Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Multiport Selector Signal Processing Blockset

Permute Matrix Signal Processing Blockset

Selector Simulink

Submatrix Signal Processing Blockset

10-1150

Variance

Purpose Compute variance of an input or sequence of inputs

Library Statistics

Description The Variance block computes the variance of each column in the input,
or tracks the variance of a sequence of inputs over a period of time. The
Running variance parameter selects between basic operation and
running operation.

Basic Operation

When you do not select the Running variance check box, the block
computes the variance of each column in M-by-N input matrix u
independently at each sample time.

y = var(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.
(A scalar input generates a zero-valued output.)

Running Operation

When you select the Running variance check box, the block tracks
the variance of each channel in a time-sequence of M-by-N inputs. For
sample-based inputs, the output is a sample-based M-by-N matrix with
each element yij containing the variance of element uij over all inputs
since the last reset. For frame-based inputs, the output is a frame-based
M-by-N matrix with each element yij containing the variance of the jth
column over all inputs since the last reset, up to and including element
uij of the current input.

As in basic operation, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Variance

The block resets the running variance whenever a reset event is
detected at the optional Rst port. The reset signal rate must be a
positive integer multiple of the rate of the data signal input.

10-1151

Variance

You specify the reset event in the Reset port parameter:

• None disables the Rst port.

• Rising edge — Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or zero

- Rises from zero to a positive value, where the rise is not a
continuation of a rise from a negative value to zero (see the
following figure)

• Falling edge — Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or zero

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to zero (see the following
figure)

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time
that the Rst input is not zero

10-1152

Variance

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when the
block detects a reset event, there is a one-sample delay at the reset
port rate before the block applies the reset. For more information on
latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” on page 2-56 and the topic on models with
multiple sample rates in the Real-Time Workshop documentation.

Fixed-Point Data Types

The output at each sample time,y, is a 1-by-N vector containing the
variance for each column inu. For purely real or purely imaginary
inputs, the variance of the jth column is the square of the standard
deviation:

y

u

u

M

M
j Nj j

ij

ij
i

M

i

M

= =
−

−
≤ ≤

=

=

∑
∑

σ 2

2 1

2

1
1

1,

For complex inputs, the output is the total variance for each column in
u, which is the sum of the real and imaginary variances for that column:

The following diagram shows the data types used within the Variance
block for fixed-point signals.

10-1153

Variance

The results of the magnitude squared calculations above are in the
product output data type. You can set the accumulator, product output,
and output data types in the block dialog as discussed in “Dialog Box”
on page 10-1157.

Examples The Variance block in the model below calculates the running variance
of a frame-based 3-by-2 (two-channel) matrix input, u. The running
variance is reset at t=2 by an impulse to the block’s Rst port.

The Variance block has the following settings:

10-1154

Variance

• Running variance =

• Reset port = Non-zero sample

The Signal From Workspace block has the following settings

• Signal = u

• Sample time = 1/3

• Samples per frame = 3

where

u = [6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'

The Discrete Impulse block has the following settings:

• Delay (samples) = 2

• Sample time = 1

• Samples per frame = 1

The block’s operation is shown in the figure below.

10-1155

Variance

The statsdem demo illustrates the operation of several blocks from
the Statistics library.

10-1156

Variance

Dialog
Box

The Main pane of the Variance block dialog appears as follows:

Running variance
Enables running operation when selected.

Reset port
Determines the reset event that causes the block to reset the
running variance. The reset signal rate must be a positive integer
multiple of the rate of the data signal input. This parameter is
enabled only when you select the Running variance check box.
For more information, see “Resetting the Running Variance” on
page 10-1151.

The Fixed-point pane of the Variance block dialog appears as follows:

10-1157

Variance

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Note Refer to “Fixed-Point Data Types” on page 10-1153 for more
information on how the product output, accumulator, and output
data types are used in this block.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths:

• When you select Same as input, these characteristics will
match those of the input to the block.

10-1158

Variance

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block:

• When you select Same as product output, these
characteristics will match those of the product output

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the accumulator,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the accumulator.
This block requires power-of-two slope and a bias of zero.

Output
Choose how you will specify the output word length and fraction
length:

• When you select Same as accumulator, these characteristics
will match those of the accumulator.

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

10-1159

Variance

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• Boolean — The block accepts Boolean inputs to the Rst port.

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Mean Signal Processing Blockset

RMS Signal Processing Blockset

Standard Deviation Signal Processing Blockset

var MATLAB

10-1160

Vector Quantizer Decoder

Purpose Find vector quantizer codeword that corresponds to a given, zero-based
index value

Library Quantizers

Description The Vector Quantizer Decoder block associates each input index value
with a codeword, a column vector of quantized output values defined
in the Codebook values parameter. When you input multiple index
values into this block, the block outputs a matrix of quantized output
vectors. This matrix is created by horizontally concatenating the
codeword vectors that correspond to each index value.

You can select how you want to enter the codebook values using the
Source of codebook parameter. When you select Specify via
dialog, you can type the codebook values into the block parameters
dialog box. Select Input port and port C appears on the block. The
block uses the input to port C as the Codebook values parameter.

The Codebook values parameter is a k-by-N matrix of values, where
and . Each column of this matrix is a codeword vector, and

each codeword vector corresponds to an index value. The index values
are zero based; therefore, the first codeword vector corresponds to an
index value of 0, the second codeword vector corresponds to an index
value of 1, and so on.

The input to this block is a vector of index values, where
and N is the number of columns of the codebook matrix. Use the Action
for out of range index value parameter to determine how the block
behaves when an input index value is out of this range. When you want
any index values less than 0 to be set to 0 and any index values greater
than or equal to N to be set to N-1, select Clip. When you want to be
warned when any index values less than 0 are set to 0 and any index
values greater than or equal to N are set to N-1, select Clip and warn.
When you want the simulation to stop and display an error when the
index values are out of range, select Error.

10-1161

Vector Quantizer Decoder

Data Type Support

The input to the block can be the index values and the codebook values.
The data type of the index input to the block at port I can be uint8,
uint16, uint32, int8, int16, or int32. The data type of the codebook
values can be double, single, or Fixed-point.

The output of the block is the quantized output values. These quantized
output values always have the same data type as the codebook values.
When the codebook values are specified via an input port, the block
assigns the same data type to the Q(U) output port. When the codebook
values are specified via the dialog, use the Codebook and output
data type parameter to specify the data type of the Q(U) output port.
The data type of the codebook and quantized output can be Same as
input, double, single, Fixed-point, or User-defined.

Dialog
Box

Source of codebook
Choose Specify via dialog to type the codebook values into the
block parameters dialog box. Select Input port to specify the
codebook values using the block’s input port, C.

10-1162

Vector Quantizer Decoder

Action for out of range index value
Choose the behavior of the block when an input index value is out
of range, where and N is the length of the codebook
vector. Select Clip when you want any index values less than 0 to
be set to 0 and any index values greater than or equal to N to be
set to N-1. Select Clip and warn when you want to be warned
when any index values less than 0 are set to 0 and any index
values greater than or equal to N are set to N-1. Select Error
when you want the simulation to stop and display an error when
the index values are out of range.

Codebook values
Enter a k-by-N matrix of quantized output values, where and

. Each column of your matrix corresponds to an index value.
This parameter is visible if, from the Source of codebook list,
you select Specify via dialog.

Codebook and output data type
Use this parameter to specify the data type of the codebook and
quantized output values. The data type can be Same as input,
double, single, Fixed-point, or User-defined. This parameter
becomes visible when you select Specify via dialog for the
Source of codebook parameter. Nontunable.

10-1163

Vector Quantizer Decoder

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is only visible if, from the
Codebook and output data type list, you select Fixed-point.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible if, from the Codebook and
output data type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

10-1164

Vector Quantizer Decoder

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible if, from the Codebook and output
data type list, you select Fixed-point or when you select
User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is only
visible when you select Fixed-point or User-defined for the
Codebook and output data type parameter and User-defined
for the Set fraction length in output to parameter.

10-1165

Vector Quantizer Decoder

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Codebook
and output data type parameter.

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

10-1166

Vector Quantizer Decoder

Supported
Data
Types

Port Supported Data Types

I • 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

C • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

Q(U) • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

Scalar Quantizer Design Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

Vector Quantizer Encoder Signal Processing Blockset

10-1167

Vector Quantizer Design

Purpose Design vector quantizer using Vector Quantizer Design Tool (VQDTool)

Library Quantizers

Description Double-click on the Vector Quantizer Design block to start VQDTool, a
GUI that allows you to design and implement a vector quantizer. You
can also start VQDTool by typing vqdtool at the MATLAB command
prompt. Based on your specifications, VQDTool iteratively calculates
the codebook values that minimize the mean squared error between the
training set and the codebook until the stopping criteria for the design
process is satisfied. The block uses the resulting codebook values to
implement your vector quantizer.

For the Training Set parameter, enter a k-by-M matrix of values you
want to use to train the quantizer codebook. The variable k, where
k ≤ 1 , is the length of each training vector. It also represents the
dimension of your quantizer. The variable M, where M ≤ 2 , is the
number of training vectors. This data can be created using a MATLAB
function, such as the default value randn(10,1000), or it can be any
variable defined in the MATLAB workspace.

You have two choices for the Source of initial codebook parameter.
Select Auto-generate to have the block choose the values of the initial
codebook. In this case, the block picks N random training vectors as
the initial codebook, where N is the Number of levels parameter and
N ≥ 2 . When you select User defined, enter the initial codebook
values in the Initial codebook field. The initial codebook matrix
must have the same number of rows as the training set. Each column
of the codebook is a codeword, and your codebook must have at least
two codewords.

For the given training set and initial codebook, the block performs an
iterative process, using the Generalized Lloyd Algorithm (GLA), to
design a final codebook. For each iteration of the GLA, the block first
associates each training vector with its nearest codeword by calculating
the distortion. You can specify one of the two possible methods for
calculating distortion using the Distortion measure parameter.

10-1168

Vector Quantizer Design

When you select Squared error for the Distortion measure
parameter, the block finds the nearest codeword by calculating
the squared error (unweighted). Consider the codebook

CB CW CW CWN= []1 2 This codebook has N codewords;
each codeword has k elements. The i-th codeword is defined as

CW a a ai i i ki= []1 2 The training set has M columns and is

defined as U U U UM= []1 2 ... , where the p-th training vector

is U u u up p p kp= ⎡⎣ ⎤⎦
′

1 2 The squared error (unweighted) is
calculated using the equation

D a uji jp
j

k
= −()

=
∑ 2

1

When you select Weighted squared error for the Distortion
measure parameter, enter a vector or matrix for the Weighting factor
parameter. When the weighting factor is a vector, its length must be
equal to the number of rows in the training set. This weighting factor is
used for each training vector. When the weighting factor is a matrix,
it must be the same size as the training set matrix. The block finds
the nearest codeword by calculating the weighted squared error. If

the weighting factor for the p-th column of the training vector, U p ,

is defined as Wp w w wp p kp= ⎡⎣ ⎤⎦
′

1 2 ... , then the weighted squared
error is defined by the equation

D w a ujp ji jp
j

k
= −()

=
∑ 2

1

Once the block has associated all the training vectors with their nearest
codeword vectors, the block calculates the mean squared error for the
codebook and checks to see if the stopping criteria for the process has
been satisfied.

10-1169

Vector Quantizer Design

The two possible options for the Stopping criteria parameter are
Relative threshold and Maximum iteration. When you want the
design process to stop when the fractional drop in the squared error
is below a certain value, select Relative threshold. Then, type the
maximum acceptable fractional drop in the Relative threshold field.
The fraction drop in the squared error is defined as

error at previous iteration error at current iteration
er

−
rror at previous iteration

When you want the design process to stop after a certain number of
iterations, choose Maximum iteration. Then, enter the maximum
number of iterations you want the block to perform in the Maximum
iteration field. For Stopping criteria, you can also choose Whichever
comes first and enter Relative threshold and Maximum iteration
values. The block stops iterating as soon as one of these conditions
is satisfied.

When a training vector has the same distortion for two different
codeword vectors, the algorithm uses the Tie-breaking rule parameter
to determine which codeword vector the training vector is associated
with. When you want the training vector to be associated with the
lower indexed codeword, select Lower indexed codeword. To associate
the training vector with the higher indexed codeword, select Higher
indexed codeword.

With each iteration, the block updates the codeword values in order to
minimize the distortion. The Codebook update method parameter
defines the way the block calculates these new codebook values.

Note If, for the Distortion measure parameter, you choose Squared
error, the Codebook update method parameter is set to Mean.

If, for the Distortion measure parameter, you choose Weighted
squared error and you choose Mean for the Codebook update
method parameter, the new codeword vector is found as follows.

10-1170

Vector Quantizer Design

Suppose there are three training vectors associated with one codeword

vector. The training vectors are TS1
1
2

=
⎡

⎣
⎢

⎤

⎦
⎥ , TS3

10
12

=
⎡

⎣
⎢

⎤

⎦
⎥ , and TS7

11
12

=
⎡

⎣
⎢

⎤

⎦
⎥ .

The new codeword vector is calculated as

CWnew =

+ +

+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 10 11
3

2 12 12
3

where the denominator is the number of training vectors associated
with this codeword. If, for the Codebook update method parameter,

you choose Centroid and you specify the weighting factors W1
0 1
0 2

=
⎡

⎣
⎢

⎤

⎦
⎥

.

.
,

W3
1

0 6
=

⎡

⎣
⎢

⎤

⎦
⎥.

, and W7
0 3
0 4

=
⎡

⎣
⎢

⎤

⎦
⎥

.

.
, the new codeword vector is calculated as

CWnew =

()() + ()() + ()()
+ +

()() + ()(

0 1 1 1 10 0 3 11
0 1 1 0 3

0 2 2 0 6 12

. .
. .

. .)) + ()()
+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 4 12
0 2 0 6 0 4

.
. . .

Click Design and Plot to design the quantizer with the parameter
values specified on the left side of the GUI. The performance curve and
the entropy of the quantizer are updated and displayed in the figures on
the right side of the GUI.

Note You must click Design and Plot to apply any changes you make
to the parameter values in the VQDTool dialog box.

The following is an example of how the block calculates the entropy of
the quantizer at each iteration. Suppose you have a codebook with four

10-1171

Vector Quantizer Design

codewords and a training set with 200 training vectors. Also suppose
that, at the i-th iteration, 40 training vectors are associated with the
first codeword, 60 training vectors are associated with the second
codeword, 20 training vectors are associated with the third codeword,
and 80 training vectors are associated with the fourth codeword. The
probability that a training vector is associated with the first codeword is

40
200

. The probabilities that training vectors are associated with the

second, third, and fourth codewords are
60
200

,
20

200
, and

80
200

,

respectively. The GUI uses these probabilities to calculate the
entropy according to the equation

H p pi i
i

N
= −

=
∑ log2

1

where N is the number of codewords. Based on these probabilities, the
GUI calculates the entropy of the quantizer at the i-th iteration as

H = − + + +40
200

40
200

60
200

60
200

20
200

20
200

80
200

8
2 2 2 2log log log log

00
200

1 8464⎛
⎝⎜

⎞
⎠⎟

= .

VQDTool can export parameter values that correspond to the figures
displayed in the GUI. Click the Export Outputs button, or press
Ctrl+E, to export the Final Codebook, Mean Square Error, and
Entropy values to the workspace, a text file, or a MAT-file.

In the Model section of the GUI, specify the destination of the block
that will contain the parameters of your quantizer. For Destination,
select Current model to create a block with your parameters in the
model you most recently selected. Type gcs in the MATLAB Command
Window to display the name of your current model. Select New model to
create a block in a new model file.

10-1172

Vector Quantizer Design

From the Block type list, select Encoder to design a Vector Quantizer
Encoder block. Select Decoder to design a Vector Quantizer Decoder
block. Select Both to design a Vector Quantizer Encoder block and a
Vector Quantizer Decoder block.

In the Encoder block name field, enter a name for the Vector
Quantizer Encoder block. In the Decoder block name field, enter a
name for the Vector Quantizer Decoder block. When you have a Vector
Quantizer Encoder and/or Decoder block in your destination model
with the same name, select the Overwrite target block check box to
replace the block’s parameters with the current parameters. When you
do not select this check box, a new Vector Quantizer Encoder and/or
Decoder block is created in your destination model.

Click Generate Model. VQDTool uses the parameters that correspond
to the current plots to set the parameters of the Vector Quantizer
Encoder and/or Decoder blocks.

10-1173

Vector Quantizer Design

Dialog
Box

10-1174

Vector Quantizer Design

Training Set
Enter the samples of the signal you would like to quantize. This
data set can be a MATLAB function or a variable defined in the
MATLAB workspace. The typical length of this data vector is 1e5.

Source of initial codebook
Select Auto-generate to have the block choose the initial
codebook values. Choose User defined to enter your own initial
codebook values.

Number of levels
Enter the number of codeword vectors, N, in your codebook
matrix, where .

Initial codebook
Enter your initial codebook values. From the Source of initial
codebook list, select User defined in order to activate this
parameter. The codebook must have the same number of rows as
the training set. You must provide at least two codeword vectors.

Distortion measure
When you select Squared error, the block finds the nearest
codeword by calculating the squared error (unweighted). When
you select Weighted squared error, the block finds the nearest
codeword by calculating the weighted squared error.

Weighting factor
Enter a vector or matrix. The block uses these values to compute
the weighted squared error. When the weighting factor is a vector,
its length must be equal to the number of rows in the training
set. This weighting factor is used for each training vector. When
the weighting factor is a matrix, it must be the same size as the
training set matrix. The individual weighting factors cannot be
negative. The weighting factor vector or matrix cannot contain
all zeros.

Stopping criteria
Choose Relative threshold to enter the maximum acceptable
fractional drop in the squared quantization error. Choose Maximum
iteration to specify the number of iterations at which to stop.

10-1175

Vector Quantizer Design

Choose Whichever comes first and the block stops the iteration
process as soon as the relative threshold or maximum iteration
value is attained.

Relative threshold
This parameter is available when you choose Relative
threshold or Whichever comes first for the Stopping
criteria parameter. Enter the value that is the maximum
acceptable fractional drop in the squared quantization error.

Maximum iteration
This parameter is available when you choose Maximum iteration
or Whichever comes first for the Stopping criteria
parameter. Enter the maximum number of iterations you want
the block to perform.

Tie-breaking rules
When a training vector has the same distortion for two different
codeword vectors, select Lower indexed codeword to associate
the training vector with the lower indexed codeword. Select
Higher indexed codeword to associate the training vector with
the lower indexed codeword.

Codebook update method
When you choose Mean, the new codeword vector is calculated
by taking the average of all the training vector values that were
associated with the original codeword vector. When you choose
Centroid, the block calculates the new codeword vector by taking
the weighted average of all the training vector values that were
associated with the original codeword vector Note that if, for the
Distortion measure parameter, you choose Squared error, the
Codebook update method parameter is set to Mean.

Destination
Choose Current model to create a Vector Quantizer block in the
model you most recently selected. Type gcs in the MATLAB
Command Window to display the name of your current model.
Choose New model to create a block in a new model file.

10-1176

Vector Quantizer Design

Block type
Select Encoder to design a Vector Quantizer Encoder block. Select
Decoder to design a Vector Quantizer Decoder block. Select
Both to design a Vector Quantizer Encoder block and a Vector
Quantizer Decoder block.

Encoder block name
Enter a name for the Vector Quantizer Encoder block.

Decoder block name
Enter a name for the Vector Quantizer Decoder block.

Overwrite target block
When you do not select this check box and a Vector Quantizer
Encoder and/or Decoder block with the same block name exists
in the destination model, a new Vector Quantizer Encoder and/or
Decoder block is created in the destination model. When you
select this check box and a Vector Quantizer Encoder and/or
Decoder block with the same block name exists in the destination
model, the parameters of these blocks are overwritten by new
parameters.

Generate Model
Click this button and VQDTool uses the parameters that
correspond to the current plots to set the parameters of the Vector
Quantizer Encoder and/or Decoder blocks.

Design and Plot
Click this button to design a quantizer using the parameters on
the left side of the GUI and to update the performance curve and
entropy plots on the right side of the GUI.

You must click Design and Plot to apply any changes you make
to the parameter values in the VQDTool GUI.

Export Outputs
Click this button, or press Ctrl+E, to export the Final Codebook,
Mean Squared Error, and Entropy values to the workspace, a
text file, or a MAT-file.

10-1177

Vector Quantizer Design

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

Supported
Data
Types

• Double-precision floating point

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

Scalar Quantizer Design Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

Vector Quantizer Decoder Signal Processing Blockset

Vector Quantizer Encoder Signal Processing Blockset

10-1178

Vector Quantizer Encoder

Purpose For a given input, find index of nearest codeword based on Euclidean or
weighted Euclidean distance measure

Library Quantizers

Description The Vector Quantizer Encoder block compares each input column vector
to the codeword vectors in the codebook matrix. Each column of this
codebook matrix is a codeword. The block finds the codeword vector
nearest to the input column vector and returns its zero-based index.
This block supports real floating-point and fixed-point signals on all
input ports.

The block finds the nearest codeword by calculating the distortion. The
block uses two methods for calculating distortion: Euclidean squared
error (unweighted) and weighted Euclidean squared error. Consider

the codebook, CB CW CW CWN= []1 2 This codebook has N
codewords; each codeword has k elements. The i-th codeword is defined

as a column vector, CW a a ai i i ki= []1 2 The multichannel input

has M columns and is defined as U U U UM= []1 2 ... , where the p-th

input column vector is U u u up p p kp= ⎡⎣ ⎤⎦
′

1 2 The squared error
(unweighted) is calculated using the equation

D a uji jp
j

k
= −()

=
∑ 2

1

The weighted squared error is calculated using the equation

D w a uj ji jp
j

k
= −()

=
∑ 2

1

where the weighting factor is defined as W w w wk= []1 2 The
index of the codeword that is associated with the minimum distortion is
assigned to the input column vector.

10-1179

Vector Quantizer Encoder

You can select how you want to enter the codebook values using the
Source of codebook parameter. When you select Specify via
dialog, you can type the codebook values into the block parameters
dialog box. Select Input port and port C appears on the block. The
block uses the input to port C as the Codebook parameter.

The Codebook parameter is an k-by-N matrix of values, where
and . Each input column vector is compared to this codebook.
Each column of the codebook matrix is a codeword, and each codeword
has an index value. The first codeword vector corresponds to an index
value of 0, the second codeword vector corresponds to an index value
of 1, and so on. The codeword vectors must have the same number of
rows as the input, U.

For the Distortion measure parameter, select Squared error when
you want the block to calculate the distortion by evaluating the
Euclidean distance between the input column vector and each codeword
in the codebook. Select Weighted squared error when you want to use
a weighting factor to emphasize or deemphasize certain input values.

For the Source of weighting factor parameter, select Specify via
dialog to enter a weighting factor vector in the dialog box. Choose
Input port to specify the weighting factor using port W.

Use the Weighting factor parameter to emphasize or deemphasize
certain input values when calculating the distortion measure. For
example, consider the p-th input column vector, , as previously
defined. When you want to neglect the effect of the first element of this
vector, enter [0 1 1 ... 1] as the Weighting factor parameter.
This weighting factor is used to calculate the weighted squared error
using the equation

D w a uj ji jp
j

k
= −()

=
∑ 2

1

Because of the weighting factor used in this example, the weighted
squared error is not affected by the first element of the input matrix.

10-1180

Vector Quantizer Encoder

Therefore, the first element of the input column vector no longer impacts
the choice of index value output by the Vector Quantizer Encoder block.

Use the Index output data type parameter to specify the data type of
the index values output at port I. The data type of the index values can
be int8, uint8, int16, uint16, int32, or uint32.

When an input vector is equidistant from two codewords, the block uses
the Tie-breaking rule parameter to determine which index value the
block chooses. When you want the input vector to be represented by
the lower index valued codeword, select Choose the lower index. To
represent the input column vector by the higher index valued codeword,
select Choose the higher index.

Select the Output codeword check box to output at port Q(U) the
codeword vectors that correspond to each index value. When the
input is a matrix, the corresponding codeword vectors are horizontally
concatenated into a matrix.

Select the Output quantization error check box to output at port D
the quantization error that results when the block represents the input
column vector by its nearest codeword. When the input is a matrix, the
quantization error values are horizontally concatenated.

The Vector Quantizer Encoder block accepts real floating-point and
fixed-point inputs. For more information on the data types accepted
by each port, see “Data Type Support” on page 10-1181 or “Supported
Data Types” on page 10-1188.

Data Type Support

The input data values, codebook values, and weighting factor values are
input to the block at ports U, C, and W, respectively. The data type of
the input data values, codebook values, and weighting factor values can
be double, single, or Fixed-point. The input data, codebook values,
and weighting factor must be the same data type.

The outputs of the block are the index values, output codewords, and
quantization error. Use the Index output data type parameter to
specify the data type of the index output from the block at port I. The
data type of the index can be int8, uint8, int16, uint16, int32, or

10-1181

Vector Quantizer Encoder

uint32. The data type of the output codewords and the quantization
error can be double, single, or Fixed-point. The block assigns the
data type of the output codewords and the quantization error based on
the data type of the input data.

Fixed-Point Data Types

The following diagram shows the data types used within the Vector
Quantizer Encoder block for fixed-point signals.

You can set the product output, accumulator, and index output data
types in the block dialog as discussed below.

10-1182

Vector Quantizer Encoder

Dialog
Box

Source of codebook
Choose Specify via dialog to type the codebook values into the
block parameters dialog box. Select Input port to specify the
codebook values using the block’s input port, C.

Codebook
Enter a k-by-N matrix of values, where and , to which
your input column vector or matrix is compared. This parameter
is visible if, from the Source of codebook list, you select
Specify via dialog.

Distortion measure
Select Squared error when you want the block to calculate the
distortion by evaluating the Euclidean distance between the
input column vector and each codeword in the codebook. Select

10-1183

Vector Quantizer Encoder

Weighted squared error when you want the block to calculate
the distortion by evaluating a weighted Euclidean distance using
a weighting factor to emphasize or deemphasize certain input
values.

Source of weighting factor
Select Specify via dialog to enter a value for the weighting
factor in the dialog box. Choose Input port and specify the
weighting factor using port W on the block. This parameter is
visible if, for the Distortion measure parameter, you select
Weighted squared error.

Weighting factor
Enter a vector of values. This vector must have length equal to
the number of rows of the input, U. This parameter is visible
if, for the Source of weighting factor parameter, you select
Specify via dialog.

Tie-breaking rule
Set this parameter to determine the behavior of the block when an
input column vector is equidistant from two codewords. When you
want the input column vector to be represented by the lower index
valued codeword, select Choose the lower index. To represent
the input column vector by the higher index valued codeword,
select Choose the higher index.

Output codeword
Select this check box to output the codeword vectors nearest to
the input column vectors.

Output quantization error
Select this check box to output the quantization error value that
results when the block represents the input column vector by the
nearest codeword.

10-1184

Vector Quantizer Encoder

Index output data type
Select int8, uint8, int16, uint16, int32, or uint32 as the data
type of the index output at port I.

10-1185

Vector Quantizer Encoder

Fixed-point accumulator attributes

As depicted above, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to
it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths.

When you select Same as input, the accumulator word and
fraction lengths are the same as those of the input of the block.
When you select User-defined, the Accumulator word length
and Accumulator fraction length parameters become visible.

Accumulator word length
Specify the word length, in bits, of the accumulator. This
parameter is only visible when you specify User-defined for the
Fixed-point accumulator attributes parameter.

Accumulator fraction length
Specify the fraction length, in bits, of the accumulator. This
parameter is only visible when you specify User-defined for the
Fixed-point accumulator attributes parameter.

Fixed-point product output attributes

10-1186

Vector Quantizer Encoder

As depicted above, the output of the multiplier is placed into the
product output data type and scaling. Use this parameter to
specify how you would like to designate this product output word
and fraction lengths.

When you select Same as accumulator, the product output word
and fraction lengths are the same as those of the accumulator of
the block. When you select Same as input, they are the same as
those of the input of the block. When you select User-defined, the
Product output word length and Product output fraction
length parameters become visible.

Product output word length
Specify the word length, in bits, of the product output. This
parameter is only visible when you specify User-defined for the
Fixed-point product output attributes parameter.

Product output fraction length
Specify the fraction length, in bits, of the product output. This
parameter is only visible when you specify User-defined for the
Fixed-point product output attributes parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. This
parameter is visible when you select the Show additional
parameters check box.

Saturate on integer overflow
When selected, overflows saturate. This parameter is visible when
you select the Show additional parameters check box.

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

10-1187

Vector Quantizer Encoder

Supported
Data
Types

Port Supported Data Types

U • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

C • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

W • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

I • 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Q(U) • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

D • Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

10-1188

Vector Quantizer Encoder

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Quantizer Simulink

Scalar Quantizer Decoder Signal Processing Blockset

Scalar Quantizer Design Signal Processing Blockset

Uniform Encoder Signal Processing Blockset

Uniform Decoder Signal Processing Blockset

Vector Quantizer Decoder Signal Processing Blockset

10-1189

Vector Scope

Purpose Display vector or matrix of time-domain, frequency-domain, or
user-defined data

Library Signal Processing Sinks

Description The Vector Scope block is a comprehensive display tool similar
to a digital oscilloscope. The block can display time-domain,
frequency-domain, or user-defined signals. You can use the Vector Scope
block to plot consecutive time samples from a frame-based vector, or
to plot vectors containing data such as filter coefficients or spectral
magnitudes. To compute and plot the periodogram of a signal with a
single block, use the Spectrum Scope block.

The input to the Vector Scope block can be any real-valued M-by-N
matrix, column or row vector, or 1-D (unoriented) vector, where
1-D vectors are treated as column vectors. Regardless of the input
frame status, the block treats each column of an M-by-N input as an
independent channel of data with M consecutive samples.

The block plots each sample of each input channel sequentially across
the horizontal axis of the plot.

Scope Properties Pane

The Scope Properties pane enables you to plot time-domain,
frequency-domain, or user-defined data, and adjust the horizontal
display span of the plot. The scope displays frames of data, and updates
the display for each new input frame.

The Input domain parameter specifies the domain of the input data. If
you select Time, for M-by-N inputs containing time-domain data, the
block treats each of the N input frames (columns) as a succession of M
consecutive samples taken from a time series. That is, each data point
in the input frame is assumed to correspond to a unique time value.

If, for the Input domain parameter, you select Frequency, for M-by-N
inputs containing frequency-domain data, the block treats each of
the N input frames (columns) as a vector of spectral magnitude data
corresponding to M consecutive ascending frequency indices. That is,
when the input is a single column vector, u, each value in the input

10-1190

Vector Scope

frame, u(i), is assumed to correspond to a unique frequency value,
f(i), where f(i+1)>f(i).

If, for the Input domain parameter, you select User-defined, the
block does not assume that the input frame data is time-domain or
frequency-domain data. You can plot the data in the appropriate
manner. Also, the Horizontal display span (number of frames)
parameter appears on the pane. Enter a scalar value greater than or
equal to one that corresponds to the number of frames to be displayed
across the width of the scope window.

If, for the Input domain parameter you choose Time, the Time
display span (number of frames) parameter appears on the pane.
Enter a scalar value greater than or equal to one that corresponds to the
number of frames to be displayed across the width of the scope window.

Time-Domain Scaling

The block scales the horizontal (time) axis of time-domain signals
automatically. The range of the time axis is [0,S*Tfi], where Tfi is the
input frame period, and S is the Time display span (number of

10-1191

Vector Scope

frames) parameter. The spacing between time points is Tfi/(M-1),
where M is the number of samples in each consecutive input frame.
Frequency-domain and user-defined data need additional information to
scale the horizontal axis. For more information, see “Frequency-Domain
Scaling” on page 10-1195 and “User-Defined Domain Scaling” on page
10-1196.

Display Properties Pane

The Display Properties pane enables you to control how the block
displays your data.

The Show grid parameter toggles the background grid on and off.

If you select the Persistence check box, the window maintains
successive displays. That is, the scope does not erase the display after
each frame (or collection of frames), but overlays successive input
frames in the scope display.

If you select the Frame number check box, the block displays the
number of the current frame in the input sequence on the scope window,
and the block increments the count as each new input is received.
Counting starts at 1 with the first input frame, and continues until
the simulation stops.

If you select the Channel legend check box, a legend indicating the
line color, style, and marker of each channel’s data is added. When
the input signal is labeled, that label is displayed in the channel
legend. When the input signal is not labeled, but comes from a Matrix
Concatenation block with labeled inputs, those labels are displayed in
the channel legend. Otherwise, each channel in the legend is labeled
with the channel number (CH 1, CH 2, etc.). Click-and-drag the legend to
reposition it in the scope window; double-click on the line label to edit
the text. If you rerun the simulation, the labels revert to the defaults.

If you select the Compact display check box, the scope completely fills
the figure window. The scope does not display menus and axis titles,
and it shows the numerical axis labels within the axes. If you clear the
Compact display check box, the scope displays the axis labels and

10-1192

Vector Scope

titles in a gray border surrounding the scope axes, and the window’s
menus and toolbar are visible.

If you select the Open scope at start of simulation check box, the
scope opens at the start of the simulation. If you clear this parameter,
the scope does not open automatically during the simulation. To view
the scope, double-click the Vector Scope block, which brings up the scope
as well as the block parameter dialog box. Use this feature when you
have several scope blocks in a model and you do not want to view all
the associated scopes during the simulation.

If the scope is not open during the simulation and you select the Open
scope immediately check box, the block opens the scope and clears
the check box.

The Scope position parameter specifies a four-element vector of the
form

[left bottom width height]

specifying the position of the scope window on the screen, where (0,0) is
the lower-left corner of the display. See the MATLAB figure function
for more information.

Axis Properties Pane

The parameters on the Axis Properties pane vary based on the value
of the Input domain parameter on the Scope Properties pane.

The following text describes the parameters available for time domain
inputs.

Minimum Y-limit and Maximum Y-limit parameters set the range
of the vertical axis.

The Y-axis title is the text to be displayed to the left of the y-axis.

The following text describes the parameters available for frequency
domain inputs.

The Frequency units parameter specifies whether the frequency axis
values should be in units of Hertz or rad/sec, When the Frequency

10-1193

Vector Scope

units parameter is set to Hertz, the spacing between frequency points
is 1/(M*Ts), where Ts is the sample time of the original time-domain
signal. When the Frequency units parameter is set to rad/sec, the
spacing between frequency points is 2π/(M*Ts).

The Frequency range parameter specifies the range of frequencies
over which the magnitudes in the input should be plotted. The available
options are [0..Fs/2], [-Fs/2..Fs/2], and [0..Fs], where Fs is the
original time-domain signal’s sample frequency. The Vector Scope block
assumes that the input data spans the range [0,Fs), which is the same
as the output from an FFT. To plot over the range [0..Fs/2] the scope
truncates the input vector leaving only the first half of the data, then
plots these remaining samples over half the frequency range. To plot
over the range [-Fs/2..Fs/2], the scope reorders the input vector
elements such that the last half of the data becomes the first half, and
vice versa; then it relabels the x-axis accordingly.

If, for frequency domain inputs, you select the Inherit sample
time from input check box, the block scales the frequency axis
by reconstructing the frequency data from the frame-period of the
frequency-domain input. This is valid when the following conditions
hold:

• Each frame of frequency-domain data shares the same length as the
frame of time-domain data from which it was generated; for example,
when the FFT is computed on the same number of points as are
contained in the time-domain input.

• The sample period of the time-domain signal in the simulation is
equal to the period with which the physical signal was originally
sampled.

• Consecutive frames containing the time-domain signal do not overlap
each other; that is, a particular signal sample does not appear in
more than one sequential frame.

In cases where not all of these conditions hold, you should specify
the appropriate value for the Sample time of original time series
parameter.

10-1194

Vector Scope

The Amplitude scaling parameter allows you to select Magnitude or
dB scaling along the y-axis.

Minimum Y-limit and Maximum Y-limit parameters set the range
of the vertical axis.

The Y-axis title is the text to be displayed to the left of the y-axis.

Frequency-Domain Scaling

To correctly scale the horizontal (frequency) axis for frequency-domain
signals, the Vector Scope block needs to know the sample period of the
original time-domain sequence represented by the frequency-domain
data. You specify this period by entering a value for the Sample time
of original time series parameter. For additional information, see
“Time-Domain Scaling” on page 10-1191 and “User-Defined Domain
Scaling” on page 10-1196.

The following text describes the parameters available for user-defined
domain inputs.

If, for user-defined input domains, you select the Inherit sample
increment from input check box, the block scales the horizontal axis
by computing the horizontal interval between samples in the input
frame from the frame period of the input. For example, when the input
frame period is 1, and there are 64 samples per input frame, the interval
between samples is computed to be 1/64. Computing the interval this
way is usually only valid when the following conditions hold:

• The input is a nonoverlapping time series; the x-axis on the scope
represents time.

• The input’s sample period (1/64 in the above example) is equal to the
period with which the physical signal was originally sampled.

In cases where not all of these conditions hold, you should use the
Increment per sample in input frame parameter.

The Scope position parameter specifies a four-element vector of the
form

10-1195

Vector Scope

[left bottom width height]

specifying the position of the scope window on the screen, where (0,0) is
the lower-left corner of the display. See the MATLAB figure function
for more information.

Minimum Y-limit and Maximum Y-limit parameters set the range
of the vertical axis.

The Y-axis title is the text to be displayed to the left of the y-axis.

User-Defined Domain Scaling

To correctly scale the horizontal axis for user-defined input domains,
the block needs to know the spacing of the input data. You specify this
spacing using the Increment per sample in input frame parameter,
Is. This parameter represents the numerical interval between adjacent
x-axis points corresponding to the input data. The range of the
horizontal axis is [0,M*Is*S], where M is the number of samples in
each consecutive input frame, and S is the Horizontal display span
(number of frames) parameter you specify in the Scope Properties
pane. For additional information, see “Time-Domain Scaling” on page
10-1191 and “Frequency-Domain Scaling” on page 10-1195.

Line Properties Pane

Use the parameters on the Line Properties pane to help you
distinguish between two or more independent channels of data on the
scope.

The Line visibilities parameter specifies which channel’s data is
displayed on the scope, and which is hidden. The syntax specifies the
visibilities in list form, where the term on or off as a list entry specifies
the visibility of the corresponding channel’s data. The list entries are
separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate five
distinct plots on the scope. To disable plotting of the third and fifth
lines, enter the following visibility specification in the Line visibilities
parameter.

10-1196

Vector Scope

Note that the first (leftmost) list item corresponds to the first signal
channel (leftmost column of the input matrix).

The Line styles parameter specifies the line style with which each
channel’s data is displayed on the scope. The syntax specifies the
channel line styles in list form, with each list entry specifying a style
for the corresponding channel’s data. The list entries are separated by
the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five
plots with a solid line style. To plot each line with a different style, enter

These settings plot the signal channels with the following styles.

Line Style

Command to
Type in Line Style
Parameter Appearance

Solid -

Dashed --

Dotted :

Dash-dot -.

No line none No line appears

Note that the first (leftmost) list item, '-', corresponds to the first
signal channel (leftmost column of the input matrix). See the LineStyle

10-1197

Vector Scope

property of the MATLAB line function for more information about
the style syntax.

The Line markers parameter specifies the marker style with which
each channel’s samples are represented on the scope. The syntax
specifies the channels’ marker styles in list form, with each list entry
specifying a marker for the corresponding channel’s data. The list
entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five
plots with no marker symbol (that is, the individual sample points are
not marked on the scope). To instead plot each line with a different
marker style, you could enter

These settings plot the signal channels with the following styles.

Marker Style

Command
to Type in
Marker Style
Parameter Appearance

Asterisk *

Point .

Cross x

Square s

Diamond d

10-1198

Vector Scope

Note that the leftmost list item, '*', corresponds to the first signal
channel or leftmost column of the input matrix. See the Marker
property of the MATLAB line function for more information about the
available markers.

To produce a stem plot for the data in a particular channel, type the
word stem instead of one of the basic marker shapes.

The Line colors parameter specifies the color in which each channel’s
data is displayed on the scope. The syntax specifies the channel colors in
list form, with each list entry specifying a color (in one of the MATLAB
ColorSpec formats) for the corresponding channel’s data. The list
entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five
plots in the color black. To instead plot the lines with the color order
below, enter

or

These settings plot the signal channels in the following colors (8-bit
RGB equivalents shown in the center column).

Color RGB Equivalent Appearance

Black (0,0,0)

Blue (0,0,255)

Red (255,0,0)

10-1199

Vector Scope

Color RGB Equivalent Appearance

Green (0,255,0)

Dark
purple

(192,0,192)

Note that the leftmost list item, 'k', corresponds to the first signal
channel or leftmost column of the input matrix. See the MATLAB
function ColorSpec for more information about the color syntax.

Vector Scope Window

The title in the window title bar is the same as the block title. In
addition to the standard MATLAB figure window menus such as File,
Window, and Help, the Vector Scope window contains Axes and
Channels menus.

The parameters that you set using the Axes menu apply to all channels.
Many of the parameters in this menu are also accessible through the
block parameters dialog box. For descriptions of these parameters, see
“Display Properties Pane” on page 10-1192. Below are descriptions of
other parameters in the Axes menu:

• Refresh erases all data on the scope display, except for the most
recent trace. This command is useful in conjunction with the
Persistence setting.

• Autoscale resizes the y-axis to best fit the vertical range of the data.
The numerical limits selected by the autoscale feature are displayed
in the Minimum Y-limit and Maximum Y-limit parameters in the
parameter dialog box. You can edit these values.

• Save position automatically updates the Scope position parameter
in the Axis properties field to reflect the scope window’s current
position and size. To make the scope window open at a particular
location on the screen when the simulation runs, drag the window
to the desired location, resize it, and select Save position. Note

10-1200

Vector Scope

that the parameter dialog box must be closed when you select Save
position in order for the Scope position parameter to be updated.

The properties listed in the Channels menu apply to a particular
channel. All of the parameters in this menu are also accessible through
the block parameters dialog box. For descriptions of these parameters,
see “Line Properties Pane” on page 10-1196.

Many of these options can also be accessed by right-clicking with the
mouse anywhere on the scope display. The menu that is displayed
contains a combination of the options available in both the Axes and
Channels menus.

Note When you select Compact display from the Axes menu, the
Axes and Channels menus are no longer visible. Right-click in the
Vector Scope window and click Compact display in order to make
the menus reappear.

10-1201

Vector Scope

Dialog
Box

Scope Properties Pane

Input domain
Select the domain of the input. Your choices are Time, Frequency,
or User-defined. Tunable.

Time display span (number of frames)
The number of consecutive frames to display (horizontally) on the
scope at any one time. This parameter is visible when the Input
domain parameter is set to Time.

Horizontal display span (number of frames)
The number of consecutive frames to display (horizontally) on the
scope at any one time. This parameter is visible when the Input
domain parameter is set to User-defined.

10-1202

Vector Scope

Display Properties Pane

Show grid
Toggle the scope grid on and off. Tunable.

Persistence
Select this check box to maintain successive displays. That is, the
scope does not erase the display after each frame (or collection of
frames), but overlays successive input frames in the scope display.
Tunable.

Frame number
If you select this check box, the number of the current frame in
the input sequence appears in the Vector Scope window. Tunable.

Channel legend
Toggles the legend on and off. Tunable.

10-1203

Vector Scope

Compact display
Resizes the scope to fill the window. Tunable.

Open scope at start of simulation
Select this check box to open the scope at the start of the
simulation. When this parameter is cleared, the scope will not
open automatically during the simulation. Tunable.

Open scope immediately
If the scope is not open during simulation, select this check box
to open it. This parameter is visible only while the simulation
is running.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower-left
corner of the display. Tunable.

10-1204

Vector Scope

Axis Properties Pane

Minimum Y-limit
The minimum value of the y-axis. Tunable.

Maximum Y-limit
The maximum value of the y-axis. Tunable.

Y-axis title
The text to be displayed to the left of the y-axis. Tunable.

Frequency units
Choose the frequency units for the x-axis, Hertz or rad/sec. This
parameter is visible when, in the Scope Properties pane, for the
Input domain parameter, you select Frequency. Tunable.

10-1205

Vector Scope

Frequency range
Specify the frequency range over which to plot the data. This
parameter is visible when, in the Scope Properties pane, for
Input domain parameter, you select Frequency. Tunable.

Inherit sample time from input
If you select this check box, the block computes the time-domain
sample period from the frame period and frame size of the
frequency-domain input. Use this parameter only when the
length of the each frame of frequency-domain data is the same
as the length of the frame of time-domain data from which it
was generated. This parameter is visible when, in the Scope
Properties pane, for Input domain parameter, you select
Frequency. Tunable.

Sample time of original time series
Enter the sample period, Ts, of the original time-domain signal.
This parameter is available when, in the Scope Properties pane,
for Input domain parameter, you select Frequency. Then, in
the Axis Properties pane, you clear the Inherit sample time
from input check box. Tunable.

Amplitude scaling
Choose the scaling for the y-axis, dB or Magnitude. This
parameter is visible when, in the Scope Properties pane, for
Input domain parameter, you select Frequency. Tunable.

Inherit sample increment from input
If you select this check box, the block scales the horizontal axis by
computing the horizontal interval between samples in the input
frame from the frame period of the input. Use this parameter only
when the input’s sample period is equal to the period with which
the physical signal was originally sampled. This parameter is
visible when, in the Scope Properties pane, for Input domain
parameter, you select User-defined. Tunable.

Increment per sample in input frame
Enter the numerical interval between adjacent x-axis points
corresponding to the user-defined input data. This parameter

10-1206

Vector Scope

is available when, in the Scope properties pane, for Input
domain parameter, you select User-defined. Then, in the Axis
Properties pane you clear the Inherit sample increment from
input check box. Tunable.

X-axis title
Enter the text to be displayed below the x-axis. This parameter is
visible when, in the Scope properties pane, for Input domain
parameter, you select User-defined. Tunable.

Line Properties Pane

Line visibilities
Enter on or off to specify the visibility of the various channels’
scope traces. Separate your choices for each channel with by a
pipe (|) symbol. Tunable.

10-1207

Vector Scope

Line styles
Enter the line styles of the various channels’ scope traces.
Separate your choices for each channel with by a pipe (|) symbol.
Tunable.

Line markers
Enter the line markers of the various channels’ scope traces.
Separate your choices for each channel with by a pipe (|) symbol.
Tunable.

Line colors
Enter the colors of the various channels’ scope traces using the
ColorSpec formats. Separate your choices for each channel with
by a pipe (|) symbol. Tunable.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Matrix Viewer Signal Processing Blockset

Spectrum Scope Signal Processing Blockset

10-1208

Waterfall

Purpose View vectors of data over time

Library Signal Processing Sinks

Description The Waterfall block displays multiple vectors of data at one time. These
vectors represent the input data at consecutive sample times. The input
to the block can be real or complex-valued data vectors of any data type
including fixed-point data types. However, the input is converted to
double-precision before the block processes the data. The Waterfall
block displays only real-valued, double-precision vectors of data.

The data is displayed in a three-dimensional axis in the Waterfall
window. By default, the x-axis represents amplitude, the y-axis
represents samples, and the z-axis represents time. You can adjust
the number of sample vectors that the block displays, move and resize
the Waterfall window, and modify block parameter values during the
simulation. The Waterfall window has toolbar buttons that enable you
to zoom in on displayed data, suspend data capture, freeze the scope’s
display, save the scope position, and export data to the workspace. The
toolbar buttons are labeled in the following figure, which shows the
Waterfall window as it appears when you double-click a Waterfall block.

10-1209

Waterfall

Sections of This Reference Page

• “Waterfall Parameters” on page 10-1211

• “Display Parameters” on page 10-1212

• “Axes Parameters” on page 10-1213

• “Data History Parameters” on page 10-1214

• “Triggering Parameters” on page 10-1215

• “Scope Trigger Function” on page 10-1218

• “Transform Parameters” on page 10-1221

• “Scope Transform Function” on page 10-1223

10-1210

Waterfall

• “Examples” on page 10-1223

Waterfall Parameters

You can control the display and behavior of the Waterfall window using
the Parameters dialog box.

Note You can alter the Waterfall parameters while the simulation is
running. However, when you make changes to values in text boxes, you
must click Enter or click outside the text box before the block accepts
your changes.

1 To open the Parameters dialog box, click the Scope parameters
button.

10-1211

Waterfall

The Parameters dialog box appears.

2 Click on the different panes to enter parameter settings.

Display Parameters

The following parameters control the Waterfall window’s display.

10-1212

Waterfall

Display traces
Enter the number of vectors of data to be displayed in the
Waterfall window.

Update interval
Enter the number of vectors the block should store before it
displays them to the window.

Colormap
Choose a colormap for the displayed data.

Transparency
Specify the transparency of the newest and oldest data vectors.
Placing the slider in the left-most position tells the block to make
the data vector transparent. Placing the slider in the right-most
position tells the block to make the data vector opaque. The
intermediate data vectors transition between the two chosen
transparency values.

Axes Parameters

The following parameters control the axes in the Waterfall window.

Y Min
Enter the minimum value of the y-axis.

10-1213

Waterfall

Y Max
Enter the maximum value of the y-axis.

Axis color
Enter a background color for the axes. Specify the color using a
character string. For example, to specify black, enter 'k'.

X Axis
Enter the x-axis label.

Y Axis
Enter the y-axis label.

Z Axis
Enter the z-axis label.

Data History Parameters

The following parameters control how many input data vectors the
Waterfall block stores. They also control how the data is exported to
the MATLAB workspace or SPTool.

History traces
Enter the number of vectors (traces) that you want the block to
store.

10-1214

Waterfall

When the buffer is full
Use this parameter to control the behavior of the block when the
buffer is filled:

• Overwrite — The old data is replaced with the new data.

• Suspend — The block stops storing data in the buffer; however,
the simulation continues to run.

• Extend — The block extends the buffer so that it can continue
to store all the input data.

Data logging
Use this parameter to control which data is exported from the
block:

• Selected — The selected data vector is exported.

• All visible — All of the data vectors displayed in the
Waterfall window are exported.

• All history — All of the data vectors stored in the block’s
history buffer are exported.

Export variable
Enter the name of the variable that represents your data in the
MATLAB workspace or SPTool. The default variable name is
ExportData.

Export at end of simulation
Select this check box to automatically export the data to the
MATLAB workspace when the simulation stops.

Triggering Parameters

The following parameters control when the Waterfall block starts and
stops capturing data.

10-1215

Waterfall

Begin recording
This parameter controls when the Waterfall block starts capturing
data:

• Immediately — The Waterfall window captures the input data
as soon as the simulation starts.

• After T seconds — The Time, T parameter appears in the
dialog box. Enter the number of seconds the block should wait
before it begins capturing data.

• After N inputs — The Count, N parameter appears in the
dialog box. Enter the number of inputs the block should receive
before it begins capturing data.

• User-defined — The Function name parameter appears in
the dialog box. Enter the name of a MATLAB function that
defines when the block should begin capturing data. For more
information about how you define this function, see “Scope
Trigger Function” on page 10-1218.

Stop recording
This parameter controls when the Waterfall block stops capturing
data:

10-1216

Waterfall

• Never — The block captures the input data as long as the
simulation is running.

• After T seconds — The Time, T parameter appears in the
dialog box. Enter the number of seconds the block should wait
before it stops capturing data.

• After N inputs —The Count, N parameter appears in the
dialog box. Enter the number of inputs the block should receive
before it stops capturing data.

• User-defined — The Function name parameter appears in
the dialog box. Enter the name of a MATLAB function that
defines when the block should stop capturing data. For more
information about how you define this function, see “Scope
Trigger Function” on page 10-1218.

Re-arm trigger
This parameter controls when the Waterfall block begins waiting
to capture data. It is available only when you select After
T seconds, After N inputs, or User-defined for the Stop
recording parameter:

• Never — The Waterfall Scope block starts and stops capturing
data as defined by the Begin recording and Stop recording
parameters.

• After T seconds — The Time, T parameter appears in the
dialog box. Enter the number of seconds the block should wait
before it begins waiting to capture data.

• After N inputs — The Count, N parameter appears in the
dialog box. Enter the number of inputs the block should receive
before it begins waiting to capture data.

• User-defined — The Function name parameter appears in
the dialog box. Enter the name of a MATLAB function that
defines when the block should begin waiting to capture data.
For more information about how you define this function, see
“Scope Trigger Function” on page 10-1218.

10-1217

Waterfall

The triggering process is illustrated in the state diagram below.

Scope Trigger Function

You can create custom scope trigger functions to control when the scope
starts, stops, or begins waiting to capture data.

10-1218

Waterfall

These functions must be valid MATLAB functions and be located either
in the current directory or on the MATLAB path.

Each scope trigger function must have the following form

y = functionname(blk,t,u),

where functionname refers to the name you give your scope trigger
function. The variable blk is the Simulink block handle. When the
scope trigger function is called by the block, Simulink automatically
populates this variable with the handle of the Waterfall block. The
variable t is the current simulation time, represented by a real,
double-precision, scalar value. The variable u is the vector input to the
block. The output of the scope trigger function, y, is interpreted as a
logical signal. It is either true or false:

• Begin recording scope trigger function

- When the output of this scope trigger function is true, the Waterfall
block starts capturing data.

- When the output is false, the block remains in its current state.

• Stop recording scope trigger function

- When the output of this scope trigger function is true, the block
stops capturing data.

10-1219

Waterfall

- When the output is false, the block remains in its current state.

• Re-arm trigger scope trigger function

- When the output of this scope trigger function is true, the block
waits for a begin recording event.

- When the output is false, the block remains in its current state.

Note The Waterfall block passes its input data directly to the scope
trigger functions. These functions do not use the transformed data
defined by the Transform parameters.

The following is an example of a scope trigger function. This function,
called trigPower detects when the energy in u exceeds a certain
threshold.

function y = trigPower(blk, t, u)

y = (u'*u > 2300);

The following is another example of a scope trigger function. This
function, called count3, triggers the scope once three vectors with
positive means are input to the block. Then, the function resets itself
and begins searching for the next three input vectors with positive
means. This scope trigger function is valid only when one Waterfall
block is present in your model.

function y = count3(blk, t, u)

persistent state;
if isempty(state); state = 0; end
if mean(u)>0; state = state+1; end
y = (state>=3);
if y; state = 0; end

10-1220

Waterfall

Transform Parameters

The following parameters transform the input data to the Waterfall
block. The result of the transform is displayed in the Waterfall window.

Note The block assumes that the input to the block corresponds to
the Transform parameter you select. For example, when you choose
Complex-> Angle, the block assumes that the input is complex.
The block does not produce an error when the input is not complex.
Therefore, you must verify the format of your input data to guarantee
that a meaningful result is displayed in the Waterfall window.

Transform
Choose a transform that you would like to apply to the input of
the Waterfall block:

• None — The input is displayed as it is received by the block.

• Amplitude-> dB — The block converts the input amplitude
into decibels.

• Complex-> Mag Lin — The block converts the complex input
into linear magnitude.

10-1221

Waterfall

• Complex-> Mag dB — The block converts the complex input
into magnitude in decibels.

• Complex-> Angle — The block converts the complex input into
phase.

• FFT-> Mag Lin Fs/2 — The block takes the linear magnitude
of the FFT input and plots it from 0 to the Nyquist frequency.

• FFT-> Mag dB Fs/2 — The block takes the magnitude of the
FFT input, converts it to decibels, and plots it from 0 to the
Nyquist frequency.

• FFT-> Angle Fs/2 — The block converts the FFT input into
phase and plots it from 0 to the Nyquist frequency.

• Power-> dB — The block converts the input power into decibels.

Function
This parameter is only available when you select User-defined
fcn for the Transform parameter. Enter a function that you
would like to apply to the input of the Waterfall block. For
more information about how you define this function, see “Scope
Transform Function” on page 10-1223.

Expression
This parameter is only available when you select User-defined
expr for the Transform parameter. Enter an expression that
you would like to apply to the input of the Waterfall block. The
result of this expression must be real-valued. When you write
the expression, be sure to include only one unknown variable.
The block assumes this unknown variable represents the input
to the block. When the block believes your expression is invalid,
the following window appears.

10-1222

Waterfall

When you click No, your expression is not applied to the
input. When you click Yes and your expression is invalid, your
simulation stops and Simulink displays an error.

Scope Transform Function

You can create a scope transform function to control how the Waterfall
block transforms your input data. This function must have a valid
MATLAB function name and be located either in the current directory
or on the MATLAB path.

Your scope transform function must have the following form

y = functionname(u),

where functionname refers to the name you give your function. The
variable u is the real or complex vector input to the block. The output of
the scope transform function, y, must be a double-precision, real-valued
vector. When it is not, the simulation stops and Simulink displays an
error. Note that the output vector does not need to be the same size
as the input vector.

Examples The following examples illustrate some capabilities of the Waterfall
block.

10-1223

Waterfall

• “Exporting Data” on page 10-1224

• “Capturing Data” on page 10-1225

• “Linking Scopes” on page 10-1225

• “Selecting Data” on page 10-1227

• “Zooming” on page 10-1229

• “Rotating the Display” on page 10-1229

• “Scaling the Axes” on page 10-1229

• “Saving Scope Settings” on page 10-1230

Exporting Data

You can use the Waterfall block to export data to the MATLAB
workspace or to SPTool:

1 Open and run the dspanc demo.

2 While the simulation is running, click the Export to Workspace
button.

3 At the MATLAB command line, type whos.

The variable ExportData appears in your MATLAB workspace.
ExportData is a 40-by-6 matrix. This matrix represents the six data
vectors that were present in the Waterfall window at the time you
clicked the Export to Workspace button. Each column of this
matrix contains 40 filter coefficients. The columns of data were
captured at six consecutive instants in time.

You can control what data is exported using the Data logging
parameter in Data history pane of the Parameters dialog box. For
more information, see “Data History Parameters” on page 10-1214.

4 While the simulation is running, click the Export to SPTool button.

10-1224

Waterfall

The SPTool GUI opens and the variable ExportData is displayed
in the Signals list.

For more information about SPTool, see the Signal Processing Toolbox
documentation.

Capturing Data

You can use the Waterfall block to interact with your data while it is
being captured:

1 Open and run the dspanc demo.

2 While the simulation is running, click the Suspend data capture
button.

The Waterfall block no longer captures or displays the data coming
from the Downsample block.

3 To continue capturing data, click the Resume data capture button.

4 To freeze the data display while continuing to capture data, click
the Snapshot display button.

5 To view the Waterfall block that the data is coming from, click the Go
to scope block button.

In the Simulink model window, the Waterfall block that corresponds
to the active Waterfall window flashes. This feature is helpful when
you have more than one Waterfall block in a model and you want to
clarify which data is being displayed.

Linking Scopes

You can link several Waterfall blocks together in order to capture the
effect of a model event in all of the Waterfall windows in the model:

1 Open the dspanc demo.

2 Drag a second Waterfall block into the demo model.

10-1225

Waterfall

3 Connect this block to the Output port of the LMS Filter block as
shown in the figure below.

4 Run the model and view the model behavior in both Waterfall
windows.

5 In the dspanc/Waterfall window, click the Link scopes button.

6 In the same window, click the Suspend data capture button.

The data capture is suspended in both scope windows.

7 Click the Resume data capture button.

The data capture resumes in both scope windows.

8 In the dspanc/Waterfall window, click the Snapshot display button.

10-1226

Waterfall

In both scope windows, the data display freezes while the block
continues to capture data.

9 To continue displaying the captured data, click the Resume display
button.

Selecting Data

The following figure shows the Waterfall window displaying the output
of the dspanc demo:

1 To select a particular set of data, click the Select button.

2 Click on the Time Bar at the bottom right of the axes to select a
vector of data.

The Waterfall block highlights the selected trace.

10-1227

Waterfall

While the simulation is running, in the bottom right corner, the
Waterfall window displays the relative index of the selected trace.
For example, in the previous figure, the selected vector is two sample
times away from the most current data vector. When the simulation
is stopped, the Waterfall window displays both the relative index and
the simulation time associated with the selected trace.

3 To deselect the data vector, click it again.

4 Click-and-drag along the Time Bar.

Your selection follows the movement of the pointer.

10-1228

Waterfall

You can use this feature to choose a particular vector to export to
the MATLAB workspace or SPTool. For more information, see “Data
History Parameters” on page 10-1214.

Zooming

You can use the Waterfall window to zoom in on data:

1 Click the Zoom camera button.

2 In the Waterfall window, click and hold down the left mouse button.

3 Move the mouse up and down and side-to-side to move closer and
farther away from the axes.

4 To resize the axes to fit the Waterfall window, click the Fit to view
button.

Rotating the Display

You can rotate the data displayed in the Waterfall window:

1 Click on the Orbit camera button.

2 In the Waterfall window, click and hold down the left mouse button.

3 Move the mouse in a circular motion to rotate the axes.

4 To return to the position of the original axes, click the Restore scope
position and view button.

Scaling the Axes

You can use the Waterfall window to rescale the y-axis values:

1 Open and run the dspanc demo.

2 Click the Rescale amplitude button.

10-1229

Waterfall

The y-axis changes so that its minimum value is zero. The maximum
value is scaled to fit the data displayed.

Alternatively, you can scale the y-axis using the Y Min and Y Max
parameters in the Axes pane of the Parameters dialog box. This is
helpful when you want to undo the effects of rescaling the amplitude.
For more information, see “Axes Parameters” on page 10-1213.

Saving Scope Settings

The Waterfall block can save the screen position and viewpoint of the
Waterfall window:

1 Click the Save scope position and view button.

2 Close the Waterfall window.

3 Reopen the Waterfall window.

It reopens at the same place on your screen. The viewpoint of the
axes also remains the same.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

The Waterfall block accepts any of these data types as input. However,
the input is converted to double-precision before the block processes the
data. The Waterfall block displays only real-valued, double-precision
vectors of data. To learn how to convert your data types to the above
data types in MATLAB and Simulink, see “Supported Data Types and
How to Convert to Them” on page 7-2.

10-1230

Waterfall

See Also

Scope Simulink

Time Scope Signal Processing Blockset

Vector Scope Signal Processing Blockset

Spectrum Scope Signal Processing Blockset

Matrix Viewer Signal Processing Blockset

Signal To Workspace Signal Processing Blockset

Triggered To Workspace Signal Processing Blockset

10-1231

Wavelet Analysis

Purpose Decompose a signal into components of logarithmically decreasing
frequency intervals and sample rates (requires the Wavelet Toolbox).

Library dspobslib

Description
Note The Wavelet Analysis block is still supported but is likely to be
obsoleted in a future release. We recommend replacing this block with
the DWT block.

The Wavelet Analysis block uses the wfilters function from the
Wavelet Toolbox to construct a dyadic analysis filter bank that
decomposes a broadband signal into a collection of successively more
bandlimited components. An n-level filter bank structure is shown
below, where n is specified by the Number of levels parameter.

At each level, the low-frequency output of the previous level is
decomposed into adjacent high- and low-frequency subbands by a
highpass (HP) and lowpass (LP) filter pair. Each of the two output
subbands is half the bandwidth of the input to that level. The

10-1232

Wavelet Analysis

bandlimited output of each filter is maximally decimated by a factor of 2
to preserve the bit rate of the original signal.

Filter Coefficients

The filter coefficients for the highpass and lowpass filters are computed
by the Wavelet Toolbox function wfilters, based on the wavelet
specified in the Wavelet name parameter. The table below lists the
available options.

Wavelet Name
Sample Wavelet Function
Syntax

Haar wfilters('haar')

Daubechies wfilters('db4')

Symlets wfilters('sym3')

Coiflets wfilters('coif1')

Biorthogonal wfilters('bior3.1')

Reverse Biorthogonal wfilters('rbio3.1')

Discrete Meyer wfilters('dmey')

The Daubechies, Symlets, and Coiflets options enable a secondary
Wavelet order parameter that allows you to specify the wavelet order.
For example, if you specify a Daubechies wavelet with Wavelet order
equal to 6, the Wavelet Analysis block calls the wfilters function with
input argument 'db6'.

The Biorthogonal and Reverse Biorthogonal options enable a
secondary Filter order [synthesis / analysis] parameter that allows
you to independently specify the wavelet order for the analysis and
synthesis filter stages. For example, if you specify a Biorthogonal
wavelet with Filter order [synthesis / analysis] equal to [2 / 6],
the Wavelet Analysis block calls the wfilters function with input
argument 'bior2.6'.

10-1233

Wavelet Analysis

See the Wavelet Toolbox documentation for more information about the
wfilters function. If you want to explicitly specify the FIR coefficients
for the analysis filter bank, use the Dyadic Analysis Filter Bank block.

Tree Structure

The wavelet tree structure has n+1 outputs, where n is the number of
levels. The sample rate and bandwidth of the top output are half the
input sample rate and bandwidth. The sample rate and bandwidth of
each additional output (except the last) are half that of the output from
the previous level. In general, for an input with sample period Tsi = Ts,
and bandwidth BW, output yk has sample period Tso,k and bandwidth
BWk.

Note that in frame-based mode, the change in the sample period of
output yk is reflected by its frame size, Mo,k, rather than by its frame
rate.

The bottom two outputs (yn and yn+1) share the same sample period,
bandwidth, and frame size because they originate at the same tree level.

10-1234

Wavelet Analysis

Sample-Based Operation

An M-by-N sample-based matrix input is treated as M*N independent
channels, and the block filters each channel independently over time.
The output at each port is the same size as the input, one output
channel for each input channel. As described earlier, each output port
has a different sample period.

The figure below shows the input and output sample periods for a
64-channel sample-based input to a three-level filter bank. The input
has a period of 1, so the fastest output has a period of 2.

Frame-Based Operation

An Mi-by-N frame-based matrix input is treated as N independent
channels, and the block filters each channel independently over time.
The input frame size Mi must be a multiple of 2n, and n is the number of
filter bank levels. For example, a frame size of 8 would be appropriate
for a three-level tree (23=8). The number of columns in each output is
the same as the number of columns in the input.

Each output port has the same frame period as the input. The reduction
in the output sample rates results from the smaller output frame sizes,
as shown in the example below for a four-channel input to a three-level
filter bank.

10-1235

Wavelet Analysis

Zero Latency

The Wavelet Analysis block has no tasking latency for frame-based
operation, which is always single-rate. The block therefore analyzes the
first input sample (received at t=0) to produce the first output sample
at each port.

Nonzero Latency

For sample-based operation, the Wavelet Analysis block is multirate
and has 2n-1 samples of latency in both Simulink tasking modes. As a
result, the block repeats a zero initial condition in each channel for the
first 2n-1 output samples, before propagating the first analyzed input
sample (computed from the input received at t=0).

Note For more information on latency and the Simulink tasking modes,
see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56 and the
topic on models with multiple sample rates in the Real-Time Workshop
documentation.

10-1236

Wavelet Analysis

Dialog
Box

The parameters displayed in the dialog box vary for different wavelet
types. Only some of the parameters listed below are visible in the dialog
box at any one time.

Wavelet name
The wavelet used in the analysis.

Wavelet order
The order for the Daubechies, Symlets, and Coiflets wavelets.
This parameter is available only when one of these wavelets is
selected in the Wavelet name menu.

Filter order [synthesis / analysis]
The filter orders for the synthesis and analysis stages of the
Biorthogonal and Reverse Biorthogonal wavelets. For
example, [2 / 6] selects a second-order synthesis stage and
a sixth-order analysis stage. The Filter order parameter is
available only when one of the above wavelets is selected in the
Wavelet name menu.

Number of levels
The number of filter bank levels. An n-level structure has n+1
outputs.

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

10-1237

Wavelet Analysis

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press, 1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1993.

Supported
Data
Types

• Double-precision floating point

See Also

Dyadic Analysis Filter Bank DSP Blockset

Wavelet Synthesis DSP Blockset

wfilters Wavelet Toolbox

10-1238

Wavelet Synthesis

Purpose Reconstruct a signal from its multirate bandlimited components
(requires the Wavelet Toolbox).

Library dspobslib

Description
Note The Wavelet Synthesis block is still supported but is likely to be
obsoleted in a future release. We recommend replacing this block with
the IDWT block.

The Wavelet Synthesis block uses the wfilters function from the
Wavelet Toolbox to reconstruct a signal that was decomposed by the
Wavelet Analysis block. The reconstruction or synthesis process is the
inverse of the analysis process, and restores the original signal by
upsampling, filtering, and summing the bandlimited inputs in stages
corresponding to the analysis process. An n-level synthesis filter bank
structure is shown below, where n is specified by the Number of levels
parameter.

At each level, the two bandlimited inputs (one low-frequency, one
high-frequency, both with the same sample rate) are upsampled by

10-1239

Wavelet Synthesis

a factor of 2 to match the sample rate of the input to the next stage.
They are then filtered by a highpass (HP) and lowpass (LP) filter pair
with coefficients calculated to cancel (in the subsequent summation)
the aliasing introduced in the corresponding analysis filter stage. The
output from each (upsample-filter-sum) level has twice the bandwidth
and twice the sample rate of the input to that level.

For perfect reconstruction, the Wavelet Synthesis and Wavelet Analysis
blocks must have the same parameter settings.

Filter Coefficients

The filter coefficients for the highpass and lowpass filters are computed
by the Wavelet Toolbox function wfilters, based on the wavelet
specified in the Wavelet name parameter. The table below lists the
available options.

Wavelet Name
Sample Wavelet Function
Syntax

Haar wfilters('haar')

Daubechies wfilters('db4')

Symlets wfilters('sym3')

Coiflets wfilters('coif1')

Biorthogonal wfilters('bior3.1')

Reverse Biorthogonal wfilters('rbio3.1')

Discrete Meyer wfilters('dmey')

The Daubechies, Symlets, and Coiflets options enable a secondary
Wavelet order parameter that allows you to specify the wavelet order.
For example, if you specify a Daubechies wavelet with Wavelet order
equal to 6, the Wavelet Synthesis block calls the wfilters function
with input argument 'db6'.

The Biorthogonal and Reverse Biorthogonal options enable a
secondary Filter order [synthesis / analysis] parameter that allows

10-1240

Wavelet Synthesis

you to independently specify the wavelet order for the analysis and
synthesis filter stages. For example, if you specify a Biorthogonal
wavelet with Filter order [synthesis / analysis] equal to [2 / 6],
the Wavelet Synthesis block calls the wfilters function with input
argument 'bior2.6'.

See the Wavelet Toolbox documentation for more information about the
wfilters function. If you want to explicitly specify the FIR coefficients
for the synthesis filter bank, use the Dyadic Synthesis Filter Bank block.

Tree Structure

The wavelet tree structure has n+1 inputs, where n is the number of
levels. The sample rate and bandwidth of the output are twice the
sample rate and bandwidth of the top input. The sample rate and
bandwidth of each additional input (except the last) are half that of the
input to the previous level.

The bottom two inputs (un and un+1) should have the same sample rate
and bandwidth since they are processed by the same level.

Note that in frame-based mode, the sample period of input uk is reflected
by its frame size, Mi,k, rather than by its frame rate.

10-1241

Wavelet Synthesis

Sample-Based Operation

An M-by-N sample-based matrix input is treated as M*N independent
channels, and the block filters each channel independently over time.
The output is the same size as the input at each port, one output
channel for each input channel. As described earlier, each input port
has a different sample period.

The figure below shows the input and output sample periods for the four
64-channel sample-based inputs to a three-level filter bank. The fastest
input has a period of 2, so the output period is 1.

Frame-Based Operation

An Mi-by-N frame-based matrix input is treated as N independent
channels, and the block filters each channel independently over time.
The number of columns in the output is the same as the number of
columns in the input.

All inputs must have the same frame period, which is also the output
frame period. The different input sample rates should be represented
by the input frame sizes: If the input to the top port has frame size
Mi, the input to the second-from-top port should have frame size Mi/2,
the input to the third-from-top port should have frame size Mi/4, and
so on. The input to the bottom port should have the same frame size
as the second-from-bottom port. The increase in the sample rate of the
output is also represented by its frame size, which is twice the largest
input frame size.

10-1242

Wavelet Synthesis

The relationship between sample periods, frame periods, and frame
sizes is shown below for a four-channel frame-based input to a 3-level
filter bank.

Zero Latency

The Wavelet Synthesis block has no tasking latency for frame-based
operation, which is always single-rate. The block therefore uses the first
input samples (received at t=0) to synthesize the first output sample.

Nonzero Latency

For sample-based operation, the Wavelet Synthesis block is multirate
and has the following tasking latencies:

• 2n-2 samples in Simulink’s single-tasking mode

• 2n samples in Simulink’s multitasking mode

In the above cases, the block repeats a zero initial condition in each
channel for the first D output samples, where D is the latency shown
above. For example, in single-tasking mode the block generates 2n-2
zero-valued output samples in each channel before propagating the first
synthesized output sample (computed from the inputs received at t=0).

Note For more information on latency and the Simulink tasking modes,
see “Excess Algorithmic Delay (Tasking Latency)” on page 2-56 and the
topic on models with multiple sample rates in the Real-Time Workshop
documentation.

10-1243

Wavelet Synthesis

Dialog
Box

The parameters displayed in the dialog box vary for different wavelet
types. Only some of the parameters listed below are visible in the dialog
box at any one time.

Wavelet name
The wavelet used in the synthesis.

Wavelet order
The order for the Daubechies, Symlets, and Coiflets wavelets.
This parameter is available only when one of these wavelets is
selected in the Wavelet name menu.

Filter order [synthesis / analysis]
The filter orders for the synthesis and analysis stages of the
Biorthogonal and Reverse Biorthogonal wavelets. For
example, [2 / 6] selects a second-order synthesis stage and
a sixth-order analysis stage. The Filter order parameter is
available only when one of the above wavelets is selected in the
Wavelet name menu.

Number of levels
The number of filter bank levels. An n-level structure has n+1
outputs.

References Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
Filter Banks, Wavelets. West Sussex, England: John Wiley & Sons,
1994.

10-1244

Wavelet Synthesis

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press, 1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1993.

Supported
Data
Types

• Double-precision floating point

See Also

Dyadic Synthesis Filter
Bank

DSP Blockset

Wavelet Analysis DSP Blockset

wfilters Wavelet Toolbox

10-1245

Window Function

Purpose Compute and/or apply window to input signal

Library Signal Operations

Description The Window Function block computes a window, and/or applies a
window to an input signal. This block supports real and complex
floating-point and fixed-point inputs.

Operation Modes

The Window Function block has three modes of operation that you can
select via the Operation parameter. In each mode, the block first
creates a window vector w by sampling the window specified in the
Window type parameter at M discrete points. The operation modes are

• Apply window to input

In this mode, the block computes an M-by-1 window vector w and
multiplies it element-wise with each of the N channels in the M-by-N
input matrix u. This is equivalent to the following MATLAB code.

y = repmat(w,1,N) .* u % Equivalent MATLAB code

In this mode, a length-M 1-D vector input is treated as an M-by-1
matrix. The output y always has the same dimension as the input.
When the input is frame based, the output is frame based; otherwise,
the output is sample based.

• Generate window

In this mode the block generates a sample-based 1-D window vector
w with length M specified by the Window length parameter. The
In port is disabled for this mode.

• Generate and apply window

In this mode, the block computes an M-by-1 window vector w and
multiplies it element-wise with each of the N channels in the M-by-N
input matrix u. This is equivalent to the following MATLAB code.

10-1246

Window Function

y = repmat(w,1,N) .* u % Equivalent MATLAB code

In this mode, a length-M 1-D vector input is treated as an M-by-1
matrix. The block produces two outputs:

- At the Out port, the block produces the result of the multiplication
y, which has the same dimension as the input. When the input is
frame based, the output y is frame based; otherwise, the output
y is sample based.

- At the Win port, the block produces the M-by-1 window vector w.
Output w is always sample based.

Window Type

The available window types are shown in the table below. For complete
information about the window functions, consult the Signal Processing
Toolbox documentation.

Window
Type Description

Bartlett Computes a Bartlett window.

w = bartlett(M)

Blackman Computes a Blackman window.

w = blackman(M)

Boxcar Computes a rectangular window.

w = rectwin(M)

ChebyshevComputes a Chebyshev window with stopband ripple R.

w = chebwin(M,R)

10-1247

Window Function

Window
Type Description

Hamming Computes a Hamming window.

w = hamming(M)

Hann Computes a Hann window (also known as a Hanning
window).

w = hann(M)

Hanning Obsolete. This window option is included only for
compatibility with older models. Use the Hann option
instead of Hanning whenever possible.

Kaiser Computes a Kaiser window with Kaiser parameter beta.

w = kaiser(M,beta)

Triang Computes a triangular window.

w = triang(M)

User
Defined

Computes the user-defined window function specified by
the entry in the Window function name parameter,
usrwin.

w = usrwin(M) % Window takes no extra parameters
w = usrwin(M,x1,...,xn) % Window takes extra
parameters {x1 ... xn}

10-1248

Window Function

Window Sampling

For the generalized-cosine windows (Blackman, Hamming, Hann, and
Hanning), the Sampling parameter determines whether the window
samples are computed in a periodic or a symmetric manner. For
example, when Sampling is set to Symmetric, a Hamming window of
length M is computed as

w = hamming(M) % Symmetric (aperiodic) window

When Sampling is set to Periodic, the same window is computed as

w = hamming(M+1) % Periodic (asymmetric) window
w = w(1:M)

Fixed-Point Data Types

The following diagram shows the data types used within the Window
block for fixed-point signals for each of the three operating modes.

10-1249

Window Function

You can set the window, product output, and output data types in the
block dialog as discussed below.

10-1250

Window Function

Dialog
Box

The Main pane of the Window Function block dialog appears as follows:

Operation
Specify the block’s operation as discussed in “Operation Modes”
on page 10-1246. The port configuration of the block is updated to
match the setting of this parameter.

Window type
Specify the type of window to apply as listed in “Window Type” on
page 10-1247. Tunable.

Sample Mode
Specify the sample mode for the block, Continuous or Discrete,
when it is in Generate Window mode. In the Apply window
to output and Generate and apply window modes, the block

10-1251

Window Function

inherits the sample time from its driving block. Therefore, this
parameter is only visible when you select Generate window for
the Operation parameter.

Sample time
Specify the sample time for the block when it is in Generate
window and Discrete modes. In Apply window to output and
Generate and apply window modes, the block inherits the
sample time from its driving block. This parameter is only visible
when you select Discrete for the Sample Mode parameter.

Window length
Specify the length of the window to apply. This parameter is only
visible when you select Generate window for the Operation
parameter. Otherwise, the window vector length is computed to
match the input frame size, M.

Sampling
Specify the window sampling for generalized-cosine windows.
This parameter is only visible when you select Blackman, Hamming,
Hann, or Hanning for the Window type parameter. Tunable.

Stopband attenuation in dB
Specify the level of stopband attenuation, Rs, in decibels. This
parameter is only visible when you select Chebyshev for the
Window type parameter. Tunable.

Beta
Specify the Kaiser window β parameter. Increasing β widens the
mainlobe and decreases the amplitude of the window sidelobes
in the window’s frequency magnitude response. This parameter
is only visible when you select Kaiser for the Window type
parameter. Tunable.

Window function name
Specify the name of the user-defined window function to be
calculated by the block. This parameter is only visible when you
select User defined for the Window type parameter.

10-1252

Window Function

Specify additional arguments to the hamming function
Select to enable the Cell array of additional arguments
parameter, when the user-defined window requires parameters
other than the window length. This parameter is only visible
when you select User defined for the Window type parameter.

Cell array of additional arguments
Specify the extra parameters required by the user-defined window
function, besides the window length. This parameter is only
available when you select the Specify additional arguments
to the hamming function parameter. The entry must be a
cell array.

The Data types pane of the Window block dialog is discussed in the
following sections:

“Parameters for Generate Window Only Mode” on page 10-1253

“Parameters for Apply Window Modes” on page 10-1256

Parameters for Generate Window Only Mode

The following parameters are available when the Operation parameter
is set to Generate window:

10-1253

Window Function

Output data type
Specify the output data type in one of the following ways:

• Choose double or single from the list

• Choose Fixed-point to specify the output data type and scaling
in the Signed, Word length, Set fraction length in output
to, and Fraction length parameters

• Choose User-defined to specify the output data type and
scaling in the User-defined data type, Set fraction length
in output to, and Fraction length parameters

• Choose Inherit via back propagation to set the output data
type and scaling to match the following block

10-1254

Window Function

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible when you select Fixed-point or
User-defined for the Output data type parameter, and when
the specified output data type is a fixed-point data type.

Fraction length
Specify the fraction length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and
User-defined for the Set fraction length in output to
parameter.

10-1255

Window Function

Parameters for Apply Window Modes

The following parameters are available on the Fixed-Point pane when
the Operation parameter is set to either Apply window to input
or Generate and apply window.

Rounding mode
Select the rounding mode for fixed-point operations.

The window vector w does not obey this parameter; it always
rounds to Nearest.

10-1256

Window Function

Overflow mode
Select the overflow mode for fixed-point operations.

The window vector w does not obey this parameter; it is always
saturated.

Window
Choose how you will specify the word length and fraction length
of the window vector w.

When you select Same word length as input, the word length
of the window vector elements is the same as the word length of
the input. The fraction length is automatically set to the best
precision possible.

When you select Specify word length, you are able to enter the
word length of the window vector elements in bits. The fraction
length is automatically set to the best precision possible.

When you select Binary point scaling, you are able to enter
the word length and the fraction length of the window vector
elements in bits.

When you select Slope and bias scaling, you are able to enter
the word length, in bits, and the slope of the window vector
elements. This block requires power-of-two slope and a bias of
zero.

The window vector does not obey the Rounding mode and
Overflow mode parameters; it is always saturated and rounded
to Nearest.

Product output
Use this parameter to specify how you would like to designate the
product output word and fraction lengths. Refer to “Fixed-Point
Data Types” on page 10-1153 for illustrations depicting the use of
the product output data type in this block:

10-1257

Window Function

• When you select Inherit via internal rule, the product
output word length and fraction length are automatically set
according to the following equations:

Note The actual product output word length may be equal to or
greater than the calculated ideal product output word length,
depending on the settings on the Hardware Implementation
pane of the Configuration Parameters dialog box.

• When you select Same as input, these characteristics will
match those of the input to the block.

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the product output,
in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the product
output. This block requires power-of-two slope and a bias of
zero.

Output
Choose how you will specify the word length and fraction length of
the output of the block:

• When you select Same as product output, these
characteristics will match those of the product output.

• When you select Same as input, these characteristics will
match those of the input to the block.

10-1258

Window Function

• When you select Binary point scaling, you are able to enter
the word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to
enter the word length, in bits, and the slope of the output. This
block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overriden by the autoscaling
tool in the Fixed-Point Settings interface. For more information
about the autoscaling tool, refer to “Fixed-Point Settings
Interface” on page 8-28.

Supported
Data
Types

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed only)

• 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

FFT Signal Processing Blockset

bartlett Signal Processing Toolbox

blackman Signal Processing Toolbox

rectwin Signal Processing Toolbox

chebwin Signal Processing Toolbox

hamming Signal Processing Toolbox

hann Signal Processing Toolbox

10-1259

Window Function

kaiser Signal Processing Toolbox

triang Signal Processing Toolbox

10-1260

Yule-Walker AR Estimator

Purpose Compute estimate of autoregressive (AR) model parameters using
Yule-Walker method

Library Estimation / Parametric Estimation

Description The Yule-Walker AR Estimator block uses the Yule-Walker AR method,
also called the autocorrelation method, to fit an autoregressive
(AR) model to the windowed input data by minimizing the forward
prediction error in the least squares sense. This formulation leads to
the Yule-Walker equations, which are solved by the Levinson-Durbin
recursion. Block outputs are always nonsingular.

The Yule-Walker AR Estimator block can output the AR model
coefficients as polynomial coefficients, reflection coefficients, or both.
The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only) representing a frame of consecutive time samples
from a single-channel signal, which is assumed to be the output of an
AR system driven by white noise. The block computes the normalized
estimate of the AR system parameters, A(z), independently for each
successive input frame.

When you select Inherit estimation order from input dimensions,
the order, p, of the all-pole model is one less than the length of the input
vector. Otherwise, the order is the value specified by the Estimation
order parameter. To guarantee a valid output, you must set the
Estimation order parameter to be less than or equal to half the input
vector length. The Yule-Walker AR Estimator and Burg AR Estimator
blocks return similar results for large frame sizes.

When Output(s) is set to A, port A is enabled. Port A outputs a column
vector of length p+1 that contains the normalized estimate of the AR
model coefficients in descending powers of z

[1 a(2) ... a(p+1)]

10-1261

Yule-Walker AR Estimator

When Output(s) is set to K, port K is enabled. Port K outputs a length-p
column vector whose elements are the AR model reflection coefficients.
When Output(s) is set to A and K, both port A and K are enabled, and
each port outputs its respective column vector of AR model coefficients.
The outputs at both ports A and K are always 1-D vectors.

The square of the model gain, G (a scalar), is provided at port G.

See the Burg AR Estimator block reference page for a comparison of the
Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR
Estimator, and Yule-Walker AR Estimator blocks.

Dialog
Box

Output(s)
The type of AR model coefficients output by the block. The block
can output polynomial coefficients (A), reflection coefficients (K),
or both (A and K). Nontunable.

Inherit estimation order from input dimensions
When selected, sets the estimation order p to one less than the
length of the input vector. Nontunable.

10-1262

Yule-Walker AR Estimator

Estimation order
The order of the AR model, p. This parameter is enabled when
you do not select Inherit estimation order from input
dimensions. Nontunable.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

A • Double-precision floating point

• Single-precision floating point

K • Double-precision floating point

• Single-precision floating point

G • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Burg AR Estimator Signal Processing Blockset

Covariance AR Estimator Signal Processing Blockset

10-1263

Yule-Walker AR Estimator

Modified Covariance AR
Estimator

Signal Processing Blockset

Yule-Walker Method Signal Processing Blockset

aryule Signal Processing Toolbox

10-1264

Yule-Walker IIR Filter Design

Purpose Design and apply an IIR filter.

Library dspobslib

Description
Note The Yule-Walker IIR Filter Design block is still supported but
is likely to be obsoleted in a future release. We strongly recommend
replacing this block with the Digital Filter block.

The Yule-Walker IIR Filter Design block designs a recursive (ARMA)
digital filter with arbitrary multiband magnitude response, and applies
it to a discrete-time input using the Direct-Form II Transpose Filter
block. The filter design, which uses the yulewalk function in the
Signal Processing Toolbox, performs a least-squares fit to the specified
frequency response.

An M-by-N sample-based matrix input is treated as M*N independent
channels, and an M-by-N frame-based matrix input is treated as N
independent channels. In both cases, the block filters each channel
independently over time, and the output has the same size and frame
status as the input.

The Band-edge frequency vector parameter is a vector of frequency
points in the range 0 to 1, where 1 corresponds to half the sample
frequency. The first element of this vector must be 0 and the last
element 1, and intermediate points must appear in ascending order.
The Magnitudes at these frequencies parameter is a vector
containing the desired magnitude response at the points specified in the
Band-edge frequency vector.

Note that, unlike the Remez FIR Filter Design block, each
frequency-magnitude pair specifies the junction of two adjacent
frequency bands, so there are no "don’t care" regions.

10-1265

Yule-Walker IIR Filter Design

When specifying the Band-edge frequency vector and Magnitudes
at these frequencies vectors, avoid excessively sharp transitions from
passband to stopband. You may need to experiment with the slope of
the transition region to get the best filter design.

For more details on the Yule-Walker filter design algorithm, see the
description of the yulewalk function in the Signal Processing Toolbox
documentation.

10-1266

Yule-Walker IIR Filter Design

Dialog
Box

Filter order
The order of the filter.

Band-edge frequency vector
A vector of frequency points. The value 1 corresponds to half the
sample frequency. The first element of this vector must be 0 and
the last element 1. Tunable.

Magnitudes at these frequencies
A vector of frequency response magnitudes corresponding to the
points in the Band-edge frequency vector. This vector must be
the same length as the Band-edge frequency vector. Tunable.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

10-1267

Yule-Walker Method

Purpose Compute parametric estimate of the spectrum using Yule-Walker
autoregressive (AR) method

Library Estimation / Power Spectrum Estimation

Description The Yule-Walker Method block estimates the power spectral density
(PSD) of the input using the Yule-Walker AR method. This method, also
called the autocorrelation method, fits an autoregressive (AR) model to
the windowed input data by minimizing the forward prediction error
in the least squares sense. This formulation leads to the Yule-Walker
equations, which are solved by Levinson-Durbin recursion. Block
outputs are always nonsingular.

The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only) representing a frame of consecutive time samples
from a single-channel signal. The block’s output (a column vector) is
the estimate of the signal’s power spectral density at Nfft equally spaced
frequency points in the range [0,Fs), where Fs is the signal’s sample
frequency.

When you select Inherit estimation order from input dimensions,
the order of the all-pole model is one less that the input frame size.
Otherwise, the order is the value specified by the Estimation order
parameter. To guarantee a valid output, you must set the Estimation
order parameter to be less than or equal to half the input vector
length. The spectrum is computed from the FFT of the estimated AR
model parameters.

When you select Inherit FFT length from estimation order, Nfft is
specified by (estimation order + 1), which must be a power of 2. When
you do not select Inherit FFT length from estimation order, Nfft is
specified as a power of 2 by the FFT length parameter, and the block
zero pads or truncates the input to Nfft before computing the FFT. The
output is always sample based.

See the Burg Method block reference for a comparison of the Burg
Method, Covariance Method, Modified Covariance Method, and
Yule-Walker AR Estimator blocks. The Yule-Walker AR Estimator and
Burg Method blocks return similar results for large buffer lengths.

10-1268

Yule-Walker Method

Dialog
Box

Inherit estimation order from input dimensions
When selected, sets the estimation order to one less than the
length of the input vector.

Estimation order
The order of the AR model. This parameter is enabled when you do
not select Inherit estimation order from input dimensions.

Inherit FFT length from estimation order
When selected, uses the estimation order to determine the number
of data points, Nfft, on which to perform the FFT. Sets Nfft equal
to (estimation order + 1). Note that Nfft must be a power of 2, so
(estimation order + 1) must be a power of 2.

FFT length
The number of data points, Nfft, on which to perform the FFT.
When Nfft exceeds the input frame size, the frame is zero-padded
as needed. This parameter is enabled when you do not select
Inherit FFT length from estimation order.

References Kay, S. M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

10-1269

Yule-Walker Method

Marple, S. L., Jr., Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating point

• Single-precision floating point

Output • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type. To learn how
to convert your data types to the above data types in MATLAB and
Simulink, see “Supported Data Types and How to Convert to Them”
on page 7-2.

See Also

Burg Method Signal Processing Blockset

Covariance Method Signal Processing Blockset

Levinson-Durbin Signal Processing Blockset

Autocorrelation LPC Signal Processing Blockset

Short-Time FFT Signal Processing Blockset

Yule-Walker AR Estimator Signal Processing Blockset

pyulear Signal Processing Toolbox

See “Power Spectrum Estimation” on page 6-6 for related information.

10-1270

Zero Crossing

Purpose Count number of times signal crosses zero in a single time step

Library Signal Operations

Description The Zero Crossing block concludes that a signal has passed through
zero if it meets any of the following criteria, where xi is the current
signal value, xi-1 is the previous signal value, and so on:

• xi < 0 and xi-1 > 0

• xi > 0 and xi-1 < 0

• For some positive integer L, xi < 0, xi-l = 0, and xi-L-1 > 0, where
0 ≤ ≤l L .

• For some positive integer L, xi > 0, xi-l = 0, and xi-L-1 < 0, where
0 ≤ ≤l L .

For the first input value, xi-1 and xi-2 are zero. The block outputs the
number of times the signal crosses zero in a single time step at the
Cnt port.

The input to this block must be a real-valued, fixed-point or
floating-point, single-channel signal. This means that sample-based
signals must be scalars and frame-based signals must be vectors. The
block produces an error if the input signal is multichannel.

Examples The following example illustrates the behavior of the Zero Crossing
block.

1 Create the following Simulink model.

10-1271

Zero Crossing

2 Use the Signal From Workspace block to create a frame-based signal.
Set the parameters as follows:

• Signal = [-3:3]'

• Sample time = 1/7

• Samples per frame = 7

• Form output after final data value by = Cyclic repetition

The block outputs a single frame of the frame-based signal at the first
time step, and identical frames at each additional time step.

3 Use the Zero Crossing block to detect the number of zero crossing in
each time step. Use the default parameters.

4 Use the Display block to view the number of zero crossings.

5 To run the model for one time step, set the configuration parameters.
Open the Configuration Parameters dialog box by selecting
Configuration Parameters from the Simulation menu. In the
Solver pane, set the parameters as follows:

• Stop time = 0

10-1272

Zero Crossing

• Type = Fixed-step

• Solver = discrete (no continuous states)

6 Run the model.

Because the signal passes through zero once during the first time
step, the Zero Crossing block finds one zero crossing as shown in
the figure below.

7 To run the model for two time steps, change the simulation Stop
time to 1.

8 Run the model.

The Zero Crossing block remembers that the last value of the last
frame was 3. Therefore, the signal passes through zero twice during
the second time step. It passes through zero while going from 3 to -3,
and it passes through zero again while going from -3 to 3. The Zero
Crossing block finds two zero crossings in the second time step as
shown in the figure below.

10-1273

Zero Crossing

Dialog
Box

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating-point

• Single-precision floating-point

• Fixed point (signed and unsigned)

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Cnt • 32-bit unsigned integers

10-1274

Zero Crossing

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Hit Crossing Simulink

10-1275

Zero Pad

Purpose Alter input dimensions by zero-padding (or truncating) rows and/or
columns

Library Signal Operations

Description The Zero Pad block changes the dimensions of the input matrix from
Mi-by-Ni to Mo-by-No by zero-padding or truncating along the columns,
rows, or columns and rows. Use the Pad along parameter to specify
the dimensions to change.

Using the Pad signal at parameter, you can choose to pad your input
matrix at the end or the beginning of a row and/or column.

The Number of output rows and/or Number of output columns
parameters refer to the dimensions of the output, Mo and No. You can
set these parameters to User-specified or Next power of two. When
you choose User-specified, enter a scalar value in the Specified
number of output rows and/or Specified number of output
columns parameters. When you choose Next power of two, the block
pads the input matrix along the columns and/or rows until the length of
the columns and/or rows is equal to a power of two. When the length of
the input matrix’s columns and/or rows is already equal to a power of
two, the block does not pad the input matrix.

When you choose User-specified for the Number of output rows
and/or Number of output columns parameters, you can specify
a scalar value in the Specified number of output rows and/or
Specified number of output columns parameters that truncates the
size of your input matrix. The following options are available for the
Action when truncation occurs parameter:

• None — Select this option when you do not want to be notified that
the input matrix is truncated.

• Warning — Choose this option when you want a warning to be
displayed in the MATLAB Command Window when the input matrix
is truncated.

10-1276

Zero Pad

• Error — Click this option when you want an error dialog box to be
displayed and the simulation terminated when the input matrix is
truncated.

The behavior of the Pad block and Zero Pad block is identical, with
the exception that the Pad block can pad the input matrix with values
other than zero. See the Pad block reference page for more information
on the behavior of the Pad block.

Example In the model below, the 3-by-3 input is zero-padded along the column
dimension to 5-by-3. The parameter settings in the Zero Pad block are

• Pad signal at =End

• Pad along = Columns

• Number of output rows = User-specified

• Specified number of output rows = 5

• Action when truncation occurs: None

The following figure shows the result of running the model.

10-1277

Zero Pad

Dialog
Box

Pad signal at
The input matrix can be padded at the beginning of the rows
and/or columns or at the end of the rows and/or columns.

Pad along
The direction along which to pad or truncate. Columns specifies
that the row dimension should be changed to Mo. Rows specifies
that the column dimension should be changed to No. Columns and
rows specifies that both column and row dimensions should be
changed. None disables padding and truncation and passes the
input through to the output unchanged.

Number of output rows
The total number of output rows can be User-specified or Next
power of two. When you select User-specified, type a scalar
value in the Specified Number of output rows parameter.
When you select Next power of two, the block pads the columns

10-1278

Zero Pad

of the input matrix until the number of rows is equal to a power
of two. When the number of rows is already equal to a power of
two, the block does not pad the input matrix.

Specified number of output rows
The desired number of rows in the output, Mo. This parameter is
enabled when you select Columns or Columns and rows in the
Pad along menu and User-specified is chosen in the Number
of output rows parameter.

Number of output columns
The total number of output columns. This parameter is enabled
when you select Rows or Columns and rows in the Pad along
menu. When you select User-specified, type a scalar value in
the Specified Number of output columns parameter. When
you select Next power of two, the block pads the rows of the
input matrix until the number of columns is equal to a power of
two. When the number of columns is already equal to a power of
two, the block does not pad the input matrix.

Specified number of output columns
The desired number of columns in the output, No. This parameter
is enabled when you select Rows or Columns and rows in the Pad
along menu and User-specified is chosen in the Number of
output columns parameter.

Action when truncation occurs
Choose None when you do not want to be notified that the input
matrix is truncated. Select Warning to display a warning when
the input matrix is truncated. Choose Error when you want an
error dialog box to be displayed and the simulation terminated
when the input matrix is truncated.

10-1279

Zero Pad

Supported
Data
Types

Port Supported Data Types

Input • Double-precision floating-point

• Single-precision floating-point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating-point

• Single-precision floating-point

• Fixed point (signed only)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in
MATLAB and Simulink, see “Supported Data Types and How to Convert
to Them” on page 7-2.

See Also

Matrix Concatenation Simulink

Pad Signal Processing Blockset

Repeat Signal Processing Blockset

Submatrix Signal Processing Blockset

10-1280

Zero Pad

Upsample Signal Processing Blockset

Variable Selector Signal Processing Blockset

10-1281

11

Functions — Alphabetical
List

dsp_links

Purpose Display library link information for blocks linked to the Signal
Processing Blockset

Syntax dsp_links
dsp_links()

Description The dsp_links function displays and returns library link information
for blocks linked to the Signal Processing Blockset libraries.

Signal Processing Blockset blocks can be obsolete, deprecated, or
current. Obsolete blocks are blocks that are no longer supported. They
might or might not work properly. Deprecated blocks are still supported
but are likely to become obsolete in a future release. Current blocks are
supported and represent the latest block functionality.

dsp_links() returns a structure with three elements for the current
model. Each element represents one of the three block categories and
contains a cell array of strings. Each string is the name of a library
block in the current model.

dsp_links(sys) returns a structure with three elements for the named
system.

See Also
liblinks Signal Processing Blockset

11-2

dsplib

Purpose Open the main Signal Processing Blockset library

Syntax dsplib

Description dsplib opens the current version of the main Signal Processing
Blockset library.

11-3

dspstartup

Purpose Configure the Simulink environment for signal processing systems

Syntax dspstartup

Description dspstartup configures a number of Simulink environment parameters
with settings appropriate for a typical DSP project. When the Simulink
environment has successfully been configured, the function displays the
following message in the command window.

Changed default Simulink settings for DSP systems (dspstartup.m).

To automatically configure the Simulink environment at startup, add
a call to dspstartup.m from your startup.m file. If you do not have a
startup.m file on your path, you can create one from the startupsav.m
template in the toolbox/local directory.

To edit startupsav.m, simply replace the load matlab.mat command
with a call to dspstartup.m, and save the file as startup.m. The result
should look like this.

%STARTUP Startup file
% This file is executed when MATLAB starts up,
% if it exists anywhere on the path.
dspstartup;

For more information, see the description for the startup command
in the MATLAB documentation and Configuring Simulink for Signal
Processing Models in the Getting Started Signal Processing Blockset
documentation.

The dspstartup.m script sets the following Simulink environment
parameters. See “Model and Block Parameters” in the Using Simulink
documentation for complete information about a particular setting.

11-4

dspstartup

Parameter Setting

SingleTaskRate TransMsg error

Solver fixedstepdiscrete

SolverMode SingleTasking

StartTime 0.0

StopTime inf

FixedStep auto

SaveTime off

SaveOutput off

AlgebraicLoopMsg error

InvariantConstants on

See Also
startup MATLAB

11-5

liblinks

Purpose Display library link information for blocks linked to the Signal
Processing Blockset

Syntax

Description Please see the command line help for liblinks. Type

help liblinks

in the MATLAB Command Window.

See Also
dsp_links Signal Processing Blockset

11-6

rebuffer_delay

Purpose Compute the number of samples of delay introduced by buffering and
unbuffering operations

Syntax d = rebuffer_delay(f,n,m)
d = rebuffer_delay(f,n,m,'singletasking')

Description d = rebuffer_delay(f,n,m) returns the delay (in samples)
introduced by the buffering and unbuffering blocks in multitasking
operations, where fis the input frame size, nis the Output buffer size
parameter setting, and mis the Buffer overlap parameter setting.

The blocks whose delay can be computed by rebuffer_delay are

• Buffer

• Unbuffer

d = rebuffer_delay(f,n,m,'singletasking') returns the delay (in
samples) introduced by these blocks in single-tasking operations.

The table below shows the appropriate rebuffer_delay parameter
values to use in computing delay for the two blocks.

Block Parameter Values

Buffer f = input frame size (f=1 for sample-based mode)

n = Output buffer size

m = Buffer overlap

Unbuffer f = input frame size

n = 1

m = 0

See Also
Buffer Signal Processing Blockset

Unbuffer Signal Processing Blockset

11-7

Glossary

Glossary

This glossary defines terms related to fixed-point data types and numbers.
These terms may appear in some or all of the documents that describe
products from The MathWorks that have fixed-point support.

arithmetic shift
Shift of the bits of a binary word for which the sign bit is recycled for
each bit shift to the right. A zero is incorporated into the least significant
bit of the word for each bit shift to the left. In the absence of overflows,
each arithmetic shift to the right is equivalent to a division by 2, and
each arithmetic shift to the left is equivalent to a multiplication by 2.

See also binary point, binary word, bit, logical shift, most significant bit

bias
Part of the numerical representation used to interpret a fixed-point
number. Along with the slope, the bias forms the scaling of the number.
Fixed-point numbers can be represented as

where the slope can be expressed as

See also fixed-point representation, fractional slope, integer, scaling,
slope, [Slope Bias]

binary number
Value represented in a system of numbers that has two as its base and
that uses 1’s and 0’s (bits) for its notation.

See also bit

binary point
Symbol in the shape of a period that separates the integer and fractional
parts of a binary number. Bits to the left of the binary point are
integer bits and/or sign bits, and bits to the right of the binary point
are fractional bits.

Glossary-1

Glossary

See also binary number, bit, fraction, integer, radix point

binary point-only scaling
Scaling of a binary number that results from shifting the binary point of
the number right or left, and which therefore can only occur by powers
of two.

See also binary number, binary point, scaling

binary word
Fixed-length sequence of bits (1’s and 0’s). In digital hardware, numbers
are stored in binary words. The way in which hardware components or
software functions interpret this sequence of 1’s and 0’s is described
by a data type.

See also bit, data type, word

bit
Smallest unit of information in computer software or hardware. A bit
can have the value 0 or 1.

ceiling (round toward)
Rounding mode that rounds to the closest representable number in the
direction of positive infinity. This is equivalent to the ceil mode in
Fixed-Point Toolbox.

See also convergent rounding, floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

contiguous binary point
Binary point that occurs within the word length of a data type. For
example, if a data type has four bits, its contiguous binary point must
be understood to occur at one of the following five positions:

Glossary-2

Glossary

See also data type, noncontiguous binary point, word length

convergent rounding
Rounding mode that rounds to the nearest allowable quantized value.
Numbers that are exactly halfway between the two nearest allowable
quantized values are rounded up only if the least significant bit (after
rounding) would be set to 0.

See also ceiling (round toward), floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

data type
Set of characteristics that define a group of values. A fixed-point data
type is defined by its word length, its fraction length, and whether it is
signed or unsigned. A floating-point data type is defined by its word
length and whether it is signed or unsigned.

See also fixed-point representation, floating-point representation,
fraction length, word length

data type override
Parameter in the Fixed-Point Settings interface that allows you to
set the output data type and scaling of fixed-point blocks on a system
or subsystem level.

See also data type, scaling

exponent
Part of the numerical representation used to express a floating-point or
fixed-point number.

1. Floating-point numbers are typically represented as

2. Fixed-point numbers can be represented as

where the slope can be expressed as

Glossary-3

Glossary

The exponent of a fixed-point number is equal to the negative of the
fraction length:

See also bias, fixed-point representation, floating-point representation,
fraction length, fractional slope, integer, mantissa, slope

fixed-point representation
Method for representing numerical values and data types that have
a set range and precision.

1. Fixed-point numbers can be represented as

where the slope can be expressed as

The slope and the bias together represent the scaling of the fixed-point
number.

2. Fixed-point data types can be defined by their word length, their
fraction length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope,
integer, precision, range, scaling, slope, word length

floating-point representation
Method for representing numerical values and data types that can have
changing range and precision.

1. Floating-point numbers can be represented as

2. Floating-point data types are defined by their word length.

See also data type, exponent, mantissa, precision, range, word length

Glossary-4

Glossary

floor (round toward)
Rounding mode that rounds to the closest representable number in
the direction of negative infinity.

See also ceiling (round toward), convergent rounding, nearest (round
toward), rounding, truncation, zero (round toward)

fraction
Part of a fixed-point number represented by the bits to the right of the
binary point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

fraction length
Number of bits to the right of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction

fractional slope
Part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

where the slope can be expressed as

The term slope adjustment is sometimes used as a synonym for
fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

guard bits
Extra bits in either a hardware register or software simulation that are
added to the high end of a binary word to ensure that no information
is lost in case of overflow.

See also binary word, bit, overflow

Glossary-5

Glossary

integer
1. Part of a fixed-point number represented by the bits to the left of the
binary point. The integer represents numbers that are greater than
or equal to one.

2. Also called the "stored integer." The raw binary number, in which the
binary point is assumed to be at the far right of the word. The integer
is part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

or

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer,
real-world value, slope

integer length
Number of bits to the left of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction length,
integer

least significant bit (LSB)
Bit in a binary word that can represent the smallest value. The LSB is
the rightmost bit in a big-endian-ordered binary word. The weight of
the LSB is related to the fraction length according to

See also big-endian, binary word, bit, most significant bit

Glossary-6

Glossary

logical shift
Shift of the bits of a binary word, for which a zero is incorporated into
the most significant bit for each bit shift to the right and into the least
significant bit for each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant
bit

mantissa
Part of the numerical representation used to express a floating-point
number. Floating-point numbers are typically represented as

See also exponent, floating-point representation

most significant bit (MSB)
Bit in a binary word that can represent the largest value. The MSB is
the leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit

nearest (round toward)
Rounding mode that rounds to the closest representable number, with
the exact midpoint rounded to the closest representable number in the
direction of positive infinity. This is equivalent to the nearest mode in
Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round
toward), rounding, truncation, zero (round toward)

noncontiguous binary point
Binary point that is understood to fall outside the word length of a
data type. For example, the binary point for the following 4-bit word is
understood to occur two bits to the right of the word length,

thereby giving the bits of the word the following potential values:

Glossary-7

Glossary

See also binary point, data type, word length

one’s complement representation
Representation of signed fixed-point numbers. Negating a binary
number in one’s complement requires a bitwise complement. That is, all
0’s are flipped to 1’s and all 1’s are flipped to 0’s. In one’s complement
notation there are two ways to represent zero. A binary word of all
0’s represents "positive" zero, while a binary word of all 1’s represents
"negative" zero.

See also binary number, binary word, sign/magnitude representation,
signed fixed-point, two’s complement representation

overflow
Situation that occurs when the magnitude of a calculation result is too
large for the range of the data type being used. In many cases you can
choose to either saturate or wrap overflows.

See also saturation, wrapping

padding
Extending the least significant bit of a binary word with one or more
zeros.

See also least significant bit

precision
1. Measure of the smallest numerical interval that a fixed-point data
type and scaling can represent, determined by the value of the number’s
least significant bit. The precision is given by the slope, or the number
of fractional bits. The term resolution is sometimes used as a synonym
for this definition.

2. Measure of the difference between a real-world numerical value and
the value of its quantized representation. This is sometimes called
quantization error or quantization noise.

See also data type, fraction, least significant bit, quantization,
quantization error, range, slope

Glossary-8

Glossary

Q format
Representation used by Texas Instruments to encode signed two’s
complement fixed-point data types. This fixed-point notation takes the
form

Qm.n

where

• Q indicates that the number is in Q format.

• m is the number of bits used to designate the two’s complement
integer part of the number.

• n is the number of bits used to designate the two’s complement
fractional part of the number, or the number of bits to the right of
the binary point.

In Q format notation, the most significant bit is assumed to be the sign
bit.

See also binary point, bit, data type, fixed-point representation, fraction,
integer, two’s complement

quantization
Representation of a value by a data type that has too few bits to
represent it exactly.

See also bit, data type, quantization error

quantization error
Error introduced when a value is represented by a data type that has
too few bits to represent it exactly, or when a value is converted from
one data type to a shorter data type. Quantization error is also called
quantization noise.

See also bit, data type, quantization

radix point
Symbol in the shape of a period that separates the integer and fractional
parts of a number in any base system. Bits to the left of the radix point
are integer and/or sign bits, and bits to the right of the radix point are
fraction bits.

Glossary-9

Glossary

See also binary point, bit, fraction, integer, sign bit

range
Span of numbers that a certain data type can represent.

See also data type, precision

real-world value
Stored integer value with fixed-point scaling applied. Fixed-point
numbers can be represented as

or

where the slope can be expressed as

See also integer

resolution
See precision

rounding
Limiting the number of bits required to express a number. One or
more least significant bits are dropped, resulting in a loss of precision.
Rounding is necessary when a value cannot be expressed exactly by the
number of bits designated to represent it.

See also bit, ceiling (round toward), convergent rounding, floor (round
toward), least significant bit, nearest (round toward), precision,
truncation, zero (round toward)

saturation
Method of handling numeric overflow that represents positive overflows
as the largest positive number in the range of the data type being used,
and negative overflows as the largest negative number in the range.

Glossary-10

Glossary

See also overflow, wrapping

scaling
1. Format used for a fixed-point number of a given word length and
signedness. The slope and bias together form the scaling of a fixed-point
number.

2. Changing the slope and/or bias of a fixed-point number without
changing the stored integer.

See also bias, fixed-point representation, integer, slope

shift
Movement of the bits of a binary word either toward the most significant
bit (“to the left”) or toward the least significant bit (“to the right”). Shifts
to the right can be either logical, where the spaces emptied at the front
of the word with each shift are filled in with zeros, or arithmetic, where
the word is sign extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

sign bit
Bit (or bits) in a signed binary number that indicates whether the
number is positive or negative.

See also binary number, bit

sign extension
Addition of bits that have the value of the most significant bit to the
high end of a two’s complement number. Sign extension does not change
the value of the binary number.

See also binary number, guard bits, most significant bit, two’s
complement representation, word

sign/magnitude representation
Representation of signed fixed-point or floating-point numbers. In
sign/magnitude representation, one bit of a binary word is always
the dedicated sign bit, while the remaining bits of the word encode
the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1
(negative), or from 1 to 0.

Glossary-11

Glossary

See also binary word, bit, fixed-point representation, floating-point
representation, one’s complement representation, sign bit, signed
fixed-point, two’s complement representation

signed fixed-point
Fixed-point number or data type that can represent both positive and
negative numbers.

See also data type, fixed-point representation, unsigned fixed-point

slope
Part of the numerical representation used to express a fixed-point
number. Along with the bias, the slope forms the scaling of a fixed-point
number. Fixed-point numbers can be represented as

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer,
scaling, [Slope Bias]

slope adjustment
See fractional slope

[Slope Bias]
Representation used to define the scaling of a fixed-point number.

See also bias, scaling, slope

stored integer
See integer

trivial scaling
Scaling that results in the real-world value of a number being simply
equal to its stored integer value:

Glossary-12

Glossary

In [Slope Bias] representation, fixed-point numbers can be represented
as

In the trivial case, slope = 1 and bias = 0.

In terms of binary point-only scaling, the binary point is to the right of
the least significant bit for trivial scaling, meaning that the fraction
length is zero:

Scaling is always trivial for pure integers, such as int8, and also for the
true floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point
representation, fraction length, integer, least-significant bit, scaling,
slope, [Slope Bias]

truncation
Rounding mode that drops one or more least significant bits from a
number.

See also ceiling (round toward), convergent rounding, floor (round
toward), nearest (round toward), rounding, zero (round toward)

two’s complement representation
Common representation of signed fixed-point numbers. Negation using
signed two’s complement representation consists of a translation into
one’s complement followed by the binary addition of a one.

See also binary word, one’s complement representation, sign/magnitude
representation, signed fixed-point

unsigned fixed-point
Fixed-point number or data type that can only represent numbers
greater than or equal to zero.

See also data type, fixed-point representation, signed fixed-point

Glossary-13

Glossary

word
Fixed-length sequence of binary digits (1’s and 0’s). In digital hardware,
numbers are stored in words. The way hardware components or
software functions interpret this sequence of 1’s and 0’s is described
by a data type.

See also binary word, data type

word length
Number of bits in a binary word or data type.

See also binary word, bit, data type

wrapping
Method of handling overflow. Wrapping uses modulo arithmetic to cast
a number that falls outside of the representable range the data type
being used back into the representable range.

See also data type, overflow, range, saturation

zero (round toward)
Rounding mode that rounds to the closest representable number in the
direction of zero. This is equivalent to the fix mode in Fixed-Point
Toolbox.

See also ceiling (round toward), convergent rounding, floor (round
toward), nearest (round toward), rounding, truncation

Glossary-14

Index

IndexA
accumulator

fixed-point parameters 8-26
Acoustic Noise Cancellation demo 3-53
acquiring data

blocks for 9-21
adaptive filter designs

FIR 9-5 10-608
Kalman 9-5 10-571
LMS 9-5 10-608
RLS 9-5 10-892

adaptive filters 3-53
creating 3-54
customizing 3-60

add
samples 2-25

addition
cumulative 9-8 10-181

algebraic loop errors 2-57
algorithmic delay 2-50

adjustable 2-53
and initial conditions 2-53
basic 2-53
excess 2-56
relation to latency 2-56
zero 2-50

Analog Filter Design block 10-2
analog filter designs 3-51 10-2

See also filter designs
analytic signal 10-6
Analytic Signal block 10-6
angular frequency 1-4

See also periods
arithmetic operations

fixed-point 8-13
arrays

importing 1-58
attenuation

stopband 3-51
audio

From Wave Device block 10-487
From Wave File block 10-493
To Wave Device block 10-1040
To Wave File block 10-1046

auto-promoting rates 1-9
autocorrelation

and Levinson-Durbin recursion 10-595
of a real vector 9-22 10-8
sequence 10-1268

Autocorrelation block 10-8
Autocorrelation LPC block 10-17
autocorrelation method 10-1261
autoregressive models, using

Burg AR Estimator block 10-43
Burg Method block 10-48
Covariance AR Estimator block 10-159
Covariance Method block 10-162
Modified Covariance AR Estimator

block 10-743
Modified Covariance Method block 10-746
Yule-Walker AR Estimator block 10-1261
Yule-Walker Method block 10-1268

avoiding unintended rate conversion 2-19

B
Backward Substitution block 10-21
band configurations 3-51
bandpass filter designs

analog, available parameters 3-51
using Analog Filter Design block 10-2

bandstop filter designs
analog, available parameters 3-51
using Analog Filter Design block 10-2

Bartlett windows 10-1247
basic

statistical operations 6-3
basic algorithmic delay 2-53
benefits

frame-based processing 2-49

Index-1

Index

binary clock signals 9-17 9-21 10-749
bins

histogram 10-504
bit-reversed order 10-403
Blackman windows 10-1247
Block LMS Filter block 10-27
block parameters

fixed-point 8-22
block rate types 2-57
blocks

multirate 2-57
single-rate 2-57

Buffer block 10-35
initial state of 10-39

Buffer overlap parameter
negative values for 2-36

buffering 2-25
altering the sample period of the

signal 2-29
altering the signal 2-26
blocks for 9-15
Buffer block 10-35
causing unintentional rate

conversions 2-24
Delay Line block 10-223
first input, first output (FIFO)

register 10-849
frame-based signals into other frame-based

signals 2-40
internal 2-36
last input, first output (LIFO)

register 10-992
preserving the sample period of the

signal 2-27
Queue block 10-849
sample-based signals into frame-based

signals 2-33
sample-based signals into frame-based

signals with overlap 2-36
Stack block 10-992

Burg AR Estimator block 10-43
Burg Method block 10-48

power spectrum estimation 10-48
butter function 3-52
Butterworth filter designs

analog 3-51
band configurations for 3-51
using Analog Filter Design block 10-2

C
casts

fixed-point 8-18
changing

frame size 2-16
size of frames 9-15 10-35
the frame size of a signal 2-27

channels
of a sample-based signal 1-13

cheby1 function 3-52
cheby2 function 3-52
Chebyshev type I filter designs

analog 3-51
band configurations for 3-51
using Analog Filter Design block 10-2

Chebyshev type II filter designs
analog 3-51
band configurations for 3-51
using Analog Filter Design block 10-2

Chebyshev windows 10-1247
Check Signal Attributes block 9-16 10-53
Chirp block 10-61
Cholesky Factorization block 10-80
Cholesky Inverse block 10-84
Cholesky Solver block 10-86
choosing

filter design blocks 3-20
clocks

binary 9-17 9-21 10-749
multiphase 9-17 9-21 10-749

Index-2

Index

code generation
fixed-point 8-4
generic real-time (GRT) 2-50

combining
frame-based signals 1-37
multichannel sample-based signals 1-34
single-channel sample-based signals 1-31

complex analytic signal 10-6
Complex Cepstrum block 10-109
Complex Exponential block 10-112
complex exponentials 10-112
complex multiplication

fixed-point 8-16
computational delay 2-48

reducing 2-49
computing

frequency distributions 9-22 10-504
histograms 9-22 10-504

concatenating
frame-based signals 1-37
multichannel sample-based signals 1-34
single-channel sample-based signals 1-31

concepts
frame rate 2-2
sample rate 2-2

configuring
vector quantization model 5-13

Constant Diagonal Matrix block 10-113
Constant Ramp block 10-117
constants

matrix 10-113
ramp 10-117

continuous-time
discretizing signals 1-11
signals 1-11
source blocks 1-11

control signals, for
Triggered Shift Register block 10-1052
Triggered Signal From Workspace

block 10-1061

Triggered Signal To Workspace
block 10-1065

controller canonical forms 10-3
conventions

time and frequency 1-4
Convert 1-D to 2-D block 10-123
Convert 2-D to 1-D block 10-126
converting 2-14

frame rates 2-14
frame-based signals into other frame-based

signals 2-40
sample-based signals into frame-based

signals 2-33
sample-based signals into frame-based

signals with overlap 2-36
See also rate conversion

convolution
of two real vectors 10-129

Convolution block 10-129
correlation

of two real vectors 9-22 10-137
Correlation block 10-137
correlation matrices 10-572
Counter block 10-147
Covariance AR Estimator block 10-159
Covariance Method block 10-162

spectral analysis 9-3 10-162
Create Diagonal Matrix block 10-165
creating

1-D vector signal 1-21
adaptive filters 3-54
fixed-point filters 3-32
frame-based signals 1-25
multichannel frame-based signals 1-37
multichannel sample-based signals 1-31
sample-based signals 1-19
scalar quantizers 5-5
vector quantizers 5-11

Cumulative Product block 10-167
Cumulative Sum block 10-181

Index-3

Index

customizing
adaptive filters 3-60

D
data types

labeling signals with 7-13
Simulink custom data type 7-14

dB
converting to 10-194

dB Conversion block 10-194
dB Gain block 10-197
dBm

converting to 10-194
DC component of an analytic signal 10-6
DCT block 10-200
DCTs

computing 10-200
decimation

process of 10-426
using FIR Decimation block 10-426
using FIR Rate Conversion block 10-458

deconstructing
multichannel frame-based signals 1-47
multichannel frame-based signals into

individual signals 1-47
multichannel sample-based signals 1-41
multichannel sample-based signals into

individual signals 1-41
multichannel sample-based signals into

other multichannel signals 1-43
delay

algorithmic 2-50
computational 2-48
fractional 9-18 10-1130
rebuffer_delay function 11-7
rebuffering 2-42
relation to latency 2-56

Delay block 10-208
Delay Line block 10-223

delete
samples 2-25

demos
Acoustic Noise Cancellation 3-53
LPC Analysis and Synthesis of Speech 5-3
multirate filtering 3-74

designing
adaptive filters 3-54
fixed-point filters 3-32
scalar quantizers 5-5
vector quantizers 5-11

Detrend block 10-228
diagonal matrix constants 10-113
difference

between elements in a vector 10-230
Difference block 10-230
Digital Filter block 10-237

filtering noise with 3-5
Digital Filter Design block 10-296

filtering noise with 3-26
digital frequency 1-4

defined 1-4
See also periods

discrete cosine transforms 10-200
Discrete Impulse block 10-320
discrete wavelet transform 10-357
discrete-time signals 1-4

characteristics 1-4
defined 1-3
terminology 1-4
See also signals

discretizing a continuous-time signal 1-11
display span

Vector Scope Block 10-1190
displaying

blocks for 9-20
frame-based data 9-20 10-1190
frequency-domain data 4-9
line widths 2-14
matrices as images 9-20 10-695

Index-4

Index

time-domain data 4-2
Downsample block 10-325
downsampling 2-14

Downsample block 10-325
FIR Decimation block 10-426
FIR Rate Conversion block 10-458
See also rate conversion

DSP Constant block 10-335
DSP Fixed-Point Attributes block 10-339
DSP Gain block 10-339 10-347
DSP Product block 10-339 10-351
DSP Sum block 10-354
dsplib function 11-3
dspstartup M-file 11-4
DWT block 10-357
Dyadic Analysis Filter Bank block 10-359
Dyadic Synthesis Filter Bank block 10-371

E
Edge Detector block 10-382
elements of a vector

selecting 9-16 10-1146
ellip function 3-52
elliptic filter designs

analog 3-51
band configurations for 3-51
using Analog Filter Design block 10-2

errors
algebraic loop 2-57
due to continuous-time input to a

discrete-time block 1-11
due to insufficient audio buffer

size 10-1042
sample-rate mismatch 1-7

estimation
blocks for 9-2
Burg AR Estimator block 9-3 10-43
Burg Method block 9-3 10-48
Covariance AR Estimator block 9-3 10-159

Covariance Method block 9-3 10-162
Modified Covariance AR Estimator

block 9-3 10-743
Modified Covariance Method block 9-3

10-746
nonparametric with Magnitude FFT

block 9-3 9-23 10-661
nonparametric with Short-Time FFT

block 9-4 9-23 10-829 10-942
power spectrum 6-6
Yule-Walker AR Estimator block 9-3 to 9-4

10-1261
Yule-Walker Method block 10-1268

Event-Count Comparator block 10-385
events, triggering for

N-Sample Enable block 10-757
N-Sample Switch block 10-761
Sample and Hold block 10-904
Stack block 10-993
Triggered Shift Register block 10-1052
Triggered Signal From Workspace

block 10-1061
Triggered Signal To Workspace

block 10-1065
examples

latency 2-58
exponentials

complex 10-112
exporting

blocks for 9-20
frame-based signals 1-69
sample-based signals 1-62
using Triggered Signal To Workspace

block 9-20 10-1065
Extract Diagonal block 10-388
Extract Triangular Matrix block 10-390

F
factoring matrices 6-9

Index-5

Index

Fast Block LMS Filter block 10-394
fast Fourier transform (FFT) 10-401
FDATool

in the Signal Processing Blockset 10-296
FFT block 10-401

using 4-5
FFT length parameter 2-21
FFTs

computing 10-401
overlap-add filtering 10-791
overlap-save filtering 10-795

filter band configurations 3-51
filter design blocks

choosing 3-20
filter designs

available parameters 3-51
butter function 3-52
Butterworth 3-51
cheby1 function 3-52
cheby2 function 3-52
Chebyshev type I 3-51
Chebyshev type II 3-51
continuous-time 3-51
Digital Filter block 10-237
Digital Filter Design block 10-296
ellip function 3-52
elliptic 3-51
Levinson-Durbin block 10-596
passband ripple 3-51
stopband attenuation 3-51
using Analog Filter Design block 10-2

Filter Realization Wizard 10-415
filter realizations

using Filter Realization Wizard 10-415
filters

adaptive 3-53
blocks for 9-5
creating a highpass filter 3-24
creating a lowpass filter 3-22
Filter Realization Wizard 3-32

filtering noise with Digital Filter
blocks 3-5

filtering noise with Digital Filter Design
blocks 3-26

fixed-point 8-32
implementing a highpass filter 3-4
implementing a lowpass filter 3-3
multirate 3-66
overlap-add method 10-791
overlap-save method 10-795

FIR
interpolation 10-557

FIR Decimation block 10-426
FIR filter designs

using Levinson-Durbin block 10-596
with prescribed autocorrelation

sequence 10-596
FIR Interpolation block 10-442
FIR Rate Conversion block 10-458
first-input, first-output (FIFO) registers 9-15

10-849
fixed-point attributes, specification

at the block level 8-22
at the system level 8-28

fixed-point block parameters
setting 8-22

fixed-point code generation 8-4
fixed-point data types 8-8

accumulator parameters 8-26
addition 8-15
arithmetic operations 8-13
attributes 8-22
casts 8-18
complex multiplication 8-16
concepts 8-8
filters 8-32
intermediate product parameters 8-24
list of supported blocks 8-6
logging 8-29
modular arithmetic 8-13

Index-6

Index

multiplication 8-16
output parameters 8-28
overflow handling 8-10
overflow parameter 8-24
precision 8-10
range 8-10
rounding 8-11
rounding parameter 8-24
saturation 8-10
scaling 8-9
subtraction 8-15
supported features 8-34
terminology 8-8
two\xd5 s complement 8-14
wrapping 8-10

fixed-point development
benefits 8-3

fixed-point DSP applications 8-4
fixed-point filters

designing and implementing 3-32
Fixed-Point Settings interface 8-28
fixed-step solvers 1-7
Flip block 10-470
forms

controller canonical 10-3
state-space 10-3

Forward Substitution block 10-473
Frame Conversion 10-475
frame periods 2-12

altered by unbuffering 2-43
constant 2-13
converting 2-12
multiple 2-13
related to sample period and frame

size 2-3
Simulink Probe block 2-6
See also rate conversion

frame rates 1-9
auto-promoting 1-9
color coding 2-10

concepts 2-2
inspecting 2-10
See also frame periods

frame rebuffering
blocks for 2-24

frame size
changing 2-27

frame sizes 2-12
constant 2-13
converting 2-12
converting by rebuffering 2-12
direct rate conversion 2-12
maintaining a constant frame rate 2-13
maintaining a constant sample rate 2-25
related to sample period and frame

period 2-3
See also rate conversion

Frame Status Conversion block 10-478
frame-based multichannel signals 1-15

See also signals
frame-based processing

benefits 2-49
latency 1-18

frame-based signals
benefits of 1-17
combining 1-37
concatenating 1-37
converting to other frame-based

signals 2-40
creating 1-25
deconstructing multichannel signals 1-47
exporting 1-69
importing 1-66
importing and exporting 1-66
multichannel 1-15 1-37
reordering channels in a multichannel

signal 1-51
separating multichannel signals 1-47
single channel 1-15
unbuffering to sample-based signals 2-43

Index-7

Index

frame-matrices
format of 1-15

frame-rate adjustment
rate conversion 2-14

frame-size adjustment
rate conversion 2-16

frames
changing size of 9-15 10-35
unbuffering to scalars 9-15 10-1099

frequencies 1-4
normalized 3-51
normalized linear 1-4
terminology 1-4
See also periods

frequency distributions 10-504
computing 9-22 10-504

frequency-domain data
displaying 4-9
transforming it into the time domain 4-13

From Multimedia File block 10-481
From Wave Device block 10-487
From Wave File block 10-493
functions, utility

dsplib 11-3
dspstartup 11-4
rebuffer_delay 11-7

G
G.711 Codec block 10-499
gain

applying in dB 9-8 10-197
generated code

generic real-time (GRT) 2-50

H
Hamming windows 10-1248
Hann windows 10-1248
highpass filter designs

continuous-time 3-51
using Analog Filter Design block 10-2

Hilbert transformer filter designs 10-6
Histogram block 10-504
histograms

computing 9-22 10-504
Hz (hertz) 1-4

defined 1-4
See also sample periods

I
IDCT block 10-514
IDCTs 10-514

computing 10-514
identity matrices 10-522
Identity Matrix block 10-522
IDWT block 10-527
IFFT block 10-529

using 4-13
IFFTs

computing 10-529
images

displaying matrices as 9-20 10-695
importing

arrays 1-58
blocks for 9-21
frame-based signals 1-66
pages of an array 1-58
sample-based matrices 1-58
sample-based signals 1-55
sample-based vector signals 1-55
scalars 9-12 10-493
signals from the workspace 9-21 10-947
Triggered Signal From Workspace

block 9-18 10-1061
vectors 9-12 10-493

importing and exporting
frame-based signals 1-66
sample-based signals 1-55

Index-8

Index

indexing
blocks for 9-15

Inherit Complexity block 10-544
inheriting sample periods 1-12
initial conditions

with basic algorithmic delay 2-53
input frame periods

defined 2-2
inspecting

frame periods 2-6
frame rates 2-10
sample periods 2-4
sample rates 2-8

Integer Delay block 10-547
intermediate product

fixed-point parameters 8-24
interpolating

FIR Interpolation block 10-442
FIR Rate Conversion block 10-458
procedure 10-442

Interpolation block 10-557
inverse discrete cosine transforms 10-514
Inverse Short-Time FFT block 10-567
inversion of matrices 6-10

K
Kaiser windows 10-1248
Kalman Adaptive Filter block 10-571

L
last-input, first-output (LIFO) registers 9-15

10-992
latency 2-56

due to frame-based processing 1-18
predicting 2-58
reducing 2-57
relation to delay 2-56

LDL Factorization block 10-576

LDL Inverse block 10-579
LDL Solver block 10-582
least mean-square algorithm 10-608
Least Squares Polynomial Fit block 10-591
Levinson-Durbin block 10-594
libraries

displaying link information 11-2
Statistics 6-2

line widths
displaying 2-14

linear algebra
blocks for 9-8
solving linear systems 6-7

linear prediction
using Autocorrelation LPC block 10-17

LMS Adaptive Filter block 10-604
LMS algorithm

Block LMS Filter block 10-27
Fast Block LMS Filter block 10-394
LMS Filter block 10-608

LMS Filter block 10-608
logging

fixed-point data types 8-29
lowpass filter designs

continuous-time 3-51
using Analog Filter Design block 10-2

LPC to LSP/LSF Conversion block 10-624
LPC to/from Cepstral Coefficients block 10-641
LPC to/from RC block 10-646
LPC/RC to Autocorrelation block 10-651
LSF/LSP to LPC Conversion block 10-639
LU Factorization block 10-654
LU Inverse block 10-657
LU Solver block 10-659

M
M-files

dspstartup 11-4
Magnitude FFT block 10-661

Index-9

Index

magnitude response of filters 10-2
magnitudes

converting to dB 9-8 10-194
matrices

2-norm 10-972
constant diagonal 10-113
create diagonal 9-10 10-165
displaying as images 9-20 10-695
extracting diagonal of 9-10 10-388
extracting triangle from 10-390
factoring 6-9
format of frame-based 1-15
identity 10-113
Identity Matrix block 10-522
inverting 6-10
multiplying 10-670
multiplying within 9-11 10-671
normalizing 9-11 10-665
overwriting elements of 10-799
permuting 10-833
scaling 9-11 10-679
selecting elements from 9-11 9-16 10-1010
summing 9-11 10-689
Toeplitz 9-11 10-1032
transposing 9-11 10-1049

Matrix 1-Norm block 10-665
Matrix Exponential block 10-669
Matrix Multiply block 10-670
matrix operations

blocks for 9-8
Matrix Product block 10-671
Matrix Scaling block 10-679
Matrix Square block 10-687
Matrix Sum block 10-689
Matrix Viewer block 10-695
maximum 6-2
Maximum block 10-702
mean 6-2

computing 10-714
Mean block 10-714

Median block 10-724
minimum 6-2
Minimum block 10-731
minimum mean-square estimate

(MMSE) 10-571
models

multirate 2-13
modes

tasking 2-57
Modified Covariance AR Estimator

block 10-743
Modified Covariance Method block 10-746
modifying signal attributes

blocks for 9-16
modular arithmetic 8-13
multichannel

frame-based signals 1-37
sample-based signals 1-31

multichannel signals 1-13
See also signals

Multiphase Clock block 10-749
multiplication

cumulative 9-8 10-167
fixed-point 8-16

multiplying
by dB gain 10-197

Multiport Selector block 10-753
multirate

blocks 2-57
demos 3-74
models 2-58

multitasking mode 2-57

N
N-Sample Enable block 10-757
N-Sample Switch block 10-761
n-step forward linear predictors 10-17
NCO block 10-765
Normalization block 10-781

Index-10

Index

normalized frequencies 1-4
defined 1-4
See also frequencies

norms
2-norm 10-972

Numerically Controlled Oscillator
block 10-765

Nyquist frequency
defined 1-4

Nyquist rate 1-4

O
Offset block 10-787
ones

outputting 10-757
output

fixed-point parameters 8-28
output frame periods

defined 2-2
overflow

fixed-point parameter 8-24
overflow handling 8-10
Overlap-Add FFT Filter block 10-791 to

10-792
overlap-add method 10-791
Overlap-Save FFT Filter block 10-795
overlap-save method 10-795
overlapping buffers

causing unintentional rate
conversions 2-24

Overwrite Values block 10-799

P
Pad block 10-817
padding 8-19
pages of an array

importing 1-58
parameters

Buffer overlap, negative values for 2-36
continuous-time filter 3-51
FFT length 2-21
normalized frequency 3-51

Partial Unbuffer block 2-26
partial unbuffering 2-25
passband ripple

analog filter 3-51
Peak Finder block 10-822
performance

improving 1-17
Periodogram block 10-829
periodograms 9-3 9-23 10-661
periods 1-3

defined 1-4
See also sample periods and frame periods

Permute Matrix block 10-833
phase angles

unwrapping 9-18 10-1112
phase unwrap 9-18 10-1112
Polynomial Evaluation block 10-838
Polynomial Stability Test block 10-840
polyphase filter structures

FIR Decimation 10-426
FIR Interpolation block 10-442
FIR Rate Conversion block 10-458

power spectrum estimation 6-6
power spectrum estimation, using

Burg method 10-48
short-time, fast Fourier transform

(ST-FFT) 9-23 10-942
Yule-Walker AR method 10-1268

precision
fixed-point data types 8-10

predicting
tasking latency 2-58

prediction
linear 10-17

predictor algorithm 10-571
preventing unintended rate conversion 2-19

Index-11

Index

Probe block 2-4
Pseudoinverse block 10-842

Q
QR Factorization block 10-844
QR Solver block 10-847
quantization

blocks for 9-13
quantizers

scalar 5-2
Queue block 10-849

R
ramp signal 10-117
random signals 10-860
Random Source block 10-860
random-walk Kalman filter 10-572
range

fixed-point data types 8-10
rate conversion 2-13

avoiding 2-19
avoiding rate-mismatch errors 1-8
blocks for 2-12
by unbuffering 2-43
direct 2-12
frame-rate adjustment 2-14
frame-size adjustment 2-16

rate types
block 2-57
model 2-58

rates 2-2
auto-promoting 1-9
See also sample periods and frame periods

Real Cepstrum block 10-870
Real-Time Workshop

generating generic real-time (GRT)
code 2-50

rebuffer_delay function 11-7

rebuffering 2-25
altering the sample period of the

signal 2-29
altering the signal 2-26
causing unintentional rate

conversions 2-24
delay 2-42
preserving the sample period of the

signal 2-27
rebuffer_delay function 11-7
with the Buffer block 10-35

Reciprocal Condition block 10-872
rectangular windows 10-1247
recursive least-squares (RLS) algorithm 9-5

10-892
reducing

latency 2-57
reflection coefficients

identifying 5-4
registers

first-input, first-output (FIFO) 9-15 10-849
last-input, first-output (LIFO) 9-15 10-992

Remez exchange algorithm 10-6
reordering channels

in multichannel frame-based signals 1-51
Repeat block 10-880
resampling

by inserting zeros 9-18 10-1122
Downsample block 10-325
FIR Decimation block 10-426
FIR Interpolation block 10-442
FIR Rate Conversion block 10-458
procedure 10-458
Repeat block 10-880

residual signal
identifying 5-4

ripple
passband 3-51

RLS Adaptive Filter block 10-888
RLS Filter block 10-892

Index-12

Index

RMS block 10-898
root-mean-square (RMS)

computing 9-22 10-898
rounding

fixed-point data types 8-11
fixed-point parameter 8-24

running
vector quantization model 5-13

running operations 6-4

S
Sample and Hold block 10-904
sample frequency 1-4

definition 1-4
See also sample periods

sample modes 2-58
sample periods 1-3

altered by unbuffering 2-43
Buffer block 2-26
continuous-time 1-11
defined 1-3
for frame-based signals 2-3
inherited 1-12
maintaining constant 2-25
nonsource blocks 1-12
of source blocks 1-11
Rebuffer block 2-26
related to frame period and frame size 2-3
Simulink Probe block 2-4
See also frame periods and sample times

sample rates 1-4
auto-promoting 1-9
changing 9-18 10-325
color coding 2-8
concepts 2-2
defined 1-3
inspecting 2-8
See also sample periods

sample time

of original time series parameter 2-24
sample times 1-3

defined 1-3
in the Signal Processing Blockset 1-5
shifting with sample-time offsets 2-4 2-6
See also sample periods and frame periods

sample-based signals 1-13
combining multichannel signals 1-34
combining single-channel signals 1-31
concatenating multichannel signals 1-34
concatenating single-channel signals 1-31
converting to frame-based 2-33
converting to frame-based with

overlap 2-36
creating 1-19
deconstructing multichannel signals 1-41
exporting 1-62
importing 1-55
importing and exporting 1-55
multichannel 1-31
single channel 1-13
splitting multichannel signals 1-41

samples
adding 2-25
deleting 2-25
rearranging 2-26

sampling 2-2 9-18 10-904
See also sample periods and frame periods

saturation 8-10
Scalar Quantizer block 10-907 10-917
Scalar Quantizer Design block 10-923
Scalar Quantizer Encoder block 10-932
scalar quantizers 5-2

creating 5-5
scalars

converting to vectors 9-15 10-223
creating from vectors 9-15 10-1099
exporting 9-20 10-1065
importing 9-12 10-493
importing from the workspace 9-21 10-947

Index-13

Index

scaling 8-9
selecting

elements of a vector 9-16 10-1146
separating

multichannel frame-based signals 1-47
sequences

defining a discrete-time signal 1-3
Shift Register block

initial state of 10-226
Short-Time FFT block 10-942
short-time, fast Fourier transform (ST-FFT)

method 9-23 10-942
Signal From Workspace block 10-947

compared to Simulink To Workspace
block 10-947

signal operations
blocks for 9-18

Signal To Workspace block 10-953
signals

benefits of frame-based 1-17
characteristics 1-4
continuous-time 1-11
control 10-1052
converting frame-based to

sample-based 2-43
definition of discrete-time 1-3
definition of frequency 1-4
discrete-time terminology 1-4
frame-based 1-15
inspecting the frame period of 2-6
inspecting the sample period of 2-4
multichannel 1-13
Nyquist frequency 1-4
Nyquist rate 1-4
random 10-860
sample-based 1-13
terminology 1-5
Triggered Signal From Workspace

block 9-18 10-1061
simulations

running from the command line 2-49
Sine Wave block 10-961
single channel signals

frame-based 1-15
sample-based 1-13

single-rate
blocks 2-57
models 2-58

single-tasking mode 2-57
Singular Value Decomposition block 10-972
size of a frame 2-12
sliding windows

example 6-3
solvers

fixed-step 1-7
variable-step 1-7

solving
linear systems 6-7

Sort block 10-975
sound

From Wave Device block 10-487
From Wave File block 10-493
To Wave Device block 10-1040
To Wave File block 10-1046

source blocks
defined 1-11
sample periods of 1-11

sources
sample periods of 1-11

spectral analysis 9-3 10-48
Burg method 9-3 10-48
covariance method 9-3 10-162
magnitude FFT method 9-3 9-23 10-661
modified covariance method 9-3 10-746
short-time FFT method 9-4 9-23 10-829

10-942
Yule-Walker method 10-1268
See also power spectrum estimation

Spectrum Scope block 10-981
speech

Index-14

Index

analysis and synthesis 5-2
splitting

multichannel frame-based signals into
individual signals 1-47

multichannel sample-based signals 1-41
multichannel sample-based signals into

individual signals 1-41
multichannel sample-based signals into

other multichannel signals 1-43
ST-FFT method 9-23 10-942
Stack block 10-992
stack events 10-993
standard deviation 6-2

computing 10-1003
Standard Deviation block 10-1003
state-space forms 10-3
statistical operations

blocks for 9-22
statistics

operations 6-2
RMS 10-898
standard deviation 10-1003
variance 10-1151

Statistics library 6-2
stopband attenuation 3-51
Submatrix block 10-1010
SVD Solver block 10-1020
swept cosine 10-69
swept-frequency cosine 9-21 10-61
switching

between two inputs 9-17 10-761
symbols

time and frequency 1-4
system-level settings

fixed-point 8-28

T
tasking latency 2-56

example 2-58

predicting 2-58
tasking modes 2-57
terminology

sample time and sample period 1-5
time and frequency 1-4

throughput rates
increasing 1-17

Time Scope block 10-1022
time-domain data

displaying 4-2
transforming it into the frequency

domain 4-5
To Multimedia File block 10-1036
To Wave Device block 10-1040
To Wave File block 10-1046
Toeplitz block 10-1032
transforming

frequency-domain data 4-13
time-domain data 4-5

transforms
blocks for 9-23
discrete cosine 10-200
discrete wavelet 10-357
Fourier 10-401

Transpose block 10-1049
transposing

matrices 9-11 10-1049
trends

removing 9-22 10-228
triangular windows 10-1248
Triggered Delay Line block 10-1052
Triggered Shift Register block

initial state of 10-1053
Triggered Signal From Workspace

block 10-1061
Triggered To Workspace block 10-1065
triggering, for

N-Sample Enable block 10-757
N-Sample Switch block 10-761
Sample and Hold block 10-904

Index-15

Index

Triggered Shift Register block 10-1052
Triggered Signal From Workspace

block 10-1061
Triggered Signal To Workspace

block 10-1065
Two-Channel Analysis Subband Filter

block 10-1068
Two-Channel Synthesis Subband Filter

block 10-1083
two\xd5 s complement 8-14

U
Unbuffer block 10-1099

initial state of 10-1100
unbuffering 2-43

and rate conversion 2-43
partial 2-25
to a sample-based signal 2-25
with the Buffer block 10-35

Uniform Decoder block 10-1103
Uniform Encoder block 10-1107
units of time and frequency measures 1-4
Unwrap block 10-1112
unwrapping radian phase angles 9-18 10-1112
Upsample block 10-1122
upsampling 2-12 2-14

by inserting zeros 9-18 10-1122
FIR Interpolation block 10-442
FIR Rate Conversion block 10-458
Repeat block 10-880
See also rate conversion

using
the FFT block 4-5
the IFFT block 4-13

utility functions
dsplib 11-3
dspstartup 11-4
rebuffer_delay 11-7

V
Variable Fractional Delay block 10-1130

initial conditions for 10-1130
Variable Integer Delay block 10-1136

initial conditions for 10-1138
Variable Selector block 10-1146
variable-step solver 1-7
variance 10-1151

tracking 10-1151
Variance block 10-1151
Vector Quantizer Decoder block 10-1161
Vector Quantizer Design 10-1168
Vector Quantizer Encoder block 10-1179
vector quantizers

configuring the model 5-13
creating 5-11
quantizers

vector 5-11
running the model 5-13

Vector Scope block 10-1190
vectors

converting to scalars 9-15 10-1099
creating from scalars 9-15 10-1052
exporting 9-20 10-1065
importing 9-12 10-493
importing from the workspace 9-21 10-947

viewing
frequency-domain data 4-9
time-domain data 4-2

W
Waterfall block 10-1209
Window Function block 10-1246
windows

applying 9-19 10-1246
Bartlett 10-1247
Blackman 10-1247
Chebyshev 10-1247
Hamming 10-1248

Index-16

Index

Hann 10-1248
Kaiser 10-1248
rectangular 10-1247
triangular 10-1248

wrapping
fixed-point data types 8-10

Y
Yule-Walker AR Estimator block 10-1261
Yule-Walker Method block 10-1268

Z
zero algorithmic delay 2-50
Zero Crossing block 10-1271
Zero Pad block 10-1276

Zero-Order Hold block 1-11
zero-padding 2-21

causing unintentional rate
conversions 2-24

Pad block 9-18 10-817
Zero Pad block 9-19 10-1276

zeros
Counter block 10-151
Discrete Impulse block 10-320
inserting 10-442
N-Sample Enable block 10-757
padding with 2-26
Signal From Workspace block 10-948
Triggered Signal From Workspace

block 10-1062

Index-17

	toc
	Working with Signals
	Discrete-Time Signals
	Time and Frequency Terminology
	Recommended Settings for Discrete-Time Simulations
	Other Settings for Discrete-Time Simulations
	Cross-Rate Operations

	Continuous-Time Signals
	Continuous-Time Source Blocks
	Continuous-Time Nonsource Blocks

	Sample-Based Signals
	Sample-Based Single Channel Signals
	Sample-Based Multichannel Signals

	Frame-Based Signals
	Frame-Based Single Channel Signals
	Frame-Based Multichannel Signals
	Benefits of Frame-Based Processing
	Accelerating Real-Time Systems
	Accelerating Simulations

	Creating Sample-Based Signals
	Using the DSP Constant Block
	Creating a 1-D Vector Signal

	Using the Signal from Workspace Block

	Creating Frame-Based Signals
	Using the Sine Wave Block
	Using the Signal from Workspace Block

	Creating Multichannel Sample-Based Signals
	Combining Single-Channel Sample-Based Signals
	Combining Multichannel Sample-Based Signals

	Creating Multichannel Frame-Based Signals
	Combining Frame-Based Signals

	Deconstructing Multichannel Sample-Based Signals
	Splitting Multichannel Sample-Based Signals into Individual Sign
	Splitting Multichannel Sample-Based Signals into Several Multich

	Deconstructing Multichannel Frame-Based Signals
	Splitting Multichannel Frame-Based Signals into Individual Signa
	Reordering Channels in Multichannel Frame-Based Signals

	Importing and Exporting Sample-Based Signals
	Importing Sample-Based Vector Signals
	Importing Sample-Based Matrix Signals
	Exporting Sample-Based Signals

	Importing and Exporting Frame-Based Signals
	Importing Frame-Based Signals
	Exporting Frame-Based Signals

	Advanced Signal Concepts
	Inspecting Sample Rates and Frame Rates
	Sample Rate and Frame Rate Concepts
	Inspecting Sample-Based Signals Using the Probe Block
	Inspecting Frame-Based Signals Using the Probe Block
	Inspecting Sample-Based Signals Using Color Coding
	Inspecting Frame-Based Signals Using Color Coding

	Converting Sample and Frame Rates
	Rate Conversion Blocks
	Direct Rate Conversion

	Rate Conversion by Frame-Rate Adjustment
	Rate Conversion by Frame-Size Adjustment
	Avoiding Unintended Rate Conversion
	Frame Rebuffering Blocks
	Blocks for Frame Rebuffering with Preservation of the Signal
	Blocks for Frame Rebuffering with Alteration of the Signal

	Buffering with Preservation of the Signal
	Buffering with Alteration of the Signal

	Converting Frame Status
	Buffering Sample-Based Signals into Frame-Based Signals
	Buffering Sample-Based Signals into Frame-Based Signals with Ove
	Buffering Frame-Based Signals into Other Frame-Based Signals
	Buffering Delay and Initial Conditions
	Unbuffering Frame-Based Signals into Sample-Based Signals

	Delay and Latency
	Computational Delay
	Reducing Computational Delay

	Algorithmic Delay
	Zero Algorithmic Delay
	Zero Algorithmic Delay and Algebraic Loops

	Basic Algorithmic Delay
	Excess Algorithmic Delay (Tasking Latency)
	Simulink Tasking Mode
	Block Rate Type
	Model Rate Type
	Block Sample Mode

	Predicting Tasking Latency

	Filters
	Digital Filter Block
	Required Parameters
	Implementing a Lowpass Filter
	Implementing a Highpass Filter
	Filtering High-Frequency Noise
	Specifying Static Filters
	Tuning the Filter Coefficient Values During Simulation

	Specifying Time-Varying Filters
	Setting the Coefficient Update Rate
	Providing Filter Coefficient Vectors at Block Input Ports
	Removing the a0 Term in the Filter Structure

	Specifying the SOS Matrix (Biquadratic Filter Coefficients)

	Digital Filter Design Block
	Overview of the Digital Filter Design Block
	Filter Design and Analysis
	Filter Implementation
	Saving, Exporting, and Importing Filters

	Choosing Between Filter Design Blocks
	Similarities
	Differences
	When to Use Each Block

	Creating a Lowpass Filter
	Creating a Highpass Filter
	Filtering High-Frequency Noise

	Filter Realization Wizard
	Designing and Implementing a Fixed-Point Filter
	Part 1 — Creating a Signal with Added Noise
	Part 2 — Creating a Fixed-Point Filter with the Filter Realizati
	Part 3 — Building a Model to Filter a Signal
	Part 4 — Looking at Filtering Results

	Setting the Filter Structure and Number of Filter Sections
	Optimizing the Filter Structure

	Analog Filter Design Block
	Adaptive Filters
	Creating an Acoustic Environment
	Creating an Adaptive Filter
	Customizing an Adaptive Filter
	Adaptive Filtering Demos
	Opening Demos

	Multirate Filters
	Filter Banks
	Dyadic Analysis Filter Banks
	Dyadic Synthesis Filter Banks

	Multirate Filtering Demos
	Opening Demos

	Transforms
	Signals in the Time Domain
	Displaying Time-Domain Data
	Transforming Time-Domain Data into the Frequency Domain

	Signals in the Frequency-Domain
	Displaying Frequency-Domain Data
	Transforming Frequency-Domain Data into the Time Domain

	Linear and Bit-Reversed Output Order
	Finding the Bit-Reversed Order of Your Frequency Indices

	Quantizers
	Scalar Quantizers
	Analysis and Synthesis of Speech
	Identifying Your Residual Signal and Reflection Coefficients
	Creating a Scalar Quantizer

	Vector Quantizers
	Building Your Vector Quantizer Model
	Configuring and Running Your Model

	Statistics, Estimation, and Linear Algebra
	Statistics
	Basic Operations
	Example: Sliding Windows

	Running Operations

	Power Spectrum Estimation
	Linear Algebra
	Solving Linear Systems
	Example: LU Solver

	Factoring Matrices
	Example: LU Factorization

	Inverting Matrices
	Example: LU Inverse

	Data Type Support
	Supported Data Types and How to Convert to Them
	Block Data Type Support Table
	Viewing Data Types of Signals In Models
	Correctly Defining Custom Data Types
	Boolean Support
	Advantages of Using the Boolean Data Type
	Lists of Blocks Supporting Boolean Inputs or Outputs
	Effects of Enabling and Disabling Boolean Support
	Steps to Disabling Boolean Support
	Step 1: Open the Configuration Parameters Dialog Box
	Step 2: Disable the Boolean Data Type in the Advanced Tab
	Step 3: (Optional) Verify Data Types of Signals

	Working with Fixed-Point Data
	Fixed-Point Signal Processing Development
	Benefits of Fixed-Point Hardware
	Benefits of Fixed-Point Design with the Signal Processing Blocks
	Fixed-Point Signal Processing Applications

	Blocks with Fixed-Point Support
	Concepts and Terminology
	Fixed-Point Data Types
	Scaling
	Precision and Range
	Range
	Precision

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Multiplication Data Types

	Casts
	Casts to the Accumulator Data Type
	Casts to the Intermediate Product or Product Output Data Type
	Casts to the Output Data Type
	Casting Examples

	Specifying Fixed-Point Attributes
	Setting Block Parameters
	Rounding Mode Parameter
	Overflow Mode Parameter
	Intermediate Product Parameters
	Product Output Parameters
	Accumulator Parameters
	Output Parameters

	Specifying System-Level Settings
	Fixed-Point Settings Interface

	Fixed-Point Filtering
	Filter Implementation Blocks
	Filter Design and Implementation Blocks

	Interoperability with Other Products
	Building Models with Other Blocks
	Connecting Fixed-Point and Floating-Point Blocks
	Connecting Blocks with Different Scalings

	Blocks — Categorical List
	Estimation
	Linear Prediction
	Parametric Estimation
	Power Spectrum Estimation

	Filtering
	Adaptive Filters
	Filter Designs
	Multirate Filters

	Math Functions
	Math Operations
	Matrices and Linear Algebra
	Linear System Solvers
	Matrix Factorizations
	Matrix Inverses
	Matrix Operations

	Polynomial Functions

	Platform-Specific I/O
	Windows (WIN32)

	Quantizers
	Signal Management
	Buffers
	Indexing
	Signal Attributes
	Switches and Counters

	Signal Operations
	Signal Processing Sinks
	Signal Processing Sources
	Statistics
	Transforms

	Blocks — Alphabetical List
	Functions — Alphabetical List
	Glossary
	Index

	tables
	Length Requirements for Time-Varying Filter Coefficient Vectors
	Rate Requirements for Time-Varying Filter Coefficient Vectors
	Parameter Settings for the Other Blocks
	Notable Characteristics of Asymmetric and Symmetric Dyadic Analy
	Notable Characteristics of Asymmetric and Symmetric Dyadic Synth
	Supported Data Types and How to Convert to Them
	Signal Processing Blockset Blocks with Fixed-Point Support
	Fixed-Point Data Type Support
	Fixed-Point Scaling Support
	Fixed-Point Operations Support
	Fixed-Point Code Generation Support
	Instantaneous Frequency Sweep Values
	Equations Used by the Chirp Block for Unidirectional Positive Sw
	Decimator Word Lengths and Fraction Lengths
	Interpolator Word Lengths and Fraction Lengths
	Filter Structures and Filter Coefficients
	Valid Initial Conditions
	Number of Delay Elements (Filter States)
	Output Characteristics for an n-Level Dyadic Analysis Filter Ban
	Specifying Filters with the Filter Parameter and Related Paramet
	Specifying Filters with the Filter Parameter and Related Paramet
	How Block Applies Interpolation Vectors to Frame-Based Inputs
	How Block Applies Interpolation Vectors to Sample-Based Inputs
	Input and Output Dimensions, Sizes, and Frame Statuses
	Valid Overwriting Values
	Settings for Row, Column, Starting Row, and Starting Column Para
	Settings for Ending Row and Ending Column Parameters
	Element and Starting Element Parameters
	Ending Element Parameters
	Amount of Block Latency for All Possible Block Settings
	Amount of Block Latency for All Possible Block Settings

